Online Supplementary Information

The high-affinity metal Transporters NRAMP1 and IRT1 Team up to Take up Iron under Sufficient Metal Provision

Loren Castaings¹, Antoine Caquot¹, Stéphanie Loubet¹ and Catherine Curie^{1*}

Supplementary Methods

GUS staining

Seeds from the previously described *pNRAMP1::GUS* ²⁵ line were first surface-sterilized, sown on half-strength Murashige and Skoog medium (½MS, standard conditions) containing 0.8 % agar, 1 % sucrose, 0.5 g.L⁻¹ MES (pH 5.7 with KOH) then stratified two days at 4°C in the dark and finally horizontally grown for 15 days under long days (16h days:8h night) at 21°C. Seedlings were harvested, immerged in the staining solution [1 mg.ml⁻¹ X-Gluc (5-bromo-4chloro-3-indolyl-β-D-glucuronide), 2 mM potassium ferrocyanide, 2 mM potassium ferricyanide dissolved in phosphate buffer (50 mM Na₂HPO₄, 50 mM NaH₂PO₄, pH7) 0.1 % Triton X-100] and vacuumed twice 5 min to allow the solution to penetrate the tissues. Coloration was allowed to develop overnight at 37°C. The staining solution was replaced by ethanol 70 % until leaf chlorophyll removal was complete. Seedlings were then rinsed in water and observed under an optical microscope.

Supplementary Tables and Figures

Supplementary Table S1: Elemental analyses in shoots and roots.

Fe, Mn, Zn and Cu content in roots and shoots of 4 week-old plants grown in hydroponic conditions in standard medium. Mean \pm sd. (n=3 to 4 replicates of 8 to 10 plants each).

	Fe		Mn		Zn		Cu	
	Shoots	Roots	Shoots	Roots	Shoots	Roots	Shoots	Roots
wt	89.40	570	879.04	121.97	44.55	50.67	5.05	8.56
	± 13.6	± 37.12	± 70.27	± 30.61	± 10.66	± 19.86	± 1.48	± 1.74
nramp1-1	100.16	538.16	879.39	154.17	30.58	32.24	3.08	5.46
	± 6.05	± 26.37	± 88.45	± 52.75	± 2.51	± 6.86	± 0.3	± 0.49
irt1-1	97.85	658.65	817.14	203.95	34.76	34.27	3.58	6.64
	± 11.35	± 33.80	± 25.43	± 37.70	± 7.38	± 7.86	± 0.49	± 1.04
nramp1-1	45.40	1,883.03	545.99	58.36	46.15	82.44	4.83	8.27
irt1-1	± 13.37	± 111.07	± 40.66	± 10.24	± 6.17	± 11.92	± 0.92	± 1.89

Supplementary Table S2: Primers list.

	Forward	Reverse				
	qPCR primers					
ACTIN	GGTAACATTGTGCTCAGTGGTGG	AACGACCTTAATCTTCATGCTGC				
NRAMP1	CGGAACTTATGCTGGACAAT	AGAAGAGGAACCAACGCAAA				
IRT1	CGGTTGGACTTCTAAATGC	CGATAATCGACATTCCACCG				
FRO2	GCGACTTGTAGTGCGGCTATG	CGTTGCACGAGCGATTCTTG				
FER1	TCGTTGAGAGTGAATTTCTGG	ACCCCAACATTGGTCATCTG				
Genotyping						
propost 1	GCGTGGACCGCTTGCTGCAACT(LB1b)	GTCAACATCGGAGGTAGATACTCTACATGGTAACTGC				
<i>mamp1-1</i>	GCGGGGCTGTTTGTAATGCC	GTCAACATCGGAGGTAGATACTCTACATGGTAACTGC				
propph 1	CTACAAATTGCCTTTTCTTATCGAC (Tag5)	CGATGGCGGCTACAGGATCTGGACG				
mump1-2	GCTGCTACAGGATCTGGACGTTCTCAATTC	GTCAACATCGGAGGTAGATACTCTACATGGTAACTGC				
:	GTTAAGCCCATTTGGCGATAATCGACATTC	CTACAAATTGCCTTTTCTTATCGAC				
111-1	CACACAAACATTAAACAATC	GAAAAAGCAGCAAAAGTTTTATTTA				
Cloning						
pNRAMP1	GGGCACGGTACCAATCATGTCTTAAGCTTC	GGGCACGAATTCCGCCGTCTCTCTCTCTA				
IRT1 full-lenght	GGGCACGAATTCCACACAAACATTAAACAATC	GGGCACCTGCAGGAAAAAGCAGCAAAAGTTTTATTTA				

Supplementary Figure S1: Expression analysis of *IRT1* and *NRAMP1* genes in roots. RT-qPCR was performed on root RNA from wild-type, *nramp1-1*, *irt1-1* and *nramp1-1 irt1-1 plants* grown in hydroponics for 4 weeks under standard conditions (25 μ M Fe, 20 μ M Mn). Two independent experiments are shown (left and right). Transcripts levels are expressed relative to those of the reference gene *ACTIN* ± sd. (n= 3 technical replicates). nd, non-detectable.

n/+

i/4

n/n

n/n

i/+

+/+ i/+

+/+ i/+

n/+ +/+

n/n

+/+

n/+ i/+

n/n i/i n/n i/i

n/n

. i/+ n/n

+/+

n/+

, i/+

n/+

i/i

n/n

+/+

Supplementary Figure S2: Phenotyping and genotyping of the F2 progeny of a cross between *nramp1-1* and *irt1-1*.

n/n

i/+

n/n

i/+

n/+

+/+

n/+

+/+

n/+

+/+

n/n

i/+

n/n

+/+

n/+ +/+

+/+ i/+ n/+

+/+

+/+ i/i

+/+

+/+

n/+ i/+

+/+

+/+

n/+ i/+

n/+ +/+

Plants were supplied with Fe through irrigation with 500 mg/L Fe-EDDHA as well as spraying of the leaves every other day with 200 μ M Fe-citrate. (a) picture of the plants 20 days after sowing. Three out of 45 F2 progeny plants, *i.e.* the expected 1 to 16 segregation ratio for two independent loci, showed slow growth and a strong chlorosis (circled in red) and were the only ones of this population to be genotyped as being homozygous for both *nramp1-1* and *irt1-1* mutations. (b) genotyping results of the plants shown in (a). Dashed circles indicated dead seedlings or seedling excluded from genotyping because of a delay in germination. Wild type allele (+), *irt1-1* mutant allele (*i*) and *nramp1-1* mutant allele (*n*).

Supplementary Figure S3: The *nramp1-2* knock-down allele is hypersensitive to Mn deficiency. (a) Position of T-DNA insertions in the *NRAMP1* gene for the *nramp1-1* (grey triangle) and *nramp1-2* (white triangle) alleles. (b) *NRAMP1* expression in roots of *nramp1-1* and *nramp1-2* mutants compared to their respective wild type parent. Plants were grown 4 weeks in hydroponic standard conditions (25 μ M Fe, 20 μ M Mn). Transcripts levels were measured by qRT-PCR relative to those of the reference gene *ACTIN* ± sd. (n= 3 technical replicates). nd, non-detectable. (c) Shoot growth phenotype of 14 day-old *nramp1* mutants grown *in vitro* with (+Mn) or without Mn (-Mn) in the medium as compared to their respective wild-type parent.

Supplementary Figure S4: The second allele *nramp1-2 irt1-1* is also hypersensitive to Fe limitation. (a) 28 day-old plants grown in hydroponic medium containing a range of Fe-EDTA concentrations. (b) and (c) MP-AES measurement of Fe (b) and Mn (c) content in shoots of the plants shown in (a). Means \pm sd. (n= 2 to 3 replicates of 3 plants each). (d) *FRO2* expression in roots of the plants shown in (a). Transcripts levels were measured by qRT-PCR relative to those of the reference gene *ACTIN* \pm sd. (n= 2 to 3 replicates of 3 plants each). Panels (b), (c) and (d) share the colour-code legend. Asterisks indicate values statistically different from the Ws wild-type plants grown at the same Fe concentration (Student T-test, * P-value <0.1, **P-value <0.05, ***P-value < 0.005).

Supplementary Figure S5: *NRAMP1* **expression in shoots.** (a) *NRAMP1* expression in shoots of 15 day-old seedlings vertically grown *in vitro* in standard conditions (+Mn) or in the absence (-Mn) of Mn in the medium. Transcripts levels were measured by qRT-PCR relative to those of the reference gene *ACTIN* \pm sd. (n=3 replicates of 8 plants each). (b) GUS staining of a 15 day-old *pNRAMP1::GUS* transgenic line grown *in vitro* in standard conditions. (c) Magnification of the young leaves shown in (b).

Supplementary Figure S6: Phenotypic complementation of *nramp1-1, irt1-1* and *nramp1-1 irt1-1* mutants by promoter swap constructs. (a) Complementation of *irt1-1* hypersensitivity to iron deficiency by promoter swap constructs. Plants were grown 2 weeks in standard hydroponic conditions and one additional week without added iron (-Fe). (b) Complementation of *nramp1-1* hypersensitivity to manganese deficiency by promoter swap constructs. Plants were grown for 3 weeks in hydroponic conditions without added manganese (-Mn). (c) Complementation of *nramp1-1 irt1-1* growth defect and chlorosis by *plRT1::NRAMP1*. Plants were grown for 3 weeks in hydroponic standard conditions (+Fe +Mn).

Supplementary Figure S7: Activity of the IRT1 and NRAMP1 promoters in the promoter swap lines. Expression level of *IRT1* and *NRAMP1* produced by the promoter-swap constructs *pNRAMP1::IRT1* and *pIRT1::NRAMP1,* respectively, in roots of the *irt1* (a) or the *nramp1* (b) mutant. Plants were (a) grown 2 weeks hydroponically under standard condition, then Festarved for one additional week (-Fe) or (b) grown for 3 weeks under Mn starvation (-Mn). Transcripts levels were measured by qRT-PCR relative to those of the reference gene *ACTIN* \pm sd. (n=3 biological replicates of 3 to 6 individuals).