Supplemental Figure 1, related to Figure 1

(A) Endogenous DLL4 expression (green) in E10 embryo, E11 hindbrains and
P6 retina. a artery, sa, sprouting angiogenesis.

(B) Representative images from Dll4in3:LacZ transgenic retina at post-natal
day 5 (P5) demonstrate X-gal activity (blue and pseudocoloured green) in
arteries (a) and at the angiogenic front (AF). X-gal expression was detected in
most, but not all, endothelial cells at the tip-cell position (*). Expression is not
detected in every endothelial cell as imaged through isolectin B4 (I1B4)
staining, including no expression in veins (v).

(C) Representative images from DIl4in3:LacZ transgenic retina from post-
natal day 4 (P4) through P10, when angiogenic sprouting is complete. X-gal
expression (black) is seen in arteries (a) and at the angiogenic front (AF), but
excluded from veins (v). Whole vasculature (white) was detected by isolectin
B4 (1B4).

(D) Expression patterns for DIl4in3 and DIl4-12 transgenes in E11 hindbrains
from independent transgenic insertion events (trans, transient; line, stable
line), n, neuronal staining. Similar vascular expression patterns were seen in
all samples, although the extent of ectopic neural expression was variable, as
is commonly seen for transgenes using hsp68 as a minimal promoter.

(E) Representative images of Dll4in3:LacZ and Dll4-12:LacZ transgene
expression in hearts and peritoneum from the same animals from which the
retina images in Figure 1 were obtained. Both transgenes direct robust
expression in arterial endothelial cells (a), although Dll4in3:LacZ has a larger

domain of expression.
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Supplemental Figure 2, related to Figure 2

(A-B) Full sequences of mouse Dll4in3 enhancer (A), aligned with orthologous
zebrafish (zfish) sequence, and the mouse Dll4-12 enhancer (B), aligned with
orthologous opossum sequence (opos) using the ClustalW program
(Thompson et al., 1994), conserved base-pairs indicated with *. Verified
transcription factor binding motifs are marked by coloured boxes, known
consensus or near-consensus binding motifs that were experimentally verified
but did not bind are marked by grey boxes.

(C-D) The DIl4in3 MEF2 motif robustly binds MEF2A, MEF2C and MEF2D
proteins in EMSA analysis. (C) Radiolabeled oligonucleotide probe
encompassing a control MEF2 binding site (Esser et al.) is bound by
recombinant MEF2A, MEF2C and MEF2D protein (lanes 2, 5 and 8), and is
competed by an excess of DIl4in3 enhancer MEF2 maoitif oligo (DIl4 MEF2 WT,
lanes 3, 6 and 9), but not when this sequence contained a Sbp mutation within
the MEF2 binding motif (DIl4 MEF2 MT, lanes 4, 7 and 10).

(D) Radiolabeled oligonucleotide probe encompassing the DIl4in3 MEF2 site
is directly bound by recombinant MEF2A, MEF2C and MEF2D proteins (lanes
12, 15 and 18), and is competed by an excess of unlabeled self-probe (Dll4
MEF2 WT, lanes 13, 16 and 19) but not mutant self-probe (DIl4 MEF2 MT,
lanes 14, 17 and 20).

(E) MEF2 factor binding at the DLL4in3 enhancer analysed by ChIP-gPCR
after VEGFA stimulation in HUVECs.. Graph is representative of 4 biological
replicates.

(F) Expression patterns for the DIll4in3mutMEF:LacZ transgene in E11

hindbrains from multiple transgenic insertion events (trans, transient; line,



stable line), n, neuronal staining. Similar vascular expression patterns were
seen in all samples, although the extent of ectopic neural expression was
variable, as is commonly seen for transgenes using hsp68 as a minimal
promoter.

(G) Representative images of DIl4in3mutMEF:LacZ transgene expression in
hearts and peritoneum from the same animals from which the retina images in

Figure 2 were obtained. a, artery.
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Supplemental Figure 3, related to Figure 3

(A) Immunostaining on sectioned X-gal-stained Matrigel plugs for the pan-
endothelial marker CD31 (red). Matrigel plugs grown in DIl4in3WT:LacZ
transgenic mice expressed X-gal in a subset of endothelial cells, whereas
Matrigel plugs grown in DIl4in3mutMEF2:LacZ transgenic mice had no X-gal
staining yet robust CD31 staining, indicating that the transgene was not
expressed during neo-vascular growth into the Matrigel plug.

(B-D) Four representative Matrigel plugs and four representative B16F10
melanoma tumours grown in DII4in3WT:LacZ transgenic mice (B) and
Dll4in3mutMEF2:LacZ transgenic mice (C) and stained with X-gal
demonstrate the typical variation in staining among experiments. Mean blue
blood vessels per 100um analysed is displayed in (D), N=4, error bars
indicate standard error of the mean. Each transgenic mouse (all male) was
functionally verified to ensure transgene activity by crossing with a WT female
and analysis of E11 embryos. The bladder was also removed from each
mouse (E) concurrent with matrix/tumour removal, and stained to verify that
each animal model was genetically and functionally identical to others of the

same line.
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Supplemental Figure 4, related to Figure 4

(A) MEF2A, MEF2C are expressed in endothelial cells in the PS5 mouse retina,
and MEF2A, MEF2C and MEF2D are expressed in B16F10 melanoma
subcutaneous tumours and human renal tumour, as detected by
immunofluorescence. CD31 and isolectin B4 (1B4) label all endothelial cells.
(B) Specific shRNA knock-down of MEF2A, C and D in HUVECs affects the
designated MEF2 factor only, as detected by immunofluorescence, and
confirms that the MEF2A, C and D antibodies used do not cross-react
significantly with other MEF2 family members.

(C) Time-course of VEGFR2, ERK1/2 and AKT phosphorylation after VEGFA
stimulation in HUVECs, analyzed by western blot. Total levels of VEGFR2,
ERK1/2 and AKT remain constant after stimulation whereas changes in pERK
and pAKT indicate successful VEGFA stimulation.

(D) gRT-PCR analysis demonstrates increased expression of MEF2A,
MEF2C, MEF2D and DLL4 in HUVECs 0-8 hours after VEGFA stimulation.
Error bars indicate standard error of the mean of two biological replicates.

(E) Individual siRNA knock-down efficiently and specifically ablates the
designated MEF2 factor in both mouse (bEnd3) and human (HUVECS)
endothelial cells. MEF2A, C and D antibodies specifically recognize the
designated family member in both mouse and human cell extracts.

(F) Relative DLL4 expression in siControl-transfected HUVECs analysed by
gRT-PCR before and after VEGFA stimulation. Directly comparable with data

in Figure 4D. Graph is representative of 2 biological replicates.
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Supplemental Figure 5, related to Figure 4

(A-B) A representative image from chimeric HUVEC competition assay of
wild-type (WT, mCherry-expressing; red) and combined MEF2A/C/D siRNA
knock-down (KD, GFP-expression; green) cells mixed at a 1:1 ratio. WT cells
are predominantly found at the tip cell position (indicated by red arrowhead)
than MEF2A/C/D knock-down cells (indicated by green arrowhead).
Quantification of tip cells (B, pooled images from three biological replicates)
shows a significant reduction of MEF2A/C/D KD cells at the tip cell position. P
value= 3.40e-08. Scale bars correspond to 200 pym.

(C-D) A representative picture from embryoid body competition assay of wild-
type (WT, green) and CRISPR/Cas9-mediated MEF2A/C null ES cells (red),
mixed at a 1:1 ratio. WT cells are more often found at the tip cell position
(indicated by green arrowheads) than AMEF2A/C cells (indicated by red
arrowheads). Quantification of WT and AMEF2A/C tip cells (D, using pooled
images from two biological replicates) shows a significant decrease of
AMEF2A/C cells at the tip cell position. P value= 2.20e-04. Four different
CRISPR/Cas9-mediated mutant ES cell clones were used for this work, in
each case the indel was confirmed by Sanger sequencing.

(E) Schematic detailing the creation of CRISPR/Cas9-mediated MEF2A/C null
ES cells. Protein schematics of MEF2C and MEF2A adapted from Lin et al.
1997 and Naya et al. 2002. gRNAs were designed to target the portion of the
MEF2 domain indicated in sequences (WT part. MEF2 domain). Deletions for
ES cells shown in C are indicated in allele sequences and are representative

for the four different ES clones.
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Supplemental Figure 6, related to Figure 6

(A) MEF2C binding profile around the DLL4 locus. Red box indicates
statistically significant MEF2C binding region, red peaks indicate MACS2
bedgraph MEF2C peaks visualized in IGV, green lines indicate statistically
significant H3K27Ac regions, and black lines indicate locations of previously
tested orthologous mouse Dll4 enhancers.

(B) MEF2C binding peaks are enriched around 50kb of genes associated with
sprouting angiogenesis, as assessed by increased expression in the hyper-
sprouting retina of DIl4+/- mice (del Toro et al., 2010) (blue), or identified in
retinal tip cells isolated through laser capture microdissection (Strasser et al.,
2010) (pink).

(C) Genomic snapshots denoting MEF2C binding sites within the loci for
Notch pathway genes. H3K27Ac peaks indicated in green, MEF2C binding
peaks in red. Only one MEF2 binding peak was detected, around the DII1
locus, but this was not co-localised within or around a H3K27Ac peak, a pre-

requirment in our genomic MEF2 analysis.
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Supplemental Figure 7, related to Figure 6.

(A) MEF2C binding profile around the HLX locus. Red peaks indicate MACS2
bedgraph MEF2C peaks visualized in IGV, green lines indicate statistically
significant H3K27Ac regions, black lines indicate locations of HLX-3
enhancer, grey line indicates region dynamically bound by EP300 after
VEGFA stimulation (Zhang et al., 2013).

(B) Sequences of human HLX-3 and zebrafish hix-3 enhancers aligned using
the ClustalW program (Thompson et al., 1994), conserved base-pairs
indicated with *. Verified transcription factor binding motifs are marked by
coloured boxes, known consensus or near-consensus binding motifs that
were not experimentally verified are marked by grey boxes.

(C) Representative 32hpf zebrafish embryo transgenic for the hlx-
3mutMEF:GFP transgene. *denote ectopic expression in skeletal muscle
fibres.

(D) Summary of reporter gene expression detected in E12 mice transgenic for
the HLX-3WT:LacZ and HLX-3mutMEF:LacZ transgenes. * denotes
transgenic mouse that expressed LacZ throughout embryo in all tissues,

including all endothelial cells.
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tg(hlx-3mutMEF:GFP)
Transgene Number of tg Tg mice with any Tg mice with X-gal
mice detectable X-gal expression in
expression angiogenic
endothelial cells
hlx-3WT:LacZ 11 9 7
hilx-3mutMEF:LacZ 10 10 0*




Supplemental Figure 8, related to Figure 6.

(A) The human HLX-3 and zebrafish hix-3 enhancers robustly bind the ETS
factors ETS1 (DNA binding domain DBD only) and ETV2 in EMSA analysis.
Radiolabeled oligonucleotide probe encompassing the human sequence of
five ETS binding motifs (ETS-b, d, e, g and h) were bound by recombinant
ETS1DBD protein (lanes 2, 6, 10, 14 and 18), were competed by an excess of
self-probe (lanes 3, 7, 11, 15 and 19), but not by mutant self-probe (lanes 4,
8, 12, 16 and 20). Radiolabeled oligonucleotide probe encompassing the
zebrafish sequence of five ETS binding motifs (ETS-b, d, e, g and h) were
also bound by recombinant ETV2 protein (lanes 22, 26, 30, 34 and 38), were
competed by an excess of self-probe (lanes 23, 27, 31, 35 and 39), but not by
mutant self-probe (lanes 24, 28, 32, 36 and 40).

(B) Radiolabeled oligonucleotide probe encompassing the human sequence
of the three HLX MEF2 site were directly bound by recombinant MEF2C
protein (lanes 2, 7 and 12), were competed by an excess of unlabeled self-
probe (lanes 3, 8 and 13) but not mutant self-probe (lanes 4, 9 and 14).
Radiolabeled oligonucleotide probe encompassing the orthologous zebrafish
sequence of the three hix MEF2 site were directly bound by recombinant
MEF2C protein (lanes 16, 21, 26), were competed by an excess of unlabeled
self-probe (lanes 17, 22 and 27) but not mutant self-probe (lanes 18, 23 and
28).

(C) Radiolabeled oligonucleotide probe encompassing the DIl4 MEF2 site,
HLX MEF-c and hix MEF-c sites were able to bind 2ul and 4ul MEF2A (lanes

1-12), MEF2C (lanes 13-24) and MEF2D (lanes 25-36) proteins at higher



affinity than control MLC MEF2 site. DIl4 MEF2 and HLX MEF2 sites were the

strongest binders. All probes were used at 40,000 counts/minute.
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Supplemental Figure 9, related to Figure 7

(A) MEF2 factor binding at the DLL4in3 enhancer analysed by ChIP-gPCR
before and after VEGFA stimulation in HUVECs. Graph is representative of 3
biological replicates.

(B) MEF2 factor binding at the HLX-3 enhancer analysed by ChIP-gPCR
before and after VEGFA stimulation in HUVECs. Graph is representative of 3
biological replicates.

(C) Representative Dll4in3:LacZ embryos after 17 hours ex vivo incubation in
medium +100uM TSA or DMSO followed by X-gal staining. TSA treatment
resulted in expanded and ectopic expression of the transgene in DIl4in3:LacZ
embryos, whereas less staining was detected in control DMSO-treated
Dll4in3:LacZ embryos.

(D) Gene expression levels analysed by qRT-PCR in HUVECs treated with
TSA and small molecule classll HDAC inhibitors BML-210 and MC-1568, after
VEGF stimulation and relative to DMSO control. N=3. Genes shown are
previously reported to be up- or down-regulated by TSA in the presence of

VEGF but have no MEF2 binding motifs within 200kb.
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