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1 Supplementary Note 1: Comparison of potential objective func-

tions

We compared four classes of submodular objectives for selecting panels of assays. All functions are defined
via a pairwise similarity graph, where we denote r

v,v

0 as the similarity measure between the v and v

0 2 V .
Facility location function:

ffac(A) =
X

v2V

max
a2A

r

v,a

(1)

This function is monotone and submodular.
Saturated coverage function:

fsat(A) =
X

v2V

min{
X

a2A

r

v,a

,�

X

v

02V

r

v

0
,v

}, (2)

In this function, 0  �  1 is a hyperparameter that controls the saturation of the coverage for each item
v 2 V . In the experiment we set � = k/n, where k is the target number of assays to select, and n is the size
of entire set V of all available assays. The saturated coverage function is also monotone submodular.

Diversity function:

fdiv(A) = �
X

a2A

X

a

02A

r

a,a

0 (3)

The diversity function evaluates a subset A as the sum of the pairwise dissimilarity among all items in the
subset. Maximizing this function naturally encourages choosing a diverse set of items. The diversity function
is submodular, but not monotone.

Log determinant function:

flog-det(A) = log det(I + �S

A

) (4)

In this function, � > 0 is a hyperparameter, and S

A

is the pairwise similarity matrix indexed by the subset
A ✓ V . The log determinant function satisfies submodularity and monotonicity. This function has been
shown to naturally capture the notion of diversity in a data set; therefore, maximizing this function always
leads to a set of diverse items.

We measure the performance of these submodular objectives by examining how their objective valuations
correlate with the three proposed evaluation metrics (assay imputation, functional element prediction, and
annotation-based evaluation). The experiment is performed under the selection of past assays setting, where
we compute the similarity between a pair of assays using the Pearson correlation. Given an evaluation
metric, a cell type c, a selection budget K, and a submodular objective f , we randomly draw n subsets
{A

i

}n
i=1 of assays from the cell type c, where each subset A

i

is of size K. We then compute the Spearman
correlation between the submodular valuation {f(A

i

)}n
i=1 and the performance measure {y

i

}n
i=1 under the

evaluation metric. We report the correlation measure averaged over budget constraints K = 3, 4, 5, 6. In the
experiment we set n = 20, and we test on the cell types K562, H1-hESC, and GM12878.

The results (Figure 1) suggest that the facility location function, in most cases, yields the highest corre-
lation with the three evaluation metrics.
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Figure 1: Comparison among various submodular functions in terms of the Spearman correlation between
function valuation and the performance metrics.
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2 Supplementary Note 2: Comparison among various similarity

measures

In this section, we study how the performance of SSA for the selection of future assays scenario varies
with di↵erent choices of similarity aggregation strategies. We focus on strategies for defining the pairwise
similarity between assay types in an evaluating cell type c given the assays performed on cell types other
than c. We consider the six aggregation strategies r

1, r2, r3, r4, r5, and r

6, where they take the average,
0th, 25th, 50th, 75th, and 100th percentile over the available similarity scores, respectively. For completeness,
we also give their corresponding mathematical definition below:
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where the function percentile(C, p) returns the p

th percentile of the items in the list C sorted in non-
decreasing order.

We evaluate the performance of the aggregation strategies using the facility location function. In partic-
ular we utilize the six di↵erent aggregation strategies to compute the pairwise similarity measure for defining
the facility location function. We test separately on three cell types: H1-hESC, K562, and GM12878. Similar
to the previous experiment for comparing among di↵erent submodular objectives, we measure the perfor-
mance of an aggregation strategy as how the valuation given by facility location function defined via the
similarity matrix computed using this strategy correlates with the three proposed evaluation metrics. Follow-
ing the same evaluation procedure we show the Spearman correlation measure for each aggregation strategy
on each cell type and evaluation metric in Figure 2. We observe that the aggregation strategies of taking the
mean or 75th percentile yield the best performance for most cell types and most evaluation metrics. Between
these two strategies we observe that the aggregation by mean performs marginally better. Therefore we
choose it as the strategy for computing the similarity between assay types in the propose approach SSA
under the selection of future assays setting.
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Figure 2: Comparison among various similarity aggregation strategies in terms of the Spearman correlation
between the facility location function valuation instantiated by the similarity measure and the performance
metrics.
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3 Supplementary Note 3: Comparison of di↵erent supports for

similarity computation

In this section, we examine how the similarity measure may be a↵ected if we change the support for deriving
the similarity between assay types. In the main paper, we derive the similarity between assays as the Pearson
correlation between the values of these two assays on a randomly chosen subset of genomic positions. In this
section, we explore deriving the similarity based only on the set of genomic positions that are identified as
DNase peaks, since the response in the transcription factors is only captured on these DNase peaks positions.

In Figure 3, we report the performance of the DNase peaks based SSA on all evaluation metrics as well
as the three cell types. For completeness, we also show the corresponding performance of the variant of SSA
that we used in the main main paper in Figure 4. Note that this variant of SSA has the similarity measure
computed over a randomly sampled subset of genomic positions. To better illustrate the comparison between
these two variants, we plot the performance measure of the DNase peaks approach (each bar in Figure 3)
against the random genomic positions approach (each bar in Figure 4) in the form of scatter plot (Figure 5).
We observe that consistent and significant improvements over the random selection baseline are achieved by
the variant of SSA using DNase peaks only. Between the two variants of SSA, it is hard to establish the
superiority of one variant over the other according to Figure 5.
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Figure 3: Performance of the Dnase peaks-based SSA relative to an estimate of the performance on all
possible panels. The vertical axis shows the fraction (%) of panels that perform worse than the SSA-chosen
panel for a given setting, estimated by comparing to 40 randomly-selected panels.
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Figure 4: Performance of the random genomics positions-based SSA relative to an estimate of the perfor-
mance on all possible panels.
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Figure 5: Scatter plot between the two variants of SSA with di↵erent genomic support for similarity com-
putation. Each dot in the plot corresponds to the performance (again measured as relative to an estimate
of the performance on all possible panels) of the two variants of SSA for a selection budget evaluated us-
ing a metric in a cell type (i.e., one bar in Figure 3 and its counterpart in Figure 5). Its x- and y-values
are the performance measure for the DNase peaks-based SSA and random genomic positions-based SSA,
respectively.
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4 Supplementary Note 4: Comparison of di↵erent correlation met-

rics as the similarity measure

In this section, we examine how the similarity measure may be a↵ected by di↵erent choice of correlation
metrics. For the results reported in the main paper, we derive the similarity between assays via the absolute
Pearson correlation. Here, we explore a variant of SSA whose similarity measure is defined via the absolute
Spearman correlation. In Figure 6, we report the performance of such variant on all evaluation metrics
as well as the three cell types. To contrast the performance di↵erence between the Pearson correlation-
based SSA and Spearman correlation-based SSA, we again show a scatter plot of the performance achieved
between these two variants in Figure 7. We observe that the Pearson correlation based SSA significantly and
consistently outperforms the Spearman correlation counterpart suggesting that Pearson correlation is more
e↵ective for capturing similarity between assays in our tasks.

Spearman correlation (essentially, Pearson correlation of the ranks) and also Pearson correlation on a
subset of sites (e.g., the DNase hypersensitive cases, see Supplementary Note 3) constitutes a similarity
measure that is non-linearly related to the global Pearson correlation. Mutual information, defined as
I(X;Y ) =

R
p(x, y) log p(x, y)/p(x)p(y)dxdy is also strongly related to the Pearson correlation. Assuming

that ⇢

xy

is the Pearson correlation and the variables are Gaussian related, then the mutual information is
expressed (Kullback, 1968) as I(X;Y ) = � 1

2 log2(1 � ⇢

2
xy

). Hence, the utilization of Pearson correlation
is essentially a form of linear mutual information. In the non-Gaussian case, the mutual information also
incorporates any non-linearly relations, but we have found in our experiments that the linear first-order re-
lationship is often dominant. Estimating mutual information in the non-Gaussian case, however, is plagued
with additional decisions regarding how a parametric or non-parametric model for p(x, y) should be esti-
mated, and how to control for bias in the estimations based on the available data used to estimate p(x, y),
not to mention that the computation of p(x, y) can in some cases be non-trivial. Hence, for these reasons,
and since it appears to perform better than the Spearman correlation, we have concentrated on Pearson cor-
relation (e.g., linear mutual information) in our experiments in this paper. Utilizing other forms of non-linear
mutual information besides Spearman correlation we leave to future work.
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Figure 6: Performance of the absolute Spearman correlation-based SSA relative to an estimate of the per-
formance on all possible panels.
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Figure 7: Scatter plot between the two variants of SSA with di↵erent correlation metrics as the similarity
measure. Each dot in the plot corresponds to the performance (again measured as relative to an estimate
of the performance on all possible panels) of the two variants of SSA for a selection budget evaluated using
a metric in a cell type (i.e., one bar in Figure 6 and its counterpart in Figure 5). Its x- and y-values are
the performance measure for the Spearman correlation-based SSA and the Pearson correlation-based SSA,
respectively.
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Figure 8: Same as the “Assay Imputation” panel of Figure 5B, but split according to the evaluation target.
The left panel shows assay imputation performance where the target is a transcription factor ChIP-seq assay;
the right panel shows performance for all other assay types.
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Supplementary Tables

Choice order Assay type Singleton score Objective gain
1 NFATC1 36.38 36.38
2 ILF2 33.37 4.60
3 PHF8 27.01 3.06
4 POU5F1 22.36 2.26
5 SMARCC1 13.63 1.93
6 IRF4 28.22 1.42
7 HNF4G 15.78 1.33
8 HMGN3 24.93 1.27
9 ILF3 29.09 1.04
10 ZNF217 16.00 1.03

Table 1: The choice order of SSA on all assay types.

References

Kullback S. 1968. Information Theory And Statistics. Dover.
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Order None H3K4me1 H3K4me2 H3K9ac H2A.Z H4K20me1 H3K27ac
1 H3K4me3 H3K4me1 H3K4me2 H3K9ac H2A.Z H4K20me1 H3K27ac
2 H3K79me2 H3K4me3 H3K79me2 H3K79me2 H3K79me2 H3K4me3 H3K79me2
3 H3K9me3 H3K79me2 H3K4me3 H3K9me3 H3K4me3 H3K79me2 H3K4me3
4 H3K27me3 H3K9me3 H3K9me3 H3K27me3 H3K9me3 H3K9me3 H3K9me3
5 H3K36me3 H3K27me3 H3K27me3 H3K4me3 H3K36me3 H3K27me3 H3K27me3
6 H3K4me1 H3K36me3 H3K36me3 H3K36me3 H3K27me3 H3K36me3 H3K36me3
7 H3K4me2 H3K4me2 H3K4me1 H3K4me1 H3K4me1 H3K4me1 H3K4me1
8 H3K9ac H3K9ac H3K9ac H3K4me2 H3K4me2 H3K4me2 H3K4me2
9 H2A.Z H2A.Z H2A.Z H2A.Z H3K9ac H3K9ac H2A.Z
10 H4K20me1 H4K20me1 H4K20me1 H4K20me1 H4K20me1 H2A.Z H3K9ac
11 H3K27ac H3K27ac H3K27ac H3K27ac H3K27ac H3K27ac H4K20me1

Order None MAFF ZNF263 BDP1 E2F6 RBBP5
1 SMARCB1 MAFF ZNF263 BDP1 E2F6 RBBP5
2 PML SMARCB1 SMARCB1 SMARCB1 SMARCB1 PML
3 STAT5A PML PML PML PML SMARCB1
4 CTCF CTCF STAT5A STAT5A CTCF STAT5A
5 BRF2 STAT5A CTCF CTCF STAT5A CTCF
6 MAFF BRF2 BRF2 BRF2 BRF2 BRF2
7 ZNF263 ZNF263 MAFF MAFF MAFF MAFF
8 BDP1 BDP1 BDP1 ZNF263 ZNF263 ZNF263
9 E2F6 E2F6 E2F6 E2F6 BDP1 BDP1
10 RBBP5 RBBP5 RBBP5 RBBP5 RBBP5 E2F6

Table 2: Performing SSA after one assay has already been performed. We ran SSA while restricting
the output panel to include each assay type in turn, by initializing the submodular greedy algorithm with
the assay type in question and then running the algorithm as normal. As expected, restricting the panel
to include a particular assay type de-prioritizes assay types that measure similar types of activity. (Top)
Choice order of histone modification assays by SSA if one assay type is required to be included. (Bottom)
Choice order of transcription factors by SSA if one assay type is required to be included. In both tables,
each assay type in the table is encoded with a di↵erent color to allow easy comparison of di↵erent columns.
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Order ↵ = 0 ↵ = 0.5 ↵ = 1 ↵ = 5 ↵ = 10
1 NFATC1 NFATC1 NFATC1 NFATC1 H2A.Z
2 ILF2 ILF2 ILF2 H3K4me3 H3K4me3
3 PHF8 PHF8 H3K4me3 H3K9me3 H3K79me2
4 POU5F1 POU5F1 POU5F1 H3K79me2 H3K9me3
5 SMARCC1 SMARCC1 SMARCC1 H3K27me3 H3K27me3
6 IRF4 IRF4 PML H3K36me3 H3K36me3
7 HNF4G HNF4G H3K79me2 H3K4me1 H3K4me2
8 HMGN3 HMGN3 MBD4 H2A.Z H3K4me1
9 ILF3 H3K4me3 H3K27me3 H3K4me2 H3K9ac
10 ZNF217 H3K79me2 HMGN3 H3K9ac H4K20me1
11 CCNT2 ILF3 H3K36me3 H4K20me1 H3K27ac
12 PML ZNF217 H3K9me3 H3K27ac NFATC1
13 CEBPZ CCNT2 H3K4me1 ILF2 ILF2
14 NR2F2 PML IRF4 POU5F1 POU5F1
15 MLL5 CEBPZ H3K4me2 PML PML
16 SREBF2 NR2F2 H3K9ac SMARCC1 SMARCC1
17 XRCC4 MLL5 H2A.Z MBD4 MBD4
18 IKZF1 SREBF2 ZNF217 HMGN3 HMGN3
19 MBD4 XRCC4 H4K20me1 IRF4 IRF4
20 PRDM1 IKZF1 CCNT2 ZNF217 ZNF217

Table 3: Incorporating modular weighting to encourage certain assay types to be chosen. We ran
SSA with a variant that weights certain assay types more highly in the selection process. In this experiment,
we examine the choice order of assay types by changing the weights on histone modification assays in a
selection experiment involving both histone modification and transcription factor assays. We implement this
experiment by first defining a combined objective h

↵(A) = f(A) + ↵m(A), where f is the facility location
objective andm is the modular function, with each modular score capturing the importance of the item. Note
that a set function m is modular if m(A) =

P
a2A

m(a) holds for all A ✓ V . We define a hyperparameter
↵ > 0 that controls the trade-o↵ between f and m. We define the modular function m by assigning the
score m(a) for each histone mod assay as 1 and for other assay types as 0. Given a choice of ↵, we use the
greedy algorithm to optimize h

↵ leading to an ordering of the assays. The table displays the resulting order
for various choices of ↵. All histone modification assay types are colored for ease of comparison.

Order Cell types Description Singleton value Objective gain

1 HBMEC
brain microvascular endothelial cells

(mesoderm blood vessel)
48.31 48.31

2 LNCaP
prostate adenocarcinoma

(endoderm prostate cancer)
46.77 1.08

3 GM12864
B-lymphocyte

(mesoderm blood)
43.74 0.39

4 IMR90
fetal lung fibroblasts
(endoderm lung)

43.26 0.37

5 H7-hESC
undi↵erentiated embryonic

stem cells
40.13 0.33

Table 4: The choice order of cell types using SSA methodology.

13



Assay Type
1 DnaseSeq
2 H3K4me3
3 CTCF
4 FaireSeq
5 POLR2A
6 H3K27me3
7 H3K36me3
8 H3K79me2
9 H3K4me2
10 H3K9me3

Table 5: The 10 most frequently performed assay types.

Choice order Assay type Singleton score Objective gain
1 H3K4me2 8.12 8.12
2 DnaseSeq 7.66 1.98
3 EZH2 5.19 1.31
4 POLR2A 6.50 1.00
5 NRF1 4.08 0.85
6 JUND 4.64 0.84
7 RAD21 3.74 0.84
8 H3K9me3 2.99 0.84
9 MAX 4.20 0.81
10 H4K20me1 4.81 0.81
11 MXI1 4.45 0.80
12 CEBPB 5.40 0.77
13 USF2 5.83 0.75
14 FaireSeq 5.98 0.75
15 TBP 5.67 0.75

Table 6: The top 15 choice order of SSA on common assay types shared among the five ENCODE tier 1+2
cell types: K562, GM12878, H1-hESC, HepG2, and HeLa-S3.
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