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Appendix S1: Proofs of Theorems

In all the following proofs, let Ak,t denote the event {R0,k = 1, R0,k+1 = R0,k+2 =

. . . = R0,t = 0}. Let Ȳt denote the complete-data sample mean of Yt and X̄

denote the complete-data sample mean of X. Also, let cs,t (1 ≤ s, t ≤ T ) denote

the complete-data sample covariance of Ys and Yt, let cT+1,t denote the sample

covariance of X and Yt, and let cT+1,T+1 denote the sample variance of X.

1.1 Proof of Theorem 1

When β̂ls
t is fixed to equal βt, the least-squares estimator (α̂ls

t , γ̂
ls
t ) of the remaining

parameters (αls
t ,γ

ls
t ) using only those individuals with Rt = 1 is given by

[

α̂ls⊤
t

γ̂ ls
t

]

= (U⊤

t Ut)
−1U⊤

t







Y ⊤

1t + e⊤1t − (Y1,t−1 + e1,t−1)
⊤βt

...
Y ⊤

Nt + e⊤Nt − (YN,t−1 + eN,t−1)
⊤βt







where

Ut =







R1t R1tX
⊤

1

...
...

RNt RNtX
⊤

N







Therefore, assuming that equations (2) and (3) hold, that the measurement error

process is independent of the other processes, and that measurement errors have
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mean zero, we have

E

([

(α̂ls
t )⊤

γ̂ls
t

]

| {Fit−1,Rit : i = 1, . . . , N}

)

= (U⊤

t Ut)
−1U⊤

t











E













Y ⊤

1t
...
Y ⊤

Nt






| {Fit−1,Rit : i = 1, . . . , N}






−







Y ⊤

1,t−1βt

...
Y ⊤

N,t−1βt

















= (U⊤

t Ut)
−1U⊤

t

















α⊤

t + Y ⊤

1,t−1βt +X⊤

1 γt

...
α⊤

t + Y ⊤

N,t−1βt +X⊤

Nγt






−







Y ⊤

1,t−1βt

...
Y ⊤

N,t−1βt

















= (U⊤

t Ut)
−1U⊤

t







α⊤

t +X⊤

1 γt

...
α⊤

t +X⊤

Nγt







= (U⊤

t Ut)
−1U⊤

t Ut

[

α̂⊤

t

γ̂t

]

=

[

α̂⊤

t

γ̂t

]

(29)

Hence

E

{[

(α̂ls
t )⊤

γ̂ ls
t

]}

=

[

α⊤

t

γ⊤

t

]

For consistency of (αls
t ,γ

ls
t ), we see that

Var

([

(α̂ls
t )⊤

γ̂ ls
t

])

= Var

{

E

([

(α̂ls
t )⊤

γ̂ ls
t

]

| {Fit−1,Rit : i = 1, . . . , N}

)}

+ E

{

Var

([

(α̂ls
t )⊤

γ̂ ls
t

]

| {Fit−1,Rit : i = 1, . . . , N}

)}

= E

{

Var

([

(α̂ls
t )⊤

γ̂ ls
t

]

| {Fit−1,Rit : i = 1, . . . , N}

)}

= E











(U⊤

t Ut)
−1U⊤

t Var













Y ⊤

1t + e⊤1t
...

Y ⊤

Nt + e⊤Nt






| {Fit−1,Rit : i = 1, . . . , N}






Ut(U

⊤

t Ut)
−1











= E
[

(U⊤

t Ut)
−1U⊤

t diag{Var(ǫt) + Var(et)}Ut(U
⊤

t Ut)
−1
]

→ 0 as N → ∞

Similarly to equation (29), it can be shown that when equation (4) holds,

E

{[

(α̂ls
t )⊤

γ̂ ls
t

]

| {Fit−1,R0,it : i = 1, . . . , N}

}

=

[

α⊤

t

γt

]

(30)
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1.2 Proof of Theorem 2

In this proof we omit the superscript ‘ls’ from αls
t and γ ls

t .

In their Section 3.3, A&G describe their imputation method. Adapting their for-

mulae for Y est
t and ∆Y est

t to make them apply to the outcomes observed with error

rather than to the underlying outcomes, we have

Y est

1 = Y1 + e1

∆Y est

t = (1 − R0t)(α̂t + γ̂⊤

t X) + R0t(Yt + et − Y
est

t−1)

Y est

t = Y est

t−1 + ∆Y est

t

We use induction to prove that E(Y est
t − Yt | X,Y1) = 0 for all t = 1, . . . , T .

Assume that

E(Y est

t−1 − Yt−1 |X,Y1) = 0. (31)
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This is true for t− 1 = 1, since E(e1 |X,Y1) = 0. Now, for t ≥ 2,

E(Y est

t − Yt |X,Y1)

= E(∆Y est
t − ∆Yt |X,Y1) + E(Y est

t−1 − Yt−1 |X,Y1)

= E(∆Y est
t − ∆Yt |X,Y1) (32)

= E{(1 −R0t)(α̂t + γ̂⊤

t X) +R0t(Yt + et − Y
est

t−1) − ∆Yt |X,Y1}

= E{(1 −R0t)(α̂t + γ̂⊤

t X) |X,Y1}

+E{R0t(Yt−1 + ∆Yt + et − Y
est

t−1) − ∆Yt |X,Y1}

= E{(1 −R0t)(α̂t + γ̂⊤

t X) |X,Y1} + E{R0t(∆Yt + et) − ∆Yt |X,Y1}(33)

= E{(1 −R0t)(α̂t + γ̂⊤

t X) |X,Y1} + E{R0t∆Yt − ∆Yt |X,Y1} (34)

= E{(1 −R0t)(α̂t + γ̂⊤

t X) |X,Y1} −E{(1 − R0t)∆Yt |X,Y1}

= E{(1 −R0t)(α̂t + γ̂⊤

t X) |X,Y1}

−E[E{(1 − R0t)∆Yt | R0t,X,Y1, . . . ,Yt−1} |X,Y1]

= E{(1 −R0t)(α̂t + γ̂⊤

t X) |X,Y1}

−E[(1 − R0t)E{∆Yt |X,Y1, . . . ,Yt−1} |X,Y1] (35)

= E{(1 −R0t)(α̂t + γ̂⊤

t X) |X,Y1} −E[(1 − R0t)(αt + γ⊤

t X) |X,Y1]

= E(E[(1 − R0t)(α̂t + γ̂⊤

t X) | {Fit−1,R0,it : i = 1, . . . , N}] |X,Y1)

−E[(1 − R0t)(αt + γ⊤

t X) |X,Y1]

= E[(1 − R0t)E(α̂t + γ̂⊤

t X | {Fit−1,R0,it : i = 1, . . . , N}) |X,Y1]

−E[(1 − R0t)(αt + γ⊤

t X) |X,Y1]

= E{(1 −R0t)(αt + γ⊤

t X) |X,Y1}

−E{(1 − R0t)(αt + γ⊤

t X) |X,Y1} (36)

= 0 (37)

Equation (32) follows by equation (31). Equation (33) follows by using equa-

tion (7). Equation (34) follows by the independence of measurement errors. Equa-

tion (35) follows by using equation (4). Equation (36) follows by using equa-
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tion (30).

1.3 Proof of Theorem 3

P (R0,t = 1 | R0,k−1, Ak,t−1,Ck,Yk+1, . . .Yt)

=

∫

P (R0,t = 1 | R0,k−1, Ak,t−1,Bk,Yk+1, . . . ,Yt)

×f(Bk | R0,k−1, Ak,t−1,Ck,Yk+1, . . .Yt) dBk

=

∫

P (R0,t = 1 | R0,k−1, Ak,t−1,Bk)

×f(Bk | R0,k−1, Ak,t−1,Ck,Yk+1, . . .Yt) dBk

=

∫

P (R0,t = 1 | R0,k−1, Ak,t−1,Bk) f(Bk | R0,k−1, Ak,t−1,Ck)

×
f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,Bk)

f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,Ck)
dBk

=

∫

P (R0,t = 1 | R0,k−1, Ak,t−1,Bk)

×f(Bk | R0,k−1, Ak,t−1,Ck) dBk (38)

= P (R0,t = 1 | R0,k−1, Ak,t−1,Ck)

Line (38) follows because of the assumption of dDTIC and the autoregressive as-

sumption of equation (1), as we now show.

For t > k,

f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,Bk)

=
t
∏

s=k+1

f(Ys | R0,k−1, Ak,t−1,Bk,Yk+1, . . . ,Ys−1) (39)

For k < s ≤ t,

f(Ys | R0,k−1, Ak,t−1,Bk,Yk+1, . . . ,Ys−1)

= f(Ys | R0,k−1, Ak,s,Bk,Yk+1, . . . ,Ys−1)

×
P (Ak,t−1 | R0,k−1, Ak,s,Bk,Yk+1, . . . ,Ys)

P (Ak,t−1 | R0,k−1, Ak,s,Bk,Yk+1, . . . ,Ys−1)
(40)
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and

P (Ak,t−1 | R0,k−1, Ak,s,Bk,Yk+1, . . . ,Ys)

=

t−1
∏

l=s+1

P (R0,l = 0 | R0,k−1, Ak,l−1,Bk,Yk+1, . . . ,Ys) (41)

=

t−1
∏

l=s+1

P (R0,l = 0 | R0,k−1, Ak,l−1,Bk)

= P (Ak,t−1 | R0,k−1, Ak,s,Bk) (42)

So, from equations (40) and (42), we have that for k < s ≤ t,

f(Ys | R0,k−1, Ak,t−1,Bk,Yk+1, . . . ,Ys−1) = f(Ys | R0,k−1, Ak,s,Bk,Yk+1, . . . ,Ys−1)

(43)

It follows from equations (1) and (9) that

f(Ys | R0,k−1, Ak,s,Bk,Yk+1, . . . ,Ys−1) = f(Ys |X,Ys−1) (44)

So, using equations (39), (43) and (44), we have

f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,Bk) =
t
∏

s=k+1

f(Ys |X,Ys−1)

= f(Yk+1, . . . ,Yt |X,Yk)

So, line (38) follows.

The following example shows that independent return does not imply strong inde-

pendent return. However, it does not show that this matters for inference.

Suppose T = 5, m = 1 and there is no baseline covariate X and no measurement

error. Suppose that Y1, Y2, Y3 and Y4 are independent and Y5 = Y4, with Y1 ∼

Bernoulli(0.5), and Y2, Y3 ∼ Normal(0, 1), and Y4 ∼ Bernoulli(0.1). Suppose that

P (R2) = 1, P (R3 = 0 | Y1, Y2, Y3, Y4) = 0.99, P (R4 = R5 = 1 | R3 = 1) = 1,

P (R4 = 0 | R3 = 0) = 1, and

P (R5 = 1 | R4 = 0, Y1, Y2, Y3, Y4) =

{

1 if Y1 = Y4

0 if Y1 6= Y4
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Independent return holds, because P (R5 = 1 | R4 = 0, Y2, Y3, Y4) = P (R5 = 1 |

R4 = 0, Y2) = 0.5. However, strong independent return does not hold, because

P (R5 = 1 | R4 = 0, Y1, Y2, Y3, Y4) 6= P (R5 = 1 | R4 = 0, Y1, Y2).

Consider what will happen when aMVN imputation and uMVN imputation are

used. Autoregressive MVN ‘knows’ that Y1 ⊥⊥ Y5 and (asymptotically) imputes

missing Y5 as 0.1, which is correct. Unstructured MVN ‘looks’ at the observed data

and (asymptotically) ‘sees’ that the correlation between Y1 and Y5 in individuals

in whom Y5 is observed equals 1, but that the correlation between Y5 and Y2 is

zero. So (asymptotically), using formula (18), missing Y5 values will be imputed

as 0.1 + 1 ×
√

0.1×0.9
0.5×0.5

(Y1 − 0.5). This is 0.4 if Y1 = 1 and −0.2 if Y1 = 0. So, the

average imputed value of Y5 is (0.4 − 0.2)/2 = 0.1, which is correct.

Note that dDTIC does hold in this example.

1.4 Proof of Theorem 4

Let Gt(rt) denote what would have been an individual’s value of Gt if their value

of R0,t had been rt and the history Ft of their covariates and underlying out-

comes were unchanged. Note that Gt = Gt(R0,t). As an example, suppose

that R0,i4 = (1, 1, 0, 1)⊤. Then G4 = G4(R04) = (Y ⊤

i1 ,Y
⊤

i2 ,Y
⊤

i4 ,X
⊤

i )⊤, whereas

G4(r4) = (Y ⊤

i1 ,Y
⊤

i3 ,X
⊤

i )⊤ for r4 = (1, 0, 1, 0)⊤ and G4(r4) = (Y ⊤

i1 ,X
⊤

i )⊤ for

r4 = (1, 0, 0, 0)⊤.

Consider the reparameterisation of the unstructured MVN model given by equa-

tions (83)–(85). Let θ denote the parameters in this model, i.e. θ = (µ1,µT+1,Σ1,1,

Σ1,T+1,ΣT+1,T+1, α2,β2, γ2,σ2, . . ., αT ,βT , δT,1, . . . , δT,T−2,γT ,σT )⊤. So, µ =

µ(θ) and Σ = Σ(θ) are deterministic functions of θ (e.g. equations (86)–(88)

give the functions in the special case where δtj = 0). For t ≥ 2, any value rt−1

of R0,t−1 and any value gt−1 of Gt−1(rt−1), let ht(yt | rt−1, gt−1; θ) denote the

derivative with respect to θ of the log conditional density function of Yt given
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Gt−1(rt−1) = gt−1 evaluated at Yt = yt when (Y1, . . . ,YT ,X) is assumed to be

distributed Normal(µ(θ),Σ(θ)). Similarly, let h1(x,y1; θ) denote the derivative

of the log density of (X,Y1) when (Y1, . . . ,YT ,X) ∼ Normal(µ(θ),Σ(θ)).

The MLE of θ obtained by fitting the MVN model to the observed data and

ignoring the missingness mechanism is the value of θ for which the derivative with

respect to θ of the log likelihood function
∑N

i=1
Li(θ) equals zero, where

∂L(θ)

∂θ
= h1(x,y1; θ) +

⊤
∑

t=2

∑

rt−1

{

I(R0,t = R0,t−1 = 1,R0,t−1 = rt−1)
×ht(yt | rt−1,Gt−1(rt−1); θ)

}

+

⊤
∑

t=3

t−2
∑

s=1

∑

rs

{

I(R0,t = 1, R0,t−1 = . . . = R0,s+1 = 0, R0,s = 1,R0,s = rs)
×ht(yt | rs,Gs(rs); θ)

}

(45)

and
∑

rk
means the sum over all possible k-vectors whose elements are zero or one.

If (Y1,X, ǫ2, . . . , ǫT ) is normally distributed, then (Y1, . . . ,YT ,X) is normally dis-

tributed with mean µ and Σ, and so at the true value of θ (Stefanski and Boos,

2000).

E{ht(Yt | rs,Gs(rs); θ) | Gs(rs)} = 0 ∀s, t, rs such that 1 ≤ s < t ≤ T.

(46)

Even if (Y1,X, ǫ2, . . . , ǫT ) is not normally distributed, equation (46) still holds,

provided that ǫt has mean zero and its variance does not depend on Ft−1. This is

because, treated as a function of yit (i = 1, . . . , N),
∑N

i=1
ht(yit | rs,Gis(rs); θ) de-

pends only on (and is a linear combination of)
∑N

i=1
yit,

∑N

i=1
yity

⊤

it and
∑N

i=1
yitGis(rs)

⊤.

Therefore, E{ht(Yt | rs,Gs(rs); θ) | Gs(rs)} is a linear combination of E(Yt |

Gs(rs)) and Var(Yt | Gs(rs)), and hence only depends on the distribution of

(X⊤,Y1)
⊤ and ǫ2, . . . , ǫt through their means and variances.
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Now, for any rt−1 with final element equal to one,

E{I(R0,t = R0,t−1 = 1,R0,t−1 = rt−1) ht(Yt | rt−1,Gt−1(rt−1); θ)}

= P (R0,t = R0,t−1 = 1,R0,t−1 = rt−1)

×E{ht(Yt | rt−1,Gt−1(rt−1); θ) | R0,t = R0,t−1 = 1,R0,t−1 = rt−1}

= P (R0,t = R0,t−1 = 1,R0,t−1 = rt−1)

×E[E{ht(Yt | rt−1,Gt−1(rt−1); θ) | Gt−1(rt−1), R0,t = R0,t−1 = 1,R0,t−1 = rt−1}

| R0,t = R0,t−1 = 1,R0,t−1 = rt−1] (47)

Using equation (13), equation (47) reduces to

P (R0,t = R0,t−1 = 1,R0,t−1 = rt−1)

×E[E{ht(Yt | rt−1,Gt−1(rt−1); θ) | Gt−1(rt−1)} | R0,t = R0,t−1 = 1,R0,t−1 = rt−1]

which, by equation (46), equals zero at the true value of θ, because, as stated

above, E{ht(Yt | rt−1,Gt−1(rt−1); θ) | Gt−1(rt−1)} = 0 at the true value of θ.

Similarly, using equation (14), it follows that

I(R0,t = 1, R0,t−1 = . . . = R0,s+1 = 0, R0,s = 1,R0,s = rs)ht(Yt | rs,Gs(rs); θ)

also has expectation zero at the true value of θ.

Therefore equation (45) has expectation zero at the true value of θ. So, under

standard regularity assumptions, the MLE of θ from the unstructured MVN model

is consistent (Stefanski and Boos, 2000).

The proof that autoregressive MVN yields consistent estimators when independent

return holds is analogous. The parameters δtj are removed from θ, since they are

constrained to equal zero. Now ht(Yt | rs,Gs(rs); θ) can be written as ht(Yt |

rs,Ys; θ) whenever the final element of rs equals one. The proof for unstructured

MVN continues to apply for autoregressive MVN, once ht(Yt | rs,Gs(rs); θ) have

been replaced by ht(Yt | rs,Ys; θ) and equations (13) and (14) have been replaced
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by versions of those equations with (X,Yt−1) and X,Yk in place of Gt−1 and Gk,

as Theorem 5 allows.

1.5 Proof of Theorem 5

By equation (1) and dDTIC, we have

f(Yt | Ft−1,R0,t−2, R0,t−1 = R0,t = 1) = f(Yt | Ft−1) = f(Yt |X,Yt−1)

which implies that equation (13) holds.

Next we prove that equation (14) holds.

f(Yt | Gs,R0,s−1, As,t−1, R0,t = 1)

= f(Yt | Gs,R0,s−1, As,t−1)

×
P (R0,t = 1 | Gs,Yt,R0,s−1, As,t−1)

P (R0,t = 1 | Gs,R0,s−1, As,t−1)

= f(Yt | Gs,R0,s−1, As,t−1) (48)

=

∫

f(Yt | Gs,Yt−1,R0,s−1, As,t−1)f(Yt−1 | Gs,R0,s−1, As,t−1) dYt−1

=

∫

f(Yt |X,Yt−1)f(Yt−1 | Gs,R0,s−1, As,t−1) dYt−1 (49)

=

∫

f(Yt |X,Yt−1) f(Yt−1 | Gs,R0,s−1, As,t−2)

×
P (R0,t−1 = 0 | Gs,Yt−1,R0,s−1, As,t−2)

P (R0,t−1 = 0 | Gs,R0,s−1, As,t−2)
dYt−1

=

∫

f(Yt |X,Yt−1) f(Yt−1 | Gs,R0,s−1, As,t−2) dYt−1 (50)

=

∫ ∫

f(Yt |X,Yt−1) f(Yt−1 |X,Yt−2) f(Yt−2 | Gs,R0,s−1, As,t−3) dYt−2 dYt−1

=

∫

. . .

∫

f(Yt |X,Yt−1) f(Yt−1 |X,Yt−2) . . . f(Ys+2 |X,Ys+1)

×f(Ys+1 | Gs,R0,s−1, R0,s = 1) dYs+1 dYs+2 . . . dYt−2 dYt−1

=

∫

. . .

∫

f(Yt |X,Yt−1) f(Yt−1 |X,Yt−2) . . . f(Ys+2 |X,Ys+1)

×f(Ys+1 |X,Ys) dYs+1 dYs+2 . . . dYt−2 dYt−1

= f(Yt |X,Ys) (51)

which implies that equation (14) holds. Lines (48) and (50) follow from strong
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independent return. Line (49) follows from the same argument used above to

prove equation (13).

The proofs are analogous when independent return, rather than strong independent

return, holds.

1.6 Proof of Theorem 6

The complete-data least-squares estimators of βt and γt are

[

β̂cd,t

γ̂cd,t

]

=

[

ct−1,t−1 ct−1,T+1

cT+1,t−1 cT+1,T+1

]−1 [

ct−1,t

cT+1,t

]

(52)

Solving these simultaneous equations yields

β̂cd,t = (ct−1,t−1 − ct−1,T+1c
−1

T+1,T+1
cT+1,t−1)

−1

(ct−1,t − ct−1,T+1c
−1

T+1,T+1
cT+1,t) (53)

γ̂cd,t = c−1

T+1,T+1
cT+1,t − c

−1

T+1,T+1
cT+1,t−1β̂cd,t (54)

The least-squares estimator of αt is

α̂cd,t = Ȳt − β̂
⊤

cd,tȲt−1 − γ̂
⊤

cd,tX̄. (55)

If βt is constrained to equal I, then equations (54) and (55) still hold.

1.7 Proof of Theorem 7

When data are monotone missing and the δtj ’s are constrained to equal zero,

equation (45) reduces to

∂L(θ)/∂θ =

⊤
∑

t=1

I(R0,t = 1)h(Yt | 1t−1,Ft−1; θ)

where 1t−1 denotes a (t − 1)-vector of ones. The maximum likelihood estimate

of θ can be obtained by fitting the models defined by equations (84) and (85)

with the δtj ’s omitted and estimating µ1, µT+1, Σ1,1, Σ1,T+1 and ΣT+1,T+1 by

the corresponding sample means, variances and covariances. Fitting by maximum
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likelihood the models given by equations (84) and (85) with the δtj ’s omitted is

equivalent to fitting them by least squares, which is the method proposed by A&G.

When data are monotone missing, the imputed value of Yt obtained using au-

toregressive MVN, E(Yt | GT ), can be written as E(Yt | GT ) = E(Yt | Gt−1) =

E{E(Yt | Yt−1) | Gt−1}. Therefore, aMVN imputation is equivalent to the iterative

imputation procedure that is LI imputation.

1.8 Proof of Theorem 8

We begin by proving b). So, assume that mortal-cohort independent return and

independent death hold. Then

P (D ≥ t | R0,k−1, Ak,t−1,X,Yk, . . . ,Yt)

= P (D ≥ t | R0,k−1, Ak,t−1,X,Yk)

×
f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,X,Yk)
(56)

Equations (20) and (26) imply that

f(Yt | R0,k−1, Ak,t−1,X,Yk, . . . ,Yt−1, D ≥ t) = f(Yt |X,Yt−1) (57)

Now, for k + 1 ≤ s < t,

f(Ys | R0,k−1, Ak,t−1,X,Yk, . . . ,Ys−1, D ≥ t) (58)

= f(Ys | R0,k−1, Ak,t−1,X,Yk, . . . ,Ys−1, D ≥ t− 1)

×
P (D ≥ t | R0,k−1, Ak,t−1,X,Yk, . . . ,Ys, D ≥ t− 1)

P (D ≥ t | R0,k−1, Ak,t−1,X,Yk, . . . ,Ys−1, D ≥ t− 1)
(59)

= f(Ys | R0,k−1, Ak,t−1,X,Yk, . . . ,Ys−1, D ≥ t− 1) (60)

= f(Ys | R0,k−1, Ak,t−2,X,Yk, . . . ,Ys−1, D ≥ t− 1)

×
P (R0,t−1 = 0 | R0,k−1, Ak,t−2,X,Yk, . . . ,Ys, D ≥ t− 1)

P (R0,t−1 = 0 | R0,k−1, Ak,t−2,X,Yk, . . . ,Ys−1, D ≥ t− 1)
(61)

= f(Ys | R0,k−1, Ak,t−2,X,Yk, . . . ,Ys−1, D ≥ t− 1) (62)

= f(Ys | R0,k−1, Ak,s−1,X,Yk, . . . ,Ys−1, D ≥ s) (63)

= f(Ys |X,Ys−1) (64)

12



Line (60) follows because of independent death. Line (62) follows because of

mortal-cohort independent return. Line (63) follows by induction. Line (64) follows

by equation (57). Hence, from equation (64),

f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

=
t
∏

s=k+1

f(Ys | R0,k−1, Ak,t−1,X,Yk, . . . ,Ys−1, D ≥ t)

=
t
∏

s=k+1

f(Ys |X,Ys−1)

= f(Yk+1, . . . ,Yt |X,Yk) (65)

It follows from equations (56) and (65) that

P (D ≥ t | R0,k−1, Ak,t−1,X,Yk, . . . ,Yt) = P (D ≥ t | R0,k−1, Ak,t−1,X,Yk) (66)

Finally,

P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk, . . .Yt) (67)

= P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk, . . .Yt, D ≥ t)

×P (D ≥ t | R0,k−1, Ak,t−1,X,Yk, . . .Yt) (68)

= P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

×P (D ≥ t | R0,k−1, Ak,t−1,X,Yk) (69)

= P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk) (70)

Hence, independent return holds in the supplemented process. Line (69) follows

from mortal-cohort independent return and equation (66).

The proof of c) is analogous to that of b). The changes are as follows. Replace X

by Gk−1 in equations (56), (58)–(63) and (66)–(70). Replace equation (57) by

f(Yt | R0,k−1, Ak,t−1,Gk−1,Yk, . . . ,Yt−1, D ≥ t) = f(Yt |X,Yt−1)

and replace equation (65) by

f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,Gk−1,Yk, D ≥ t) = f(Yk+1, . . . ,Yt |X,Yk). (71)
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Finally, we prove a).

P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk,Yk+1, . . . ,Yt, D ≥ t)

=

∫

P (R0,t = 1 | R0,k−1, Ak,t−1,Gk−1,Yk,Yk+1, . . . ,Yt, D ≥ t)

×f(Gk−1 | R0,k−1, Ak,t−1,X,Yk,Yk+1, . . .Yt, D ≥ t) dGk−1

=

∫

P (R0,t = 1 | R0,k−1, Ak,t−1,Gk−1,Yk, D ≥ t)

×f(Gk−1 | R0,k−1, Ak,t−1,X,Yk,Yk+1, . . .Yt, D ≥ t) dGk−1 (72)

Line (72) follows by mortal-cohort strong independent return. Now,

f(Gk−1 | R0,k−1, Ak,t−1,X,Yk,Yk+1, . . .Yt, D ≥ t)

= f(Gk−1 | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

×
f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,Gk−1,Yk, D ≥ t)

f(Yk+1, . . . ,Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

= f(Gk−1 | R0,k−1, Ak,t−1,X,Yk, D ≥ t) (73)

Line (73) follows from equation (71). So, from equations (72) and (73),

P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk,Yk+1, . . . ,Yt, D ≥ t)

= P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

That is, mortal-cohort independent return holds. Similarly,

P (D = t | R0,k−1, Ak,t−1,X,Yk,Yk+1, . . . ,Yt, D ≥ t)

=

∫

P (D = t | R0,k−1, Ak,t−1,Gk−1,Yk,Yk+1, . . . ,Yt, D ≥ t)

×f(Gk−1 | R0,k−1, Ak,t−1,X,Yk,Yk+1, . . .Yt, D ≥ t) dY1 . . . dYk−1

=

∫

P (D = t | R0,k−1, Ak,t−1,Gk−1,Yk, D ≥ t)

×f(Gk−1 | R0,k−1, Ak,t−1,X,Yk, D ≥ t) dGk−1 (74)

= P (D = t | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

So, independent death holds. Line (74) follows from strong independent death and

by equation (73).
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1.9 Proof of Theorem 9

In order also to be able to discuss the use of MVN imputation for mortal-cohort

inference (below), we prove the following more general version of Theorem 9.

Theorem 10. If equation (20), mortal-cohort dDTIC, mortal-cohort independent

return and independent death hold, then for k < s < t,

a) f(Yt | R0,k−1, R0,k = 1, R0,k+1 = . . . = R0,t = 0,X,Yk, D ≥ t) = f(Yt |X,Yk),

b) f(Yt | R0,k−1, R0,k = 1, R0,k+1 = . . . = R0,T = 0,X,Yk, D ≥ t) = f(Yt |X,Yk)

c) f(Ys | R0,k−1, R0,k = 1, R0,k+1 = . . . = R0,t−1 = 0, R0,t = 1,X,Yk,Yt, D ≥ s)

= f(Ys |X,Yk,Yt)

When mortal-cohort strong independent return and strong independent death hold,

(X,Yk) on the left-hand side of these equations can be replaced by (X,Gk).

Proof

First, consider a).

f(Yt | R0,k−1, Ak,t,X,Yk, D ≥ t)

= f(Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

×
P (R0,t = 0 | R0,k−1, Ak,t−1,X,Yk,Yt, D ≥ t)

P (R0,t = 0 | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

= f(Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t) (75)

= f(Yt |X,Yk) (76)

Line (75) follows by mortal-cohort independent return. Line (76) follows from

equation (65).
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Second, consider b).

f(Yt | R0,k−1, Ak,T ,X,Yk, D ≥ t)

= f(Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

×
P (R0,t = . . . = R0,T = 0 | R0,k−1, Ak,t−1,X,Yk,Yt, D ≥ t)

P (R0,t = . . . = R0,T = 0 | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

= f(Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t) (77)

= f(Yt |X,Yk) (78)

Line (77) follows by mortal-cohort independent return and independent death.

Line (78) follows from equation (65).

Third, consider c).

f(Ys | R0,k−1, Ak,t−1, R0,t = 1,X,Yk,Yt, D ≥ s)

= f(Ys | R0,k−1, Ak,t−1, R0,t = 1,X,Yk,Yt, D ≥ t) (79)

= f(Ys | R0,k−1, Ak,t−1,X,Yk,Yt, D ≥ t)

×
P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk,Ys,Yt, D ≥ t)

P (R0,t = 1 | R0,k−1, Ak,t−1,X,Yk,Yt, D ≥ t)

= f(Ys | R0,k−1, Ak,t−1,X,Yk,Yt, D ≥ t) (80)

=
f(Ys,Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

f(Yt | R0,k−1, Ak,t−1,X,Yk, D ≥ t)

=
f(Ys,Yt |X,Yk)

f(Yt |X,Yk)
(81)

= f(Ys |X,Yk,Yt) (82)

Line (79) follows because R0,t = 1 implies D ≥ t. Line (80) follows by mortal-

cohort independent return. Line (81) follows from equation (65).

Appendix S2: Proof that dDTIC can be written

as equation (10)

Assume equation (9) holds. By Bayesian Theorem,

P (R0t = 1 | R0,t−1,FT ) =
f(Yt, . . . ,YT | R0,t−1, R0t,Ft−1)

f(Yt, . . . ,YT | R0,t−1,Ft−1)
P (R0t = 1 | R0,t−1,Ft−1)
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Now,

f(Yt, . . . ,YT | R0,t−1, R0t,Ft−1) =

⊤
∏

s=t

f(Ys | R0,t−1, R0t,Fs−1)

=

⊤
∏

s=t

f(Ys | Fs−1)

= f(Yt, . . . ,YT | Ft−1)

by equation (9). So, equation (10) holds.

Conversely, assume that equation (10) holds. Then

f(Yt | Ft−1,R0,t) = f(Yt | Ft−1)
t
∏

s=2

P (R0s | Ft,R0,s−1)

P (R0s | Ft−1,R0,s−1)

= f(Yt | Ft−1)
t
∏

s=2

P (R0s | Fs−1,R0,s−1)

P (R0s | Fs−1,R0,s−1)

= f(Yt | Ft−1)

by equation (10).

Appendix S3: Proof of equation (19)

Before giving a formal proof, we provide some intuition as to why this constraint

arises. The unstructured MVN model can be reparameterised as

[

Y1

X

]

∼ N

{[

µ1

µT+1

]

,

[

Σ1,1 Σ⊤

1,T+1

Σ1,T+1 ΣT+1,T+1

]}

(83)

Yt = αt + β⊤

t Yt−1 +
t−2
∑

j=1

δ⊤tjYj + γ⊤

t X + ǫt (84)

ǫt | Y1, . . . ,Yt−1,X ∼ Normal(0,σt) (t ≥ 2) (85)

If it assumed that equation (2) holds, then each δtj must equal zero. Since there are

(T −1)(T −2)/2 matrices δtj , each of which has m2 elements, constraining δtj = 0

reduces the number of free parameters by (T −1)(T −2)m2/2. Returning to equa-

tion (19), we note that there are T (T−1)/2 matrices Σst (s < t) and T−1 matrices

βt, and each of these matrices has m2 elements, so the constraint of equation (19)
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reduces the number of free parameters by the same number: (T − 1)(T − 2)m2/2.

The relation between the parameters of the original and reparameterised models

is as follows. For t ≥ 2,

µt = αt + β⊤

t µt−1 + γ⊤

t X (86)

Σt,T+1 = β⊤

t Σt−1,T+1 + γ⊤

t ΣT+1,T+1 (87)

Σt,t = β⊤

t Σt−1,t−1βt + γ⊤

t ΣT+1,T+1γt + 2β⊤

t Σt−1,T+1γt + σt (88)

and, for 1 ≤ s < t ≤ T , Σs,t is given by equation (19). Conversely, for t ≥ 2, βt,

γt and αt are given by equations (15)–(17) without the hats, and

σt = Σt,t − β
⊤

t Σt−1,t−1βt − γ
⊤

t ΣT+1,T+1γt − 2β⊤

t Σt−1,T+1γt (89)

We now provide a formal proof of equation (19).

For 1 ≤ s < t ≤ T , we have from equation (1) that

Yt = αt + β⊤

t (αt−1 + β⊤

t−1Yt−2 + γ⊤

t−1X + ǫt−1) + γ⊤

t X + ǫt

=
t−1
∑

j=s+1

{β⊤

t β
⊤

t−1 . . .β
⊤

j+1(αj + γ⊤

j X)} +αt + γ⊤

t X + β⊤

t β
⊤

t−1 . . . ,β
⊤

s+1Ys

+
t−1
∑

j=s+1

{β⊤

t β
⊤

t−1 . . .β
⊤

j+1ǫj} + ǫt

So,

E(YtY
⊤

s ) =
t−1
∑

j=s+1

[β⊤

t β
⊤

t−1 . . .β
⊤

j+1{αjE(Ys)
⊤ + γ⊤

j E(XY ⊤

s )}] +αtE(Ys)
⊤

+γ⊤

t E(XY ⊤

s ) + β⊤

t β
⊤

t−1 . . .β
⊤

s+1E(YsY
⊤

s )

[Throughout this proof, terms beginning
∑t−1

j=s+1
should be interpreted as being

equal to zero if s = t− 1.]
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Consequently, using
∏b

j=a β
⊤

j as shorthand for β⊤

b β
⊤

b−1 . . .β
⊤

a , we have

Σt,s =

t−1
∑

j=s+1

t
∏

k=j+1

β⊤

k {αjµ
⊤

s + γ⊤

j (ΣT+1,s + µT+1µ
⊤

s )} +αtµ
⊤

s + γ⊤

t (ΣT+1,s + µT+1µ
⊤

s )

+

t
∏

k=s+1

β⊤

k (Σs,s + µsµ
⊤

s ) − µtµ
⊤

s

=

t−1
∑

j=s+1

t
∏

k=j+1

β⊤

k {(µj − β
⊤

j µj−1)µ
⊤

s + γ⊤

j ΣT+1,s} + (µt − β
⊤

t µt−1)µ
⊤

s

+γ⊤

t ΣT+1,s +

t
∏

k=s+1

β⊤

k (Σs,s + µsµ
⊤

s ) − µtµ
⊤

s

=

(

µt −

t
∏

k=s+1

β⊤

k µs

)

µ⊤

s +

t−1
∑

j=s+1

t
∏

k=j+1

β⊤

k γ
⊤

j ΣT+1,s + γ⊤

t ΣT+1,s

+

t
∏

k=s+1

β⊤

k (Σs,s + µsµ
⊤

s ) − µtµ
⊤

s

= −
t
∏

k=s+1

β⊤

k µsµ
⊤

s +
t−1
∑

j=s+1

t
∏

k=j+1

β⊤

k (Σj,T+1 − β
⊤

j Σj−1,T+1)Σ
−1

T+1,T+1
ΣT+1,s

+(Σt,T+1 − β
⊤

t Σt−1,T+1)Σ
−1

T+1,T+1
ΣT+1,s +

t
∏

k=s+1

β⊤

k (Σs,s + µsµ
⊤

s )

= −
t
∏

k=s+1

β⊤

k µsµ
⊤

s +

(

Σt,T+1 −
t
∏

k=s+1

β⊤

k Σs,T+1

)

Σ−1

T+1,T+1
ΣT+1,s

+
t
∏

k=s+1

β⊤

k (Σs,s + µsµ
⊤

s )

= Σt,T+1Σ
−1

T+1,T+1
ΣT+1,s +

t
∏

k=s+1

β⊤

k (Σs,s − Σs,T+1Σ
−1

T+1,T+1
ΣT+1,s) (90)

using equations (54) and (55). Note that equation (90) still holds when βt is

constrained to equal I.

Appendix S4: Random-walk MVN (rMVN) meth-

ods

Here we describe the LI-rMVN imputation and rMVN imputation methods intro-

duced in Section 4.3.
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The model defined by (Y ⊤

1 , . . . ,Y
⊤

T ,X⊤)⊤ ∼ Normal(µ,Σ) and equation (19) with

βt = I can be reparameterised as equations (83)–(85) with δtj = 0 and βt = I.

The relation between the parameters of the original and reparameterised models

is given by equations (86)–(88) and by equations (16) and (17) without the hats

and (89), all with βt = I.

This model can be fitted by maximum likelihood to the outcomes Yt +et observed

with error, thus treating them as though they were the underlying outcomes Yt,

and ignoring the missingness mechanism (see Section S5 for fitting algorithm). We

call this the ‘random-walk MVN (rMVN)’ method.

Theorem 11. If the increments model of equation (2), the dDTIC assumption

of equation (9) and the independent return assumption of equation (8) hold and

βt = I, then the random-walk MVN method yields consistent estimates of µ1,

µT+1, Σ1,T+1, ΣT+1,T+1, αt and γt (t = 2, . . . , T ).

Like Theorem 4, Theorem 11 does not require that the data actually be nor-

mally distributed. Equations (86) and (87) can then be used to obtain consis-

tent estimates of µt and Σt,T+1. Note that the maximum likelihood estimates of

Σt,t obtained using equation (88) are not consistent unless there is no measure-

ment error. For example, the maximum likelihood estimator of Σ11 converges to

Var(Y1)+Var(e1) as N → ∞, rather than to Σ11 = Var(Y1). This is not a problem

for LI imputation using the random-walk MVN estimates of αt and γt (‘LI-rMVN

imputation’). It is also not a problem when imputation is carried out using equa-

tion (18) with the random-walk MVN estimates of µ and Σ (‘rMVN imputation’),

because the complete-data maximum likelihood estimator of the parameters of a

linear regression of Y on t and/or X is not a function of Σ̂t,t (see Appendix S6

for details).
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Proof of Theorem 11

To avoid confusion in this proof, we shall denote the true values of αt and γt

in equation (2) as α0t and γ0t, and the true values of µt = E(Yt) and Σst =

Cov(Ys,Yt) as µ0t and Σ0st. The model being fitted is

[

Y1 + e1

X

]

∼ N

{[

µ1

µT+1

]

,

[

Σ1,1 Σ⊤

1,T+1

Σ1,T+1 ΣT+1,T+1

]}

(91)

Yt + et | Ys + es,X ∼ N

(

t
∑

j=s+1

(αj + γ⊤

j X) + Ys + es,

t
∑

j=s+1

σj

)

(92)

(∀t > s ≥ 1)

Note that we are not assuming in this proof that the model given by equations (91)

and (92) describes the true relation between the random variables.

Equation (2) with βt = I implies that

E(Yt | Ys,X) =
t
∑

j=s+1

(α0j + γ⊤

0jX) + Ys ∀t > s (93)

Note that we are assuming in this proof that equation (93) does describe the true

relation between the random variables.

Let x̃ denote the p ×m matrix in which each of the m columns equals x. Let L

denote an individual’s contribution to the log-likelihood function of the model de-

fined by equations (91) and (92), and let θ = (µ1,µT+1,Σ1,1, Σ1,T+1,ΣT+1,T+1, α2,

γ2,σ2, . . ., αT ,γT ,σT )⊤. The contribution of an individual to the score function

∂L/∂θ of this model is (as in the proof of Theorem 4)

∂L(θ)

∂θ
= h1(x,y1 + e1; θ)

+

⊤
∑

t=2

t−1
∑

s=1

{

I(R0,t = 1, R0,t−1 = . . . = R0,s+1 = 0, R0,s = 1)
×ht,s(yt + et | ys + es,x; θ)

}

(94)

where the form of h1(x,y1+e1; θ) is evident from equation (91) and, for t > s ≥ 1,

the elements of ht,s are (from equation (92))

1⊤

m

(

t
∑

j=s+1

σj

)−1{

yt + et − ys − es −
t
∑

j=s+1

(αj + γ⊤

j x)

}
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for elements corresponding to αj with s+ 1 ≤ j ≤ t, and

x̃

(

t
∑

j=s+1

σj

)−1{

yt + et − ys − es −
t
∑

j=s+1

(αj + γ⊤

j x)

}

for elements corresponding to γj with s+1 ≤ j ≤ t, and zero for all other elements.

Clearly, the elements of h1(x,y1 + e1; θ) corresponding to (α2,γ2, . . . ,αT ,γT )⊤

are all zero.

Let θ̂ denote the solution of ∂L(θ)/∂θ. Let θ0 = (µ01,µ0,T+1, Σ011 + Var(e1),

Σ01,T+1, Σ0T+1,T+1,α02, γ02,σ
∗

2 , . . ., α0T ,γ0T , σ∗

T )⊤ for some σ∗

2 , . . . ,σ
∗

T .

In order to show that θ̂ converges in probability to θ0 as N → ∞, it suffices to

show that E{∂L(θ)/∂θ}|θ=θ0
= 0. It is obvious that E{h1(X,Y1 + e1; θ0)} = 0

at θ0. So, it suffices to show that

E

{

Yt + et − Ys − es −
t
∑

j=s+1

(α0j + γ⊤

0jX) |X, As,t−1, R0,t = 1

}

= 0.

for all t > s ≥ 1. I now show this.

E

{

Yt + et − Ys − es −
t
∑

j=s+1

(α0j + γ⊤

0jX) |X, As,t−1, R0,t = 1

}

= E

{

Yt − Ys −
t
∑

j=s+1

(α0j + γ⊤

0jX) |X, As,t−1, R0,t = 1

}

(95)

= E

[

E

{

Yt − Ys −

t
∑

j=s+1

(α0j + γ⊤

0jX) |X,Ys, As,t−1, R0,t = 1

}

|X, As,t−1, R0,t = 1

]

= E

[

E

{

Yt − Ys −

t
∑

j=s+1

(α0j + γ⊤

0jX) |X,Ys

}

| As,t−1, R0,t = 1

]

(96)

= E [0 | As,t−1, R0,t = 1] (97)

= 0

Equation (95) uses the assumptions that {et : t = 1, . . . , T} is independent of

all other processes, et is independent of es for all t 6= s, and E(et) = 0 for

all t. Equation (96) follows from equation (14) with Gk replaced by (X,Yk).

Equation (97) uses equation (93).
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Appendix S5: EM algorithm for MVN methods

As explained in Section 4 of our paper, the standard (unstructured) MVN method

does not respect the constraints on the variance given by equation (19). Schafer

(1997) described how to fit this MVN model using an EM algorithm, and this has

been implemented in the norm package of R. For the autoregressive MVN method,

we need to impose this constraint at the M step of the algorithm. The norm

package can still be used to carry out the E step of the EM algorithm, but the M

step needs to be modified.

The linearity of the log likelihood function of an MVN model means that the M

step involves simply applying complete-data maximum likelihood estimators of µ

and Σ to the expected sufficient statistics calculated at the E step. The complete

data sufficient statistics are the sample mean and variance of (Y1, . . . ,YT ,X). For

the MVN model with unstructured variance matrix, the complete-data maximum

likelihood estimators are given by Schafer (1997) on page 149–150. For the autore-

gressive MVN model, the complete-data maximum likelihood estimators of µ, Σt,t

and ΣT+1,t (t = 1, . . . , T+1) are the same as for the unstructured MVN model. The

only difference is for Σt,s (1 ≤ s, t ≤ T with s 6= t). For the autoregressive MVN

model the complete-data maximum likelihood estimator of Σt,s (1 ≤ s < t ≤ T ) is

Σ̂t,s = Σ̂t,T+1Σ̂
−1

T+1,T+1
Σ̂T+1,s + β∗⊤

t β
∗⊤

t−1 . . .β
∗⊤

s+1(Σ̂s,s − Σ̂s,T+1Σ̂
−1

T+1,T+1
Σ̂T+1,s)

where

β∗

t = (ct−1,t−1 − ct−1,T+1c
−1

T+1,T+1
cT+1,t−1)

−1(ct−1,t − ct−1,T+1c
−1

T+1,T+1
cT+1,t)

with cs,t (1 ≤ s, t ≤ T ) denoting the sample covariance of Ys and Yt, and cT+1,t

denoting the sample covariance of X and Yt, and cT+1,T+1 denoting the sample

variance of X.

For the random-walk MVN model, the constraints on the variance given by equa-

tion (19) with β = I need to be imposed. Again, the norm package can be used
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to carry out the E step of the EM algorithm, but the M step needs to be modified.

The M step can be carried out by fitting the model given by equations (83)–(85)

with δtj = 0 and βt = I and then calculating µ̂ and Σ̂ using equations (86)–

(88). However, we did not actually do this. Instead, we used a Newton-Raphson

algorithm to maximise the observed-data likelihood directly.

Appendix S6: MVN imputation as a method for

estimating parameters of a linear regression model

For simplicity, assume that Y is univariate (i.e. m = 1). However, in the following,

Y could easily be replaced by one of the m univariate elements of a vector Y .

First, we shall show that the complete-data maximum likelihood estimates of the

linear regression model

Yit = ψ0 + ψ1t+ψ⊤

2 X + Normal(0, τ 2) (98)

are functions of the complete-data statistics X̄ , Ȳt, cT+1,t and cT+1,T+1. Second,

we shall show that the values of X̄, Ȳt, cT+1,t and cT+1,T+1 (t = 1, . . . , T ) in the

imputed dataset are equal to, respectively, µ̂T+1, µ̂t, Σ̂T+1,t and Σ̂T+1,T+1. This

implies that performing MVN imputation and then fitting the linear regression

model of equation (98) to the imputed data gives the same estimates of ψ0, ψ1

and ψ2 as applying the forementioned functions to µ̂T+1, µ̂t, Σ̂T+1,t and Σ̂T+1,T+1

directly.

Let ψ = (ψ0, ψ1,ψ
⊤

2 )⊤. Then

ψ̂ = (Z⊤Z)−1Z⊤W (99)
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where
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



So,

Z⊤Z =





NT N
∑

⊤

t=1
t TNX̄⊤

N
∑

⊤

t=1
t N

∑

⊤

t=1
t2 N

∑

⊤

t=1
tX̄⊤

TNX̄ N
∑

⊤

t=1
tX̄ N(cT+1,T+1 + X̄X̄⊤)



 (100)

and

Z⊤W =





N
∑

⊤

t=1
Ȳt

N
∑

⊤

t=1
tȲt

N
∑

⊤

t=1
(cT+1,t + X̄ Ȳt)



 (101)

Therefore ψ̂ is a function of X̄, Ȳt, cT+1,t and cT+1,T+1.

At convergence of the EM algorithm for fitting the MVN model (whether unstruc-

tured, autoregressive or random-walk) the expected values of X̄, Ȳt, cT+1,t and

cT+1,T+1 given the observed data are equal to µ̂T+1, µ̂t, Σ̂T+1,t and Σ̂T+1,T+1 (see

Section S5). Since X is fully observed, X̄ and cT+1,T+1 are observed, and µ̂T+1

and Σ̂T+1,T+1 are equal to them. The values of Ȳt and cT+1,t are not observed,

but because X is fully observed their expected values given the observed data can

be calculated by application of equation (18). Since this is precisely what is done

in MVN imputation, the values of Ȳt and cT+1,t calculated from the imputed data

will equal µ̂t and Σ̂T+1,t. Thus, whether one applies equations (99)–(101) to the

imputed data or substitutes µ̂T+1, µ̂t, Σ̂T+1,t and Σ̂T+1,T+1 for X̄, Ȳt, cT+1,t and

cT+1,T+1 in equations (99)–(101), one gets the same value of ψ̂.
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Appendix S7: MVN imputation for mortal-cohort

inference

Let η∗

it denote the value of Yit in the dataset created by MVN imputation with

the true values of µ and Σ. (Note that with the true values of µ and Σ, uMVN

imputation and aMVN imputation are the same.) If ǫit is normally distributed,

then (Y ⊤

2 , . . . ,Y
⊤

T )⊤ is multivariate normally distributed given X and Y1, and

hence

η∗

t = η∗

t (GT ,R0,T ) =

{

Yt if R0,t = 1
E(Yt | GT ) if R0,t = 0

=

{

Yt if R0,t = 1
E(Yt |X,YU ,YV ) if R0,t = 0

where U and V are, respectively, the last time before t and first time after t that

the outcome is observed (so R0,U = R0,V = 1 and R0,U+1 = . . . = R0,V −1 = 0). If

the outcome is not observed after t, then V = T + 1 and YV is null. Now,

E(η∗

t |X, D ≥ t)

= P (R0,t = 1 |X, D ≥ t)E(Yt |X, R0,t = 1, D ≥ t)

+P (R0,t = 0 |X, D ≥ t)E{η∗

t (GT ,R0,T ) |X, R0,t = 0, D ≥ t}

= P (R0,t = 1 |X, D ≥ t)E(Yt |X, R0,t = 1, D ≥ t)

+P (R0,t = 0 |X, D ≥ t)E{E(Yt |X,YU ,YV ) |X, R0,t = 0, D ≥ t}(102)

where E{E(Yt | X,YU ,YV ) | X, R0,t = 0, D ≥ t} means EU,V,YU ,YV
{E(Yt |

X,YU ,YV ) |X, R0,t = 0, D ≥ t}.

From parts b) and c) of Theorem 10, we have [noting that conditioning on {R0,U =

1, R0,U+1 = . . . = R0,V −1 = 0, R0,V = 1} means the same as conditioning on
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(U, V, {R0,t = 0}), which means the same as conditioning on (U, V )] that

E{E(Yt |X,YU ,YV ) |X, R0,t = 0, D ≥ t}

= EU,V [EYU ,YV
{E(Yt |X,YU ,YV ) |X, R0,t = 0, D ≥ t, U, V } |X, R0,t = 0, D ≥ t]

= EU,V [EYU ,YV
{E(Yt |X,YU ,YV , U, V, R0,t = 0, D ≥ t) |X, R0,t = 0, D ≥ t, U, V }

|X, R0,t = 0, D ≥ t]

= EU,V {E(Yt |X, U, V, R0,t = 0, D ≥ t) |X, R0,t = 0, D ≥ t}

= E(Yt |X, R0,t = 0, D ≥ t)

and so equation (102) implies that

E(η∗

t |X, D ≥ t) = P (R0,t = 1 |X, D ≥ t)E(Yt |X, R0,t = 1, D ≥ t)

+P (R0,t = 0 |X, D ≥ t)E(Yt |X, R0,t = 0, D ≥ t)

= E(Yt |X, D ≥ t)

as required.

If ǫit is not normally distributed, formula (18) will not correspond, in general, to the

conditional expectation of Yt given GT when Rl = 1 for some l > t. Nevertheless,

multiple imputation using the unstructured MVN model has been found often to

work well in practice when data are MAR even when not normally distributed

(Schafer, 1997; Schafer and Graham, 2002; Lee and Carlin, 2010; Demirtas et al.,

2008), and so there is cause to think that uMVN imputation may also work well

in practice.

Appendix S8: Further results from Simulation Stud-

ies 1 and 2, and Simulation Study 3

Tables S1 and S2 show the results of fitting the linear regression model in simulation

studies 1 and 2, respectively, of Section 6 of our paper.

For Simulation Study 1 we also modified the return mechanism so that the in-

dependent return assumption was violated. In particular, logit{P (R0,t = 1 |
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R0,t−1 = 0,R0,t−2,FT )} = φt + X + (Yt−1 + Yt−2)/2, where φt is chosen to make

P (R0,t = 1 | R0,t−1 = 0) = 0.5. The results are shown in Tables S3 and S4.

In Simulation Study 3, data were generated from the same model as in Simulation

Study 1 except that βt = 1.2 was replaced with βt = 1, and independent measure-

ment error eit was added to the underlying outcomes. The errors eit were generated

from the same bimodal distribution as ǫit. The ωt and φt values were again chosen

so that P (R0,t = 0 | R0,t−1 = 1) = 0.5 and P (R0,t = 1 | R0,t−1 = 0) = 0.5. For each

of 1000 simulated datasets we applied the same methods as in Section 6.1. We ad-

ditionally applied these methods constraining βt = 1. Table S5 and Table S6 show

the means and empirical SEs of the estimators of µt and (ψ0, ψ1, ψ2, ψ3), respec-

tively. As expected, the methods that constrain βt = 1 are approximately unbiased

and the methods that do not impose this constraint are biased. LI-LS imputation

is more efficient than estimating the compensator, and LI-rMVN imputation is yet

more efficient. There is little gain from using rMVN imputation compared to using

LI-rMVN imputation.

Appendix S9: Software for LI methods

The LI-LS imputation method can be applied using the FLIM package in R (Hoff,

2014). The other methods (estimating the compensator and the MVN methods), as

well as LI-LS imputation, can be applied in R using the linearincrements() function

available from the MRC Biostatistics Unit website (www.mrc-bsu.cam.ac.uk). An

example dataset and R code for analysing it using the FLIM package and the

linearincrements() function are also provided there.
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Method ψ0 ψ1 ψ2 ψ3

true values -0.169 0.243 0.592 0.886
Means

complete data -0.164 0.234 0.589 0.887
complete cases -0.171 0.261 1.153 0.708
LI-LS impute -0.166 0.237 0.590 0.888
LI-uMVN impute -0.165 0.235 0.589 0.887
LI-aMVN impute -0.164 0.235 0.589 0.888
uMVN impute -0.164 0.233 0.590 0.887
aMVN impute -0.163 0.233 0.589 0.887

Empirical SEs
complete data 0.104 0.184 0.093 0.162
complete cases 0.122 0.207 0.122 0.193
LI-LS impute 0.167 0.255 0.136 0.196
LI-uMVN impute 0.135 0.224 0.111 0.181
LI-aMVN impute 0.135 0.223 0.111 0.182
uMVN impute 0.131 0.217 0.111 0.182
aMVN impute 0.131 0.217 0.111 0.182

Table S1: Means and empirical SEs of estimated ψ0, ψ1, ψ2 and ψ3 in Simulation

Study 1 of Section 6
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Method ψ0 ψ1 ψ2 ψ3

true values -0.224 0.360 0.684 0.927
Means

complete data -0.223 0.352 0.685 0.924
complete cases -0.132 0.252 1.052 0.867
LI-LS impute -0.213 0.338 0.685 0.922
LI-uMVN impute -0.218 0.343 0.684 0.924
uMVN impute -0.220 0.347 0.684 0.923

Empirical SEs
complete data 0.158 0.267 0.099 0.170
complete cases 0.173 0.291 0.140 0.225
LI-LS impute 0.233 0.357 0.144 0.217
LI-uMVN impute 0.197 0.319 0.121 0.196
uMVN impute 0.192 0.309 0.121 0.196

Table S2: Means and empirical SEs of estimated ψ0, ψ1, ψ2 and ψ3 in Simulation

Study 2 of Section 6
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Method µ1 µ2 µ3 µ4 µ5 µ6

true values 0.250 0.950 1.790 2.798 4.008 5.459
Means

complete data 0.249 0.945 1.784 2.790 3.998 5.447
complete cases 0.249 1.482 2.803 4.560 6.415 8.700
estim. compens. 0.249 0.944 1.784 2.787 3.998 5.446
LI-LS impute 0.249 0.944 1.898 3.059 4.414 6.009
LI-uMVN impute 0.249 0.991 2.069 3.293 4.672 6.298
LI-aMVN impute 0.249 0.999 2.067 3.291 4.676 6.295
uMVN impute 0.249 1.009 2.065 3.265 4.656 6.304
aMVN impute 0.249 1.018 2.062 3.259 4.655 6.295

Empirical SEs
complete data 0.045 0.084 0.120 0.160 0.204 0.255
complete cases 0.045 0.114 0.160 0.195 0.250 0.294
estim. compens. 0.045 0.113 0.227 0.350 0.491 0.655
LI-LS impute 0.045 0.113 0.180 0.236 0.294 0.356
LI-uMVN impute 0.045 0.103 0.136 0.166 0.208 0.255
LI-aMVN impute 0.045 0.100 0.135 0.165 0.207 0.254
uMVN impute 0.045 0.101 0.134 0.161 0.205 0.254
aMVN impute 0.045 0.098 0.133 0.161 0.204 0.254

Table S3: Means and empirical SEs of estimated µt in Simulation Study 1 when

return mechanism is modified to violate independent return assumption.
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Method ψ0 ψ1 ψ2 ψ3

true values -0.169 0.243 0.592 0.886
Means

complete data -0.164 0.234 0.589 0.887
complete cases -0.164 0.275 1.344 0.533
LI-LS impute -0.289 0.335 0.774 0.758
LI-uMVN impute -0.271 0.325 0.885 0.658
LI-aMVN impute -0.267 0.324 0.884 0.659
uMVN impute -0.252 0.294 0.883 0.657
aMVN impute -0.247 0.293 0.879 0.659

Empirical SEs
complete data 0.104 0.184 0.093 0.162
complete cases 0.115 0.201 0.107 0.174
LI-LS impute 0.168 0.254 0.138 0.194
LI-uMVN impute 0.134 0.223 0.099 0.165
LI-aMVN impute 0.133 0.223 0.099 0.166
uMVN impute 0.131 0.217 0.098 0.164
aMVN impute 0.130 0.217 0.099 0.165

Table S4: Means and empirical SEs of estimated ψ0, ψ1, ψ2 and ψ3 in Simula-

tion Study 1 when return mechanism is modified to violate independent return

assumption.
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Method µ1 µ2 µ3 µ4 µ5 µ6

true values 0.250 0.900 1.550 2.200 2.850 3.500
Means

complete data 0.251 0.897 1.544 2.193 2.846 3.496
complete cases 0.249 1.346 2.065 3.087 4.027 4.933
unconstrained βt

estim. compens. 0.251 1.186 2.251 3.298 4.427 5.517
LI-LS impute 0.251 1.186 2.033 2.872 3.748 4.565
LI-uMVN impute 0.251 1.132 1.726 2.457 3.162 3.898
LI-aMVN impute 0.251 1.111 1.715 2.436 3.149 3.956
uMVN impute 0.251 1.085 1.658 2.363 3.049 3.809
aMVN impute 0.251 1.060 1.651 2.355 3.065 3.956
constrained βt = 1
estim. compens. 0.251 0.891 1.545 2.181 2.844 3.491
LI-LS impute 0.251 0.891 1.547 2.182 2.848 3.496
LI-rMVN impute 0.251 0.892 1.548 2.186 2.853 3.499
rMVN impute 0.251 0.893 1.547 2.188 2.854 3.499

Empirical SEs
complete data 0.078 0.098 0.121 0.139 0.156 0.168
complete cases 0.045 0.107 0.146 0.175 0.189 0.205
unconstrained βt

estim. compens. 0.078 0.139 0.243 0.295 0.319 0.339
LI-LS impute 0.078 0.139 0.193 0.226 0.252 0.261
LI-uMVN impute 0.078 0.134 0.159 0.186 0.204 0.219
LI-aMVN impute 0.078 0.134 0.159 0.185 0.203 0.217
uMVN impute 0.078 0.133 0.158 0.185 0.205 0.222
aMVN impute 0.078 0.132 0.157 0.181 0.202 0.217
constrained βt = 1
estim. compens. 0.078 0.148 0.248 0.315 0.363 0.406
LI-LS impute 0.078 0.148 0.193 0.217 0.234 0.244
LI-rMVN impute 0.078 0.138 0.161 0.182 0.200 0.215
rMVN impute 0.078 0.135 0.159 0.178 0.199 0.215

Table S5: Means and empirical SEs of estimated µt in Simulation Study 3. Esti-

mating the compensator and LI-LS imputation are applied both with βt estimated

and with βt constrained to equal 1.
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Method ψ0 ψ1 ψ2 ψ3

true values 0.000 0.500 0.400 0.500
Means

complete data 0.004 0.486 0.397 0.503
complete cases 0.036 0.479 0.697 0.417
unconstrained βt

LI-LS impute 0.040 0.503 0.707 0.306
LI-uMVN impute 0.081 0.465 0.481 0.469
LI-aMVN impute 0.051 0.481 0.497 0.455
uMVN impute 0.067 0.452 0.460 0.473
aMVN impute 0.018 0.470 0.495 0.453
constrained βt = 1
LI-LS impute 0.008 0.474 0.394 0.511
LI-rMVN impute 0.007 0.477 0.397 0.506
rMVN impute 0.008 0.475 0.397 0.506

Empirical SEs
complete data 0.116 0.205 0.059 0.103
complete cases 0.157 0.273 0.087 0.139
unconstrained βt

LI-LS impute 0.222 0.350 0.107 0.154
LI-uMVN impute 0.186 0.312 0.084 0.136
LI-aMVN impute 0.187 0.315 0.085 0.136
uMVN impute 0.183 0.309 0.084 0.135
aMVN impute 0.185 0.312 0.085 0.136
constrained βt = 1
LI-LS impute 0.228 0.367 0.109 0.166
LI-rMVN impute 0.190 0.320 0.085 0.138
rMVN impute 0.186 0.315 0.084 0.136

Table S6: Means and empirical SEs of estimated ψ0, ψ1, ψ2 and ψ3 in in Simu-

lation Study 3. LI-LS imputation is applied both with βt estimated and with βt

constrained to equal 1.
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