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A. Political blogs

Of the 1222 blogs in the largest connected component, 549 blogs have at least three incoming edges and
three outgoing edges. Of these 549, only six blogs change partitions. This supplementary material discusses
these six blogs.

All of the six blogs are labeled as Kerry blogs. Five of these blogs are “dem2gop” blogs that appear to
take links from Kerry (i.e. dem) blogs and send links to Bush (i.e. gop) blogs. The final blog in the table
(quando.net) is the only “gop2dem” blog, taking more edges from Bush blogs and sending links to Kerry
blogs. We visited the blog urls and performed related web searches (Table 2). Many of the sites are now
defunct.

[1] labels quando.net as a Kerry blog. Upon closer inspection, this blog hosts a collection of conserva-
tive/libertarian bloggers. Perhaps their ambiguity is best illustrated with the following quote, “Face it - the
only thing Bush can brag about is his comparative conservative advantage over Kerry. And that’s akin to
saying a tornado is–comparatively–better at home improvement projects than a hurricane.”

Table S1. Of the 549 blogs that have at least three incoming edges and at least three outgoing edges, these
are the only six blogs whose receiving cluster (from.cluster) is different from their sending cluster (to.cluster).
The numbers to the right of the line are generated using the labels provided in the data set. These numbers
reveal that di-sim identifies the nodes with asymmetric relationships between the true blocks. Code available at
https://github.com/karlrohe/disim

blog url from.clust 2 to.clust from.dem from.gop to.dem to.gop

chepooka.com dem2gop 13 2 1 2

clarified.blogspot.com dem2gop 4 2 0 6

politics.feedster.com dem2gop 3 0 13 18

polstate.com dem2gop 31 7 3 2

shininglight.us dem2gop 2 2 4 7

qando.net gop2dem 5 57 14 10

Table S2. After accounting for the fact that the data set appears to mislabel quando.net as a liberal blog, all
asymmetric blogs link to blogs of the opposite political leaning.

blog url label in data set upon visit

chepooka.com liberal unclear, possibly defunct

clarified.blogspot.com liberal Kerry supporter

politics.feedster.com liberal defunct, evidence for Kerry supporter

polstate.com liberal defunct, old twitter feed self-identifies as “pan-partisian”

shininglight.us liberal defunct

qando.net liberal collection of conservative bloggers,

see http://www.qando.net/archives/2004_09.htm

B. C. elegans

Figure S1 plots the singular value of L. Section B.1 discusses the results for K = 7 clusters. Section B.2
discusses the results for K = 5 clusters. Section B.3 discusses the transformation of the edge weights.
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Fig. S1. The first five singular values are colored in red. The next two singular values are black. The rest are grey. There is an elbow after the last black singular value. The
analysis in the body of the paper presents results for K = 7 because of this elbow. This SI contains the analysis for K = 5 to match the analysis in [2]. Data and code
available at https://github.com/karlrohe/disim.

Results for K = 7 clusters.Figure S2 presents three partitions of the nodes. The first two partitions
correspond to the sending clusters (on left) and receiving clusters (on right) in di-sim.1 Because the k-means
step was run only once, the left and right clusters are comparable. So, the vertical orientation of the clusters
is informative because the ith sending cluster from the top sends several edges to the ith receiving cluster
from the top.

Each neuron has exactly one line that connects the node’s sending cluster to the node’s receiving cluster.1
Darker lines indicate that the neuron moves further between its left and right representations in the singular
vectors (as measured by asymmetry score). If there were no co-clustering structure, then all of the lines
would be horizontal. However, several lines traverse diagonally, connecting different clusters, and thus
indicating non-trivial co-clustering structure. To identify which neurons have a larger asymmetry score,
they are written in a slightly larger font in the sending and receiving clusters.

The final partition represented in Figure S2 is represented by the color of the text; this partition
corresponds to the communities or modules estimated in [2]. The sensory input to the Response Module
(orange) comes from the ventral side of the worm’s fan; this module plays an important role in helping the
worm physically align with another worm for reproduction. The response module feeds into the Locomotion
Module (pink). The locomotion module contains the body-wall motor neurons, helping the worm to move.
The R(1-5)A module (green) contains sensory neurons that “promote ventral curling of the tail during
mating”. The PVV Module (blue) is likely “involved in aspects of male posture during mating”. The
Insemination Module (yellow) contains neurons that “will take over the male’s behavior once the vulva is
sensed”. The interpretation of the clusters in [2] comes from that paper.

Figure S2 suggests that there is co-clustering structure beyond the standard one-way clustering. In
1

Some nodes are listed off to the right side of the receiving cluster. These are nodes that do not send any edges, thus they do not have a sending cluster. These nodes are largely motor neurons that
control muscles.

1
The lines in Figure S2 do not represent the edges in the graph.
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particular, PVV, PVX, PVY, and PVZ neurons are all in large bold font because they have large movement
scores. These findings are consistent with the discussion of feedforward circuits in [2]. In particular, Figure
6 in [2] illustrates how these neurons (PVV, PVX, PVY, and PVZ) send most of their edges to neurons in
separate clusters.

Results for K = 5 clusters.

1. The matrix M for K = 5 is given in Figure S4 below. This is the analogue of Figure 3 in the body of
the paper.

2. The table in Figure S5 gives the number of nodes with sending cluster u and receving cluster v in
element u, v. This is the analogue of the table in Figure 5 of the body of the paper. This table has a
feedback score of eight. Under the permutation test described in the paper, only 4.6% of the permuted
networks have a smaller feedback score.

3. Figure S6 gives the analogue of Figure S2 (which is also given below). Figure S2 gives the di-sim
partitions for K = 7. Figure S6 gives the di-sim partitions for K = 5.

Transformation of the edge weights.We investigated three possible transformations of the edge weights:
log, square root, and binary (i.e. edge / no edge, which leads to the unweighted graph). Figure S7 gives the
histogram of the (non-zero) edge weights and the weights after square root and log transformations.

The results for these three transformations were largely similar. For example, (1) using the novel edge
weight transformations to recompute everything up to the feed-forward score and then (2) performing the
permutation test that is described in the body of the paper, reveals that both the binary transformation and
the square root transformation create statistically significant feed-forward structures (p-values .03 and .002
respectively). However, the transformation is important; with no transformation, di-sim struggled to find
the hierarchical organization (p-value .15). Moreover, the specific cluster assignments show a dependence
on the choice of transformation.

C. Estimating the Stochastic co-Blockmodel with DI-SIM

Throughout, for x ∈ Rd, ‖x‖2 =
√∑d

i=1 x
2
i , for M ∈ Rd×p, ‖M‖ denotes the spectral norm and ‖M‖F

denotes the Frobenius norm.
Theorem C.1 bounds the number of nodes that di-sim “misclusters”. This demonstrates that the co-

clusters from di-sim estimate both the row- and column-block memberships, one in matrix Y and the other
in matrix Z, corresponding to the two types of stochastic equivalence. This implies that the two notions of
stochastic equivalence relate to the two sets of singular vectors of L.

Several previous papers have explored the use of spectral tools to aid the estimation of the Stochastic
Blockmodel, including [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]; and [15]. The results below build on this
previous literature in several ways. Theorem C.1 gives the first statistical estimation results for directed
graphs or bipartite graphs with general degree distributions. Because we study a graph that is directed,
di-sim uses the leading singular vectors of a sparse and asymmetric matrix. As such, the proof required
novel extensions of previous proof techniques. These techniques allow the results to also hold for bipartite
graphs; previous results for bipartite graphs have only studied computationally intractable techniques, e.g.
[16, 17]. For directed graphs and particularly for bipartite graphs, it is not necessarily true that the number
of sending clusters should equal the number of receiving clusters. Theorem C.1 below does not presume
that the number of sending clusters equals the number of receiving clusters; the theoretical results highlight
the statistical price that is paid when they are not equal. Finally, we study a sparse degree corrected model
and the theoretical results highlight the importance of the regularization and projection steps in di-sim.

Previous theoretical papers that use the non-regularized graph Laplacian all require that the minimum
degree grows with the number of nodes (e.g. [7, 12, 15]). However, in many empirical networks, most nodes
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have 1, 2, or 3 edges. In these settings, the non-regularized graph Laplacian often has highly localized
eigenvectors that are uninformative for estimating large partitions in the graph. Because di-sim uses a
regularized graph Laplacian, the concentration of the singular vectors does not require a growing minimum
node degree. Several previous papers have realized the benefits of regularizing the graph Laplacian (e.g.
[18, 19, 20, 9, 11, 10]). While the regularized singular vectors concentrate without a growing minimum
degree, the weakly connected nodes effect the conclusions through their statistical leverage scores. From
the perspective of numerical linear algebra, the leverage scores and the localization of the singular vectors
are essential to controlling the algorithmic difficulty of computing the singular vectors [21].

In a diverse set of large empirical networks, the optimal clusters, as judged by a wide variety of graph
cut objective functions, are not very large ([22]). To account for this, the results below limit the growth of
community sizes by allowing the number of communities to grow with the number of nodes. Previously,
[7, 23, 24], and [25] have also studied this high dimensional setting for the undirected Stochastic Blockmodel.

Population notation. Similar to the Stochastic Blockmodel, let B be a ky × kz matrix where Bab ≥ 0 for all
a, b. Under the DC-ScBM,

P (Aij = 1) = θyi θ
z
jByizj ,

where yi ∈ {1, . . . , ky} and zj ∈ {1, . . . , kz} indicate the sending and receiving block memberships of i and
j, respectively. The parameters θyi and θzj indicate the propensity of i and j to send and receive edges,
respective. To be well defined, θyi θzjByizj ∈ [0, 1]. Note that parameters θyi and θzj are arbitrary to within
a multiplicative constant that is absorbed into B. To make it identifiable, we impose the constraint that
within each row block, the summation of θyi s is 1. That is, for each row-block s,

∑
i θ
y
i 1(Yis = 1) = 1.

Similarly, for any column-block t, we impose
∑
j θ

z
j1(Zjt = 1) = 1. Under this constraint, B has explicit

meaning: Bst represents the expected number of links from row-block s to column-block t. Recall that
A = E(A) is the population version of the adjacency matrix A with

A = ΘyYBZTΘz.

Define the matrices
Ojj =

∑
k Akj

Pii =
∑
k Aik

Oτ = O + τI, Pτ = P + τI

L = O
− 1

2
τ A P

− 1
2

τ

[1]

where O and P are diagonal matrices. The population graph Laplacian L has an alternative expression in
terms of Y and Z.

Lemma C.1. (Explicit form for Lτ ) Under the DC-ScBM with parameters {B, Y, Z,ΘY ,ΘZ}, define
ΘY,τ ∈ RNr×Nr (ΘZ,τ ∈ RNc×Nc) to be diagonal matrix where

[ΘY,τ ]ii = θYi
Oii

Oii + τ
[ΘZ,τ ]jj = θZj

Pjj

Pjj + τ
.

Then L has the following form,

L = O
− 1

2
τ A P

− 1
2

τ = Θ
1
2
Y,τY BLZ

TΘ
1
2
Z,τ ,

for some matrix BL ∈ Rky×kz that is defined in the proof.

The proof of Lemma C.1 is in Section F.
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Definition of misclustered.Rigorous discussions of clustering require careful attention to identifiability. In
the ScBM, the order of the columns of Y and Z are unidentifiable. This leads to difficulty in defining
“misclustered”. Theorem C.1 uses the following definition of misclustered that is extended from [7].

By the singular value decomposition, there exist orthonormal matrices XL ∈ RNr×ky and XR ∈ RNc×ky

and diagonal matrix Λ ∈ Rky×ky such that

L = XLΛX T
R .

Define X ∗
L and X ∗

R as the row normalized population singular vectors,

[X ∗
L ]i = [XL]i

||[XL]i||2
, [X ∗

R ]j = [XR]j
||[XR]j ||2

.

Unless stated otherwise, we will presume without loss of generality that ky ≤ kz. If rank(B) = ky, then
there exist matrices µy ∈ Rky×ky and µz ∈ Rkz×ky such that Y µy = X ∗

L and Zµz = X ∗
R (implied by Lemma

F.1). Moreover, the rows of µy are distinct; with a slightly stronger assumption, the rows of µz are also
distinct. As such, k-means applied to the rows of X ∗

L will reveal the partition in Y . Similarly for µz, X ∗
R ,

and Z. As such, di-sim applied to the population Laplacian, L , can discover the block structure in the
matrices Y and Z.

Let XL ∈ RNr×ky be a matrix whose orthonormal columns are the right singular vectors corresponding
to the largest ky singular values of L. di-sim applies k-means (with ky clusters) to the rows of X∗L, denoted
as u1, . . . , uNr . Each row is assigned to one cluster and each cluster has a centroid.

Definition 1. For i = 1, . . . , Nr, define cLi ∈ Rky to be the centroid corresponding to ui after running
(1 + α)-approximate k-means on u1, . . . , uNr with ky clusters.

If cLi is closer to some population centroid other than its own, i.e. yjµy for some yj 6= yi, then we call
node i Y -misclustered. This definition must be slightly complicated by the fact that the coordinates in XL

must first align with the coordinates in XL. So, the definitions below include an additional rotation matrix
RL.

Definition 2. The set of nodes Y -misclustered is

My =
{
i : ‖cLi − yiµyRL‖2 > ‖cLi − yjµyRL‖2 for any yj 6= yi

}
, [2]

where RL is the orthonormal matrix that solves Wahba’s problem min ‖XL −XLRL‖F , i.e. it is the
procrustean transformation.

Defining Z-misclustered, requires defining cRi and µz analogous to the previous definitions.

Definition 3. The set of nodes Z-misclustered is

Mz =
{
i : ‖cRi − ziµzRR‖2 > ‖cRi − zjµzRR‖2 for any zj 6= zi

}
, [3]

where RR is the orthonormal matrix that solves Wahba’s problem min ‖XR − XRRR‖F , i.e. it is the
procrustean transformation.

Asymptotic performance.Define

H = (Y TΘY,τY )1/2BL(ZTΘZ,τZ)1/2.

H ∈ Rky×kz shares same top K singular values with the population graph Laplacian L . Define H·j as the
jth column of H, and define

γz = min
i 6=j
‖H·i −H·j‖2. [4]
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When kz > ky, γz controls the additional difficulty in estimating Z.
Define my as the minimum row length of XL. Similarly define mz as the minimum row length of XR.

That is,
my = min

i=1,..,Nr

||[XL]i||2, mz = min
j=1,..,Nc

||[XR]j ||2. [5]

These are the minimum leverage scores for the matrices L L T and L TL .
The next theorem bounds the sizes of the sets of misclustered nodes, |My| and |Mz|.

Theorem C.1. Suppose A ∈ RNr×Nc is an adjacency matrix sampled from the Degree-Corrected Stochastic
co-Blockmodel with ky left blocks and kx right blocks. Let K = min{ky, kz} = ky. Define L as in Equation
1. Define λ1 ≥ λ2 ≥ · · · ≥ λK > 0 as the K nonzero singular values of L . Let My and Mz be the sets
of Y - and Z-misclustered nodes (Equations 2 and 3) by DI-SIM. Let δ be the minimum expected row and
column degree of A, that is δ = min(mini Oii,minj Pjj). Define γz, my and mz as in Equations 4 and 5.
For any ε > 0, if δ + τ > 3 ln(Nr +Nc) + 3 ln(4/ε), then with probability at least 1− ε,

My

Nr
≤ c0(α)K ln(4(Nr +Nc)/ε)

Nrλ2
Km

2
y(δ + τ)

, [6]

Mz

Nc
≤ c1(α)K ln(4(Nr +Nc)/ε)

Ncλ2
Km

2
zγ

2
z (δ + τ)

. [7]

A proof of Theorem C.1 is broken into three parts. Section E shows that the singular vectors of L
converge to the singular vectors of L . Section F shows that di-sim applied to L perfectly recovers the
two partitions. Finally Section F uses the convergence of L to show that di-sim applied to L returns a
clustering that is similar to the clustering obtained from applying di-sim to L . The rest of this section and
the next section interpret the consequences of this Theorem.

Because ‖XL‖2F = K, the average leverage score ||[XL]i||2 is
√
K/Nr. If the my is of the same order,

with λK and K fixed, then My

Nr
goes to zero when δ + τ grows faster than ln(Nr +Nc). In sparse graphs, δ

is fixed and so τ must grow with n. To ensure that λK remains fixed while τ is growing, it is necessary for
the average degree to also grow.

In many empirical networks, the vast majority of nodes have very small degrees; this is a regime in which
δ is not growing. In such networks, the bounds in Equations Eq. (6) and Eq. (7) are vacuous unless τ > 0.
While these equations are upper bounds, the simulations in the appendix show that for sparse networks
(i.e. δ small), these bounds align with the performance of di-sim. Moreover, the performance of di-sim is
drastically improves with statistical regularization.

These results highlight the sensitivity to the smallest leverage scores my and mz. When there are
excessively small leverage scores, then the bound above can become meaningless. However, a slight
modification of di-sim that excludes the low leveraged points from the k-means step and the clustering
results, obtains a vastly improved bound. If one computes the leading singular vectors and only runs
k-means on the with the observations i that satisfy ||[XL]i||2 > η

√
K/N , then the theoretical results are

much improved. Denote the nodes misclustered by this procedure as M ∗
y . Let there be N∗ nodes with

||[XL]i||2 > η
√
K/N . If N/N∗ = O(1) and the population eigengap λK is not asymptotically diminishing,

then
M ∗

y

N∗
≤ c2(α) ln((Nr +Nc)/ε)

η2(δ + τ) .

The proof mimics the proof of Theorem C.1.
In Theorem C.1, the bound for Mz exceeds the bound for My because the bound for Mz contains an

additional term γz. This asymmetry stems from allowing kz ≥ ky. In fact, if ky = kz, then γz can be
removed, making the bounds identical. However, if kz > ky, then Rank(L ) is at most ky. So, the singular
value decomposition represents the data in ky dimensions and the k-means steps for both the left and the
right clusters are done in ky dimensions. In estimating Y , there is one dimension in the singular vector
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representation for each of the ky blocks. At the same time, the singular value representation shoehorns
the kz blocks in Z into less than kz dimensions. So, there is less space to separate each of the kz clusters,
obscuring the estimation of Z.

To further understand the bound in Theorem C.1, define the following toy model.

Definition 4. The four parameter ScBM is an ScBM parameterized by K ∈ N, s ∈ N, r ∈ (0, 1), and
p ∈ (0, 1) such that p + r ≤ 1. The matrices Y,Z ∈ {0, 1}n×K each contain s ones in each column and
B = pIK + r1K1TK .

In the four parameter ScBM, there are K left- and right-blocks each with s nodes and the node partitions
in Y and Z are not necessarily related. If yi = zj , then P (i→ j) = p+ r. Otherwise, P (i→ j) = r.

Corollary C.1. Assume the four parameter ScBM, with same number of rows and columns, and r, p fixed
and K growing with N = Ks. Since δ is growing with n, set τ = 0. Then,

λK = 1
K(r/p) + 1 ,

where λK is the Kth largest singular value of L . Moreover,

N−1(|My|+ |Mz|) = Op

(
K2 logN

N

)
.

The proportion of nodes that are misclustered converges to zero, as long as number of clusters K =
o(
√
N/ logN).

The proof of Corollary C.1 is contained in Section F.
These theoretical results are novel because they give the first statistical estimation results results for

directed graphs or bipartite graphs with general degree distributions. Moreover, because di-sim uses the
leading singular vectors of a sparse and asymmetric matrix, the proof required novel extensions of previous
proof techniques. These techniques extend the spectral results to bipartite graphs; previous results for
bipartite graphs have only studied computationally intractable techniques, e.g. [16, 17]. Another novelty
comes from the fact that the results do not presume that the number of sending clusters is equal to the
number of receiving clusters and the theoretical results highlight the difficulties presented when they are
not equal. Finally, because we study a sparse degree corrected model, the theoretical results highlight the
importance of the regularization and projection steps in di-sim; the concentration results do not depend
on the minimum node degree. Instead, the weakly connected nodes affect the conclusions through their
statistical leverage scores in the observed graph Laplacian. From the perspective of numerical linear algebra,
the leverage scores are essential to controlling the algorithmic difficulty of computing the singular vectors
[21].

D. Simulation

The theoretical results of Theorem C.1 identify (1) the expected node degree and (2) the spectral gap
as essential parameters that control the clustering performance of di-sim. The simulations investigate
di-sim’s non-asymptotic sensitivity to these quantities under the four parameter Stochastic Co-Blockmodel
(Definition 4). Moreover, the simulations investigate the performance under the model without degree
correction and with degree correction.

Both simulations use k = 5 blocks for both Y and Z. Each of the five blocks contains 400 nodes.
So, n = 2000. When the model is degree corrected, θ1, . . . , θn are iid with θi

d=
√
Z + .169 where Z ∼

exponential(1). The addition of .169 ensures that E(θi) ≈ 1 and thus the expected degrees are unchanged
between the degree corrected model and the model without degree correction.
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In the first simulation, the expected node degree is represented on the horizontal axis; the out of block
probability r and the in block probability p+ r change in a way that keeps the spectral gap of L fixed
across the horizontal axis. In the second simulation, the spectral gap is represented on the horizontal
axis; the probabilities p and r change so that the expected degree pk + rn remains fixed at twenty. In
both simulations, the partition matrices Y and Z are sampled independently and uniformly over the set of
matrices with s = 400 and k = 5.

To design the parameter settings of p and r, note that the population graph Laplacian L is a rank k
matrix. So, its k+ 1 eigenvalue is λk+1 = 0 and the spectral gap is λk − λk+1 = λk. Corollary C.1 says that
the kth eigenvalue of L for τ = 0 is

λk = 1
k(r/p) + 1 .

To keep the spectral gap λk fixed, it is equivalent to keeping r/p fixed.
We use the k-means++ algorithm ((author?) [26], (author?) [27]) with ten initializations. Only the

results for Y -misclustered (Definition 2) are reported. Code is provided at http://www.stat.wisc.edu/~karlrohe/.

Simulation 1. This simulation investigates the sensitivity of di-sim to a diminishing number of edges. Figure
S8 displays the simulation results for a sequence of nine equally spaced values of the expected degree
between 5 and 16. To decrease the variability of the plot, each simulation was run twenty times; only
the average is displayed. The solid line corresponds to setting the regularization parameter equal to zero
(τ = 0). The line with longer dashes represents τ = 1. The line with small dashes represents the average
degree, τ = 1

n

∑
i Pii.

Figure S8 demonstrates two things. First, the number of misclustered nodes increases as the expected
degree goes to zero. Second, regularization decreases the number of misclustered nodes for small values of
the expected degree.

Simulation 2.This simulation investigates the sensitivity of di-sim to a diminishing spectral gap λk. Figure
S8 displays the simulation results for a sequence of nine equally spaced values of the spectral gap, between
.3 and .6. In each simulation, the expected degree is held constant at twenty. To decrease the variability,
each simulation was run twenty times; only the average is displayed. The solid line corresponds to setting
the regularization parameter equal to zero (τ = 0). The line with longer dashes represents τ = 1. The line
with small dashes represents the average degree, τ = 1

n

∑
i Pii.

Figure S8 demonstrates two things. First, the number of misclustered nodes increases as the spectral gap
goes to zero. Second, regularization yields slight benefits when the spectral gap is small and the model is
degree corrected.

E. Convergence of Singular Vectors

The classical spectral clustering algorithm above can be divided into two steps: (1) find the eigendecom-
position of L and (2) run k-means. Several previous papers have studied the estimation performance of
the classical spectral clustering algorithm under a standard social network model. However, due to the
asymmetry of A, previous proof techniques can not be directly applied to study the singular vectors for
di-sim. In this analysis, we (a) symmetrize the graph Laplacian, (b) apply modern matrix concentration
techniques to this symmetrized version of the graph Laplacian, and (c) apply an updated version of the
Davis-Kahn theorem to bound the distance between the singular spaces of the empirical and population
Laplacian.

For simplicity, from now on let L denote the regularized graph Laplacian.
Define the symmetrized version of L and L as

L̃ =
(

0 L
LT 0

)
, L̃ =

(
0 L

L T 0

)
.

The next theorem gives a sharp bound between L̃ and L̃ .
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Theorem E.1. (Concentration of L) Let G be a random graph, with independent edges and pr(vi ∼ vj) = pij.
Let δ be the minimum expected row and column degree of G, that is δ = min(mini Oii,minj Pjj). For any
ε > 0, if δ + τ > 3 ln(Nr +Nc) + 3 ln(4/ε), then with probability at least 1− ε,

‖L̃− L̃ ‖ ≤ 4

√
3 ln(4(Nr +Nc)/ε)

δ + τ
. [8]

Proof. Let C = P
− 1

2
τ AO

− 1
2

τ and define C̃ in the same way as L̃. Then ‖L̃− L̃ ‖ ≤ ‖C̃ − L̃ ‖+ ‖L̃− C̃‖.
We bound the two terms separately.

For the first term, we apply the following concentration inequality for matrices, see for example (author?)
[28].

Lemma E.1. Let X1, X2, ..., Xm be independent random N ×N Hermitian matrices. Moreover, assume
that ‖Xi − E(Xi)‖ ≤M for all i, and v2 = ‖

∑
var(Xi)‖. Let X =

∑
Xi. Then for any a > 0,

pr(‖X − E(X)‖ ≥ a) ≤ 2N exp
(
− a2

2v2 + 2Ma/3

)
.

Let Eij be the matrix with 1 in the i, j and j, i positions and 0 everywhere else. Let pij = Aij . To use
this inequality, express C̃ − L̃ as the sum of the matrices Yi,m+j ,

Yi,m+j = 1√
(Oii + τ)(Pjj + τ)

(Aij − pij)Ei,m+j , i = 1, ...,m, j = 1, ..., n.

Note that
‖C̃ − L̃ ‖ = ‖

m∑
i=1

n∑
j=1

Yi,m+j‖,

and
‖Yi,m+j‖ ≤

1√
(Oii + τ)(Pjj + τ)

≤ (δ + τ)−1.

Moreover,

E[Yi,m+j ] = 0 and E[Y 2
i,m+j ] = 1

(Oii + τ)(Pjj + τ)(pij − p2
ij)(Eii + Em+j,m+j).

Then,

v2 = ‖
m∑
i=1

n∑
j=1

E[Y 2
i,m+j ]‖ = ‖

m∑
i=1

n∑
j=1

1
(Oii + τ)(Pjj + τ)(pij − p2

ij)(Eii + Em+j,m+j)‖

= ‖
m∑
i=1

[
n∑
j=1

1
(Oii + τ)(Pjj + τ)(pij − p2

ij)]Eii +
n∑
j=1

[
m∑
i=1

1
(Oii + τ)(Pjj + τ)(pij − p2

ij)]Em+j,m+j‖

= max
{

max
i=1,...,m

(
n∑
j=1

1
(Oii + τ)(Pjj + τ)(pij − p2

ij)), max
j=1,...,n

(
m∑
i=1

1
(Oii + τ)(Pjj + τ)(pij − p2

ij))
}

≤ max
{

max
i=1,...,m

1
δ + τ

n∑
j=1

pij
Oii + τ

, max
j=1,...,n

1
δ + τ

m∑
i=1

pij
Pjj + τ

}
= (δ + τ)−1.

Take

a =

√
3 ln(4(Nr +Nc)/ε)

δ + τ
.
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By assumption, δ + τ > 3 ln(Nr +Nc) + 3 ln(4/ε). So a < 1. Applying Lemma E.1,

pr(‖C̃ − L̃ ‖ ≥ a) ≤ 2(Nr +Nc) exp
(
−

3 ln(4(Nr+Nc)/ε)
δ+τ

2/(δ + τ) + 2a/[3(δ + τ)]

)
≤ 2N exp(−3 ln(4(Nr +Nc)/ε)

3 )

≤ ε/2.

For the second term ‖L̃− C̃‖, define

Dτ =
(
Oτ 0
0 Pτ

)
, Dτ =

(
Oτ 0
0 Pτ

)
, D = D0, and D = D0.

Apply the two sided concentration inequality for each i, 1 ≤ i ≤ Nr +Nc, (see for example (author?)
[29, chap. 2])

pr(|Dii −Dii| ≥ λ) ≤ exp{− λ2

2Dii
}+ exp{− λ2

2Dii + 2
3λ
}.

Let λ = a(Dii + τ), where a is as before.

pr

(
|Dii −Dii| ≥ a(Dii + τ)

)
≤ exp{−a

2(Dii + τ)2

2Dii
}+ exp{− a2(Dii + τ)2

2Dii + 2
3a(Dii + τ)

}

≤ 2 exp{− a2(Dii + τ)2

(2 + 2
3a)(Dii + τ)

}

≤ 2 exp{−a
2(Dii + τ)

3 }

≤ 2 exp{− ln(4(Nr +Nc)/ε)
(Dii + τ)
δ + τ

}

≤ 2 exp{− ln(4(Nr +Nc)/ε)}
≤ ε/2(Nr +Nc).

Because

‖D−
1
2

τ D
1
2
τ − I‖ = maxi

∣∣∣∣
√
Dii + τ

Dii + τ
− 1

∣∣∣∣ ≤ maxi∣∣∣∣Dii + τ

Dii + τ
− 1

∣∣∣∣,
It follows that

pr(‖D−
1
2

τ D
1
2
τ − I‖ ≥ a) ≤ pr(maxi

∣∣∣∣Dii + τ

Dii + τ
− 1

∣∣∣∣ ≥ a)

≤ pr(∪i{|(Dii + τ)− (Dii + τ)| ≥ a(Dii + τ)})
≤ ε/2.

Note that ‖L̃τ‖ ≤ 1. Therefore, with probability at least 1− ε/2,

‖L̃τ − C‖ = ‖D−
1
2

τ ÃD
− 1

2
τ −D

− 1
2

τ ÃD
− 1

2
τ ‖

= ‖L̃τ −D
− 1

2
τ D

1
2
τ L̃τD

1
2
τ D
− 1

2
τ ‖

= ‖(I −D
− 1

2
τ D

1
2
τ )L̃τD

1
2
τ D
− 1

2
τ + L̃τ (I −D

1
2
τ D
− 1

2
τ )‖

≤ ‖D−
1
2

τ D
1
2
τ − I‖‖D

− 1
2

τ D
1
2
τ ‖+ ‖D−

1
2

τ D
1
2
τ − I‖

≤ a2 + 2a.
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Combining the two parts yields
‖L̃τ − L̃τ‖ ≤ a2 + 3a ≤ 4a,

with probability at least 1− ε.

The next theorem bounds the difference between the empirical and population singular vectors in terms
of the Frobenius norm.

Theorem E.2. (Concentration of Singular Space) Let A be the adjacency matrix generated from the
DC-ScBM with parameters {B, Y, Z,ΘY ,ΘZ}. Let λ1 ≥ λ2 ≥ ... ≥ λK > 0 be the positive singular values of
Lτ .

Let XL(XR) and XL(XR) contain the top K left(right) singular vectors of Lτ and Lτ respectively. For
any ε > 0 and sufficiently large Nr and Nr, if δ > 3 ln(Nr +Nc) + 3 ln(4/ε), then with probability at least
1− ε

‖XL −XLRL‖F ≤ 8
√

6
λK

√
K ln(4(Nr +Nc)/ε)

δ + τ
[9]

and ‖XR −XRRR‖F ≤ 8
√

6
λK

√
K ln(4(Nr +Nc)/ε)

δ + τ
, [10]

for some orthogonal matrices RL,RR ∈ RK×K .

Proof. Define

X̃ = 1√
2

(
XL

XR

)
.

A simple calculation shows that X̃ ∈ R(Nr+Nc)×K contains the top K eigenvectors of L̃ corresponding to
its top K eigenvalues.

We apply an improved version of Davis Kahn theorem from [30]. By a slightly modified proof of Lemma
5.1 in (author?) [30], it can be shown that

‖X̃X̃T − X̃ X̃ T ‖F ≤
√

2K
λK
‖L̃τ − L̃τ‖.

Combining it with Theorem E.1 and its assumptions,

‖X̃X̃T − X̃ X̃ T ‖F ≤
4
√

6
λK

√
K ln(4(Nr +Nc)/ε)

δ + τ
,

with probability at lease 1− ε. By definition of X̃ and X̃,

‖X̃X̃T − X̃ X̃ T ‖F =
∥∥∥∥∥
(

1
2(XLX

T
L −XLX T

L ) 1
2(XLX

T
R −XLX T

R )
1
2(XRX

T
L −XRX T

L ) 1
2(XRX

T
R −XRXR)

)∥∥∥∥∥
F

≥ 1
2‖XLX

T
L −XLX T

L ‖F

≥ 1
2‖XL −XLRL‖F .

Similarly ‖X̃X̃T − X̃ X̃ T ‖F ≥ 1
2‖XR −XRRR‖F . This proves the above theorem.

F. Clustering

To rigorously discuss the asymptotic estimation properties of di-sim, the next subsections examine the
behavior of di-sim applied to a population version of the graph Laplacian L , and compare this to di-sim
applied to the observed graph Laplacian L.
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The population version of DI-SIM.This subsection shows that di-sim applied to L can perfectly identify
the blocks in the Stochastic co-Blockmodel. Recall di-sim applied to L.

1. Find the left singular vectors XL ∈ RNr×ky .

2. Normalize each row of XL to have unit length. Denote the normalized rows of XL as u1, . . . , uNr ∈ Rky

with and ‖ui‖2 = 1.

3. Run (1 + α)-approximate k-means on u1, . . . , uNr with ky clusters.

4. Repeat steps (a), (b), and (c) for the the right singular vectors XR ∈ RNc×ky with kz clusters.

k-means clusters points u1, . . . , un in Euclidean space by optimizing the following objective function
([31]),

min
{m1,...,mky}⊂Rky

∑
i

min
g
‖ui −mg‖22. [11]

Define the centroids as the arguments m∗1, . . . ,m∗ky
that optimize (11). Finding m∗1, . . . ,m∗ky

is NP-hard.
di-sim uses a linear time algorithm, (1 + α)-approximate k-means ((author?) [26]). That is, the algorithm
computes m̂1, . . . , m̂ky such that∑

i

min
g
‖ui − m̂g‖22 ≤ (1 + α)

∑
i

min
g
‖ui −m∗g‖22.

To study di-sim applied to L , Lemma C.1 gives an explicit form as a function of the parameters of the
DC-ScBM. Recall that A = E(A) and under the DC-ScBM,

A = ΘyYBZTΘz,

where Y ∈ {0, 1}Nr×ky , Z ∈ {0, 1}Nc×kz , and B ∈ [0, 1]ky×kz . Assume that ky ≤ kz, without loss of
generality. Moreover, recall that the regularized population versions of O, P , and L defined in Equation
Eq. (1).

The following proves Lemma C.1.

Proof. Define OB ∈ Rky×ky as a diagonal matrix whose (s, s)’th element is [OB]ss =
∑
tBst. Similarly

define PB ∈ Rkz×kz as a diagonal matrix whose (t, t)’th element is [PB]tt =
∑
sBst. A couple lines of algebra

shows that [OB]ss is the total expected out-degrees of row nodes from block s and that Oii = θYi [OB]yiyi .
Similarly [PB]tt is the total expected in-degrees of column nodes from block t and that Pjj = θZj [PB]zjzj .

Recall that Oii = θYi [PB]yiyi and Pjj = θZj [OB]zjzj . In addition,

[ΘY,τ ]ii = θYi
Oii

Oii + τ
and [ΘZ,τ ]jj = θZj

Pjj

Pjj + τ
.

The ij’th element of Lτ is

[L ]ij = Aij√
(Oii + τ)(Pjj + τ)

=
θYi θ

Z
j Byizj√

OiiPjj

√
Oii

Oii + τ

Pjj

Pjj + τ
=

Bzizj√
[PB]yi [OB]zj

√
[ΘY,τ ]ii[ΘZ,τ ]jj .

Hence,
L = Θ

1
2
Y,τZBLZ

TΘ
1
2
Z,τ ,

where BL is defined as
BL = O

−1/2
B BP

−1/2
B . [12]
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Recall that A = ΘY YBZTΘZ . Lemma C.1 demonstrates that L has a similarly simple form that
separates the block-related information (BL) and node specific information (ΘY and ΘZ).

Assume that rank(BL) = K, 0 < K = ky ≤ kz. Recall H = (Y TΘY,τY )
1
2BL(ZTΘZ,τZ)

1
2 . Singular value

decomposition of H gives
H = UΛV T .

where U ∈ Rky×K and V ∈ Rkz×K contain the left and right singular vectors of H corresponding to the
singular values of H (λ1 ≥ λ2 ≥ ... ≥ λK > 0) in the diagonal of Λ ∈ RK×K . The proof of the next lemma
shows that H and L share the same nonzero singular values.

The next lemma gives the explicit form of the left and right population singular vectors and further
shows that their normalized versions are block constant.

Theorem F.1. (Singular value decomposition for L ) Under the DC-ScBM with parameters {B, Y, Z,ΘY ,ΘZ},
Let XL ∈ RNr×K(XR ∈ RNc×K) contain the left/right singular vectors of Lτ . Define X ∗

L /X
∗
R to be the

row-normalized XL/XR. Then

1. XL = Θ
1
2
Y,τY (Y TΘY,τY )−

1
2U ,

2. XR = Θ
1
2
Z,τZ(ZTΘZ,τZ)−

1
2V .

3. X ∗
L = Y U , Yi 6= Yj ⇔ YiU 6= YjU .

4. X ∗
R = ZV ∗, where V ∗j = Vj/‖Vj‖2.

Proof. Recall that H = (Y TΘY,τY )
1
2BL(ZTΘZ,τZ)

1
2 and singular value decompositon of H gives H =

UΛV T .
Define XL = Θ

1
2
Y,τY (Y TΘY,τY )−

1
2U , and XR = Θ

1
2
Z,τZ(ZTΘZ,τZ)−

1
2V . It is easy to check that X T

L XL =
I and X T

R XR = I.
On the other hand,

XLΛX T
R = Θ

1
2
Y,τY BLZ

TΘ
1
2
Z,τ = L .

Hence, λs, s = 1, ..., r are Lτ ’s nonzero singular values and XL/XR contains Lτ ’s left/right singular vectors
corresponding to its nonzero singular values.

Let X i
L denote the i’th row of XL. For part (c), notice that

‖X i
L‖2 = ( [ΘY,τ ]ii

[Y TΘY,τY ]yiyi

)
1
2 .

So,

[X ∗
L ]i = X i

L

‖X i
L‖2

= YiU.

Therefore, X ∗
L = Y U . For (d), notice that

‖X j
R‖2 = (

[ΘZ,τ ]jj‖VZj‖2

[ZTΘZ,τZ]zjzj

)
1
2 .

Hence,

[X ∗
R ]j = X j

R

‖X j
R‖2

= ZjV
∗.
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Comparing the population and observed clusters.The first part of the section proves the bound of
misclustering rate for row nodes.

Clustering for Y .

Proof. Recall that the set of misclustered row nodes is defined as:

My =
{
i : ‖cLi − yiµyRL‖2 > ‖cLi − yjµyRL‖2 for any yj 6= yi

}
.

Let Ci denote yiµy. Note that Theorem F.1 implies that the population centroid corresponding to the i’th
row of X ∗

L is
Ci = yiµ

y = yiU.

Since all population centroids are of unit length and are orthogonal to each other, a simple calculation gives
a sufficient condition for one observed centroid to be closest to the population centroid:

‖cLi RT
L − CLi ‖2 < 1/

√
2⇒ ‖cLi RT

L − CLi ‖2 < ‖cLi RT
L − CLj ‖2, ∀j 6= i.

Define the following set of nodes that do not satisfy the sufficient condition,

By = {i : ‖cLi RT
L − CLi ‖2 ≥ 1/

√
2}.

The mis-clustered nodes My ⊂ By.
Define CL ∈ RNr×K , where the i’th row of CL is cLi , the observed centroid of node i from the (1 + α)-

approximate k-means. Define ML ∈ RNr×K to be the global solution of k-means. By definition,

‖X∗L − CL‖F ≤ (1 + α)‖X∗L −ML‖F ≤ (1 + α)‖X∗L −X ∗
LRL‖F .

Further, by the triangle inequality,

‖CL − Y URL‖F = ‖CL −X ∗
LRL‖F ≤ ‖X∗L − CL‖F + ‖X∗L −X ∗

LRL‖F ≤ (2 + α)‖X∗L −X ∗
LRL‖F .

Thus,
|My|
Nr

≤ |By|
Nr

= 1
Nr

∑
i∈By

1

≤ 2
Nr

∑
i∈By

‖cLi RT
L − CLi ‖22

= 2
Nr
‖CL − Y URL‖2F

≤ 2(2 + α)2

Nr
‖X∗L −X ∗

LRL‖2F

≤ 8(2 + α)2

Nrm2
y

‖XL −XLRL‖2F .

The last inequality is due to the following fact.

Lemma F.1. For two non-zero vectors v1, v2 of the same dimension, we have

‖ v1
‖v1‖2

− v2
‖v2‖2

‖2 ≤ 2 ‖v1 − v2‖2
max(‖v1‖2, ‖v2‖2) .

By Theorem E.2, we have, with probability at least 1− ε,
|My|
Nr

≤ c0(α)K ln(4(Nr +Nc)/ε)
Nrλ2

Km
2
y(δ + τ)

.

The second part proves the bound of the misclustering rate for column nodes.
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Clustering for Z.Because ky ≤ kz, it is slightly more challenging to bound Mz.

Proof. Recall that H = (Y TΘY,τY )
1
2BL(ZTΘZ,τZ)

1
2 and H = UΛV T . Left multiply by Λ−1UT , we have

V = HTUΛ−1.

Hence
‖Vi − Vj‖2 ≥

1
λ1
‖H·iU −H·jU‖2 ≥ ‖H·i −H·j‖2.

The second inequality is due to the facts that λ1 ≤ 1 and U is an orthogonal matrix. Recall that

γz = min
i 6=j
‖H·i −H·j‖2 + (1− κ),

where κ = maxi,j ‖Vi‖2/‖Vj‖2. We have that, ∀i 6= j,

‖V ∗i − V ∗j ‖2 ≥ γz.

This is because

‖V ∗i − V ∗j ‖2 = ‖Vi − Vj
‖Vj‖2

+ Vi(
1
‖Vi‖2

− 1
‖Vj‖2

)‖2

≥ ‖Vi − Vj‖2 + 1− ‖Vi‖2
‖Vj‖2

≥ ‖H·i −H·j‖2 + (1− κ)
≥ γz.

Recall that the set of misclustered row nodes is defined as:

Mz =
{
i : ‖cRi − ziµzRR‖2 > ‖cRi − zjµzRR‖2 for any zj 6= zi

}
.

Let CRi denote ziµz. Note that Theorem F.1 implies that the population centroid corresponding to the i’th
row of X ∗

R is
CRi = ziµ

z = ZiV
∗.

Define the following set of column nodes,

Bz = {i : ‖cRi RT
R − CRi ‖2 ≥ γz/2}.

It is straightforward to show that Mz ∈ Bz.
Define CR ∈ RNc×K , where the i’th row of M is cRi , the observed centroid of column node i from

(1 + α)-approximate k-means. Define MR ∈ RNr×K to be the global solution of k-means. By definition, we
have

‖X∗R − CR‖F ≤ (1 + α)‖X∗R −MR‖F ≤ (1 + α)‖X∗R −X ∗
RRR‖F .

Further, by the triangle inequality,

‖CR − ZV ∗RR‖F = ‖CR −X ∗
RRR‖F ≤ ‖X∗R − CR‖F + ‖X∗R −X ∗

RRR‖F ≤ (2 + α)‖X∗R −X ∗
RRR‖F .
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Putting all of these pieces together,

|Mz|
Nc

≤ |Bz|
Nc

= 1
Nc

∑
i∈Bz

1

≤ 4
Ncγ2

z

∑
i∈By

‖cRi RR
L − CRi ‖22

= 4
Ncγ2

z

‖CR − ZV ∗RR‖2F

≤ 4(2 + α)2

Ncγ2
z

‖X∗R −X ∗
RRR‖2F

≤ 16(2 + α)2

Ncγ2
zm

2
z

‖XR −XRRR‖2F .

By Theorem E.2, we have with probability at least 1− ε,

|Mz|
Nc

≤ c1(α)K ln(4(Nr +Nc))/ε)
Nrλ2

Km
2
zγ

2
z (δ + τ)

.

The following is a proof of Corollary C.1.

Proof. Under the four parameter ScBM, presume that θi = 1/s for all i. From the proof of Theorem F.1,
L has the same singular values as

H = (Y TΘY,τ=0Y )
1
2BL(ZTΘZ,τ=0Z)

1
2 = BL = O

− 1
2

B BP
− 1

2
B = 1

s2(Kr + p)(s2pIK + s2r1K1TK).

By inspection, the constant vector is an eigenvector of this matrix. It has eigenvalue

λ1 = p+Kr

Kr + p
= 1.

Any vector orthogonal to a constant vector is also an eigenvector. These eigenvectors have eigenvalue

λk = p

Kr + p
= 1
K(r/p) + 1 .

The result follows from using m2
y = K/n (see discussion after Theorem C.1) and δ ∝ N .
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Fig. S2. Results for K = 7. Cluster 1 in Figure S3 corresponds to the bottom cluster in this figure, cluster 2 corresponds to the next cluster up, and so on. Data and code
available at https://github.com/karlrohe/disim.
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Fig. S6. This is the analogue of Figure S2, but for K = 5. Cluster 1 in Figure S4 corresponds to the bottom cluster in this figure, cluster 2 corresponds to the next cluster up,
and so on. Data and code available at https://github.com/karlrohe/disim.
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Fig. S7. These three histograms display the nonzero edge weights. In the left panel, there is no transformation. In the center panel, the weights have been transformed with
a square root. In the right panel, each edge weight w ∈ R is transformed to be log(w + 1). Data and code available at https://github.com/karlrohe/disim.
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Fig. S8. In the simulation on the left, the data comes from the four parameter Stochastic Co-Blockmodel. On the right, the data comes from the same model, but with degree
correction. The θi parameters have expectation one. In both models, k = 5 and s = 400. The probabilities p and r vary such that p = 5r, keeping the spectral gap
fixed at λk = 1/2. This simulation shows that for small expected degree, regularization decreases the proportion of nodes that are misclustered. Moreover, the benefits of
regularization are more pronounced under the degree corrected model.
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Fig. S9. In the simulation on the left, the data comes from the four parameter Stochastic Co-Blockmodel. On the right, the data comes from the same model, but with degree
correction. The θi parameters have expectation one. In both models, k = 5 and s = 400. The spectral gap, displayed on the horizontal axis, changes because the
probabilities p and r change. The values of p and r vary in a way that keeps the expected degree fixed at twenty for all simulations. Without degree correction, the three
separate lines are difficult to distinguish because they are nearly identical. Under the degree corrected model, regularization improves performance when the spectral gap is
small.
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