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In this supplement we construct an analytical framework for determining the outcome of infinitely

iterated games played between two players using arbitrary memory-1 strategies in an arbitrary,

finite action space. The organization of the supplement is as follows: In section 1 we generalize

the results of Press & Dyson 2012 [1], which were constructed for memory-1 stategies in iterated

two-player games under a two-choice action space, to the case of an arbitrary (but finite) action

space. We show that, just as in the two-choice case, a player with memory-1 can unilaterally

choose her strategy in such a way as to constrain the payoffs received by both players and, in

particular, she can enforce a linear relationship via a zero-determinant (ZD) strategy. We also

show that the result of Press & Dyson 2012 [1] on memory capacity – that a memory-1 strategy

that is robust against all other memory-1 strategies is also robust against all memory-m strategies

– holds in the case of arbitrary action spaces as well. In section 2 we construct a coordinate system

for arbitrary memory-1 strategies, which allows us to determine whether a resident strategy in an

evolving population of players is robust to invasion by a mutant. These results are a generalization

of [2, 3] to arbitrary (finite) action spaces, and to games with discounting rate δ. In section 3 we

apply these results to the case of a multi-choice public goods game played in an evolving population,

and we determine the conditions under which a two-choice strategy with access only to investment

levels C1 and C2 > C1 can resist invasion by any mutant with access to an arbitrary investment

level C. Finally in section 4 we consider the case of a game with a non-transitive payoff structure,
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such as the rock-paper-scissors game, and determine to what extent access to memory in a repeated

game can guard against loss of behavioral diversity in an evolving population.

1 Infinitely Iterated Multi-choice Games

In this section, we generalize the results of [1] to a game with an arbitrary number d of pure

strategies, which we refer to as different “choices”. We show that, in a game between two players,

each using a d-choice memory-1 strategy, either player can unilaterally choose her strategy in such a

way as to constrain the payoffs received by both players, in precisely analogy to the results of [1] for

the case d = 2. This provides a formula for the construction of zero-determinant (ZD) strategies,

which enforce a linear relationship between both players average payoffs.

We start by repeating Press & Dyson’s argument for relating the longterm payoffs for each player

in the repeated game to a determinant. The essential fact for their argument is that 1 is a simple

(left) eigenvalue for an n × n Markov transition matrix M . Recall that, for square matrices, the

left and right eigenvalues are the same and have equal multiplicities (this is easily seen by observing

that the characteristic equations for MT and M are equal: det(λI −MT ) = det(λI −M)).

Now, 1 is always a left eigenvalue of any transition matrix – because the rows must sum to

1, the vector 1 with all entries equal to 1 is a right eigenvector for the eigenvalue 1. The only

constraint to generalizing the result of [1] to more than two choices is that 1 must continue to be

a simple eigenvalue i.e. up-to-scalar multiples, the (left) eigenvector v such that vTM = vT must

be unique (for the sake of concreteness, we will normalize v so that its entries sum to 1). This is

a consequence of the Perron-Frobenius Theorem, which says that if M is a non-negative (i.e. all

entries are non-negative), irreducible matrix, then the spectral radius of the matrix (here equal to

1) is a simple eigenvalue. We recall a matrix A is reducible if there exists a permutation matrix

P such that PAP T is block upper triangular, and is irreducible otherwise. A more revealing

equivalent expression for irreducibility is that there exists k such that (Ak)ij > 0 for all i, j, i.e. the

Markov chain has a positive probability of getting from state i to state j in finite time. A two-

player game is not necessarily irreducible, e.g. the game in which one of the players always plays

the same choice they played in the previous round, and the eigenvector v need not be unique (in

2



the aforementioned example, there are as many distinct eigenvectors as there are choices, in which

that player always makes the same choice). As this example highlights, since all entries of M are

non-negative, it can only be reducible if at least one entry is 0, which given their product form,

means that for one possible outcome of the previous round, at least one of the players will never

make one of the choices available to them. Thus at least one of the players’ strategies lies in the

(lower-dimensional) boundary of the set of available strategies. In particular, in the presence of

white noise, the probability of lying in this set of strategies is zero. Such noise occurs naturally if

we assume that players execute their play with some error rate (see also [3]).

Now, suppose that v is the unique left eigenvector of M corresponding to the eigenvalue 1 and

set M ′ := M − I. Then v is the unique vector such that vTM ′ = 0, so 0 is an eigenvalue of M ′.

Thus, det(M ′) = 0, and Cramer’s rule tells us that

Adj(M ′)TM ′ = det(M ′)I = 0,

from which we conclude that every column of Adj(M ′) is a left eigenvector for the eigenvalue 0,

and thus must be a scalar multiple of v.

Recall that, given an n × n matrix A, the classical adjoint of A, Adj(A) is the matrix with

entries equal to the cofactors of A:

Adj(A)ij = (−1)i+j det(A(i|j)),

where A(i|j) is the n− 1×n− 1 matrix obtained by deleting the ith row and jth column of A. We

also recall Laplace’s cofactor expansion for the determinant: for any choice of row i or column j,

we have

det(A) =

n∑
j=1

(−1)i+j det(A(i|j))aij =

n∑
i=1

(−1)i+j det(A(i|j))aij .

Now, in [1], the authors observe that if f is any column vector in Rn and (A|f) is the matrix
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obtained by replacing the nth column of A with f , then

det((A|f)) =
n∑
i=1

(−1)i+n det((A|f)(i|n))(A|f)in =
n∑
i=1

(−1)i+n det(A(i|n))fi =
n∑
i=1

Adj(A)infi

(n.b. (A|f)(i|n) is obtained by deleting the nth column of (A|f), and thus is equal to A(i|n),

whereas (A|f)in = fi by construction). Now, the rightmost expression is the dot product of the

nth column of Adj(A) with f . Now, as we have already observed, the nth column of Adj(M ′) is

αv, for some non-zero α, so

det((M ′|f)) = αv · f

for arbitrary f . In particular, recalling that all entries of v sum to 1, we have

det((M ′|1)) = αv · 1 = α

and thus

det((M ′|f))

det((M ′|1))
= v · f . (1)

Next, recall that det(A) is an alternating multilinear function of the columns of A, so for arbitrary

m, vectors f1, · · · ,fm ∈ Rn, and scalars α1, . . . , αm

det

((
A

∣∣∣∣∣
m∑
k=1

αkfk

))
=

m∑
k=1

αk det((A|fk)),

and thus,

det ((M ′|
∑m

k=1 αkfk))

det((M ′|1))
=

m∑
k=1

αk(v · fk).

Press & Dyson then observe that player 1’s payoff is S12 := v ·R1 and player 2’s payoff is S21 :=

v·R2, where Ri is the vector of payoffs received by player i and v is the vector giving the equilibrium

rate of different plays in an infinitely iterated game. If there are 2 players, then

det ((M ′|α1R1 + α2R2 + α31))

det((M ′|1))
= α1S12 + α2S21 + α3.
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Now, to enforce relation

α1S12 + α2S21 + α3 = 0,

Press & Dyson use the alternating property of the determinant, namely that if any two columns

are equal (or more generally, if there exists a subset of columns such that some linear combination

of those columns is equal to one of the remaining columns) then the determinant is 0.

Thus, to generalize the result of [1] to d > 2 actions, we need only verify that each of the two

players can independently force the equality of at least two columns.

The first step in doing this to recal that for any matrix A, det(A) is left unchanged by replacing

any row or column by itself plus a linear combination of the other rows or columns, respectively.

Thus, if by such operations, we can transform (M ′|f) to a matrix ˜(M ′|f) with one column that

only depends on player i’s strategy, say p, then player i can enforce the linear relation (and, since

i is arbitrary, so can any other player) by setting a column that they control equal to

α1R1 + α2R2 + α31.

In what follows, we show that in the case of d choices, which we label 1, . . . , d, the transition

matrix M is such that for an arbitrary vector f ∈ Rn (here, n = d2) (M ′|f) has d − 1 columns

that are completely determined by player 1 and d− 1 columns that are controlled by player 2.

We order the possible outcomes of play by the d-ary ordering. That is to say, we denote the

event where player 1 plays choice j and player 2 strategy k by jk, and order these events such that

jk is the d(j−1) +kth possible outcome. Throughout this section, we will use d = 3 as an example

to clarify the discussion; in this case, we have possible plays

11, 12, 13, 21, 22, 23, 31, 32, 33

Let pijk and qikj (i = 1, . . . , d, j = 1, . . . , d, k = 1, . . . , d) denote the probabilities that player 1

and player 2, respectively, use choice i, given that in the previous round player 1 used choice j and
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player 2 used choice k, so for all pairs j, k we have

d∑
i=1

pijk = 1 and
d∑
i=1

qijk = 1.

With this notation, the transition matrix M has entries

mjk,il = pijkq
l
kj ,

which, for d = 3 gives us

M =



p111q
1
11 p111q

2
11 p111(1− q111 − q211) · · ·

p112q
1
21 p112q

2
21 p112(1− q121 − q221) · · ·

p113q
1
31 p113q

2
31 p113(1− q131 − q231) · · ·

p121q
1
12 p121q

2
12 p121(1− q112 − q212) · · ·

...
...

...

p133q
1
33 p133q

2
33 p133(1− q133 − q233) · · ·


Next, M ′ has entry m′i,j = mi,j − εi,j , where εi,j is 1 if i = j and 0 otherwise. Again, for d = 3,

this gives

M ′ =



p111q
1
11 − 1 p111q

2
11 p111(1− q111 − q211) · · ·

p112q
1
21 p112q

2
21 − 1 p112(1− q121 − q221) · · ·

p113q
1
31 p113q

2
31 p113(1− q131 − q231)− 1 · · ·

p121q
1
12 p121q

2
12 p121(1− q112 − q212) · · ·

...
...

...

p133q
1
33 p133q

2
33 p133(1− q133 − q233) · · ·


Finally, the row corresponding to the plays jk of (M ′|f) has entries

p1jkq
1
kj , . . . , p

1
jkq

d
kj , p

2
jkq

1
kj , . . . , p

j
jkq

k
kj − 1, . . . , pdjkq

1
kj , . . . , p

d
jkq

d−1
kj , fjk,
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and continuing to illustrate this with d = 3, we have

(M ′|f) =



p111q
1
11 − 1 p111q

2
11 p111(1− q111 − q211) · · · , f11

p112q
1
21 p112q

2
21 − 1 p112(1− q121 − q221) · · · , f12

p113q
1
31 p113q

2
31 p113(1− q131 − q231)− 1 · · · , f13

p121q
1
12 p121q

2
12 p121(1− q112 − q212) · · · , f21

...
...

...

p133q
1
33 p133q

2
33 p133(1− q133 − q233) · · · , f33


Thus, the sum of the first d entries of the jkth row of (M ′|f) is

d∑
l=1

p1jkq
l
kj − εkj,1l =


p1jk − 1 if j = 1

p1jk otherwise

Similarly for the second d entries, and so on. Thus, if for each a = 1, . . . , d− 1, we replace the adth

column by the sum of columns (a − 1)d, (a − 1)d + 1, . . . , (a − 1)d + d − 1, a transformation that

leaves det((M ′|f)) unchanged, the resulting matrix has a adth column with jkth entry


pajk − 1 if j = a

pajk otherwise

i.e. the adth column depends only on player 1, and player 1 controls d − 1 columns. Proceeding

similarly, we see that player 2 also controls exactly d− 1 columns.

To see this concretely, for d = 3, if we replace the third column of (M ′|f) by the third column
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plus the first and the second (which preserves the determinant), we get

˜(M ′|f) =



p111q
1
11 − 1 p111q

2
11 p111 − 1 · · · , f11

p112q
1
21 p112q

2
21 − 1 p112 − 1 · · · , f12

p113q
1
31 p113q

2
31 p113 − 1 · · · , f13

p121q
1
12 p121q

2
12 p121 · · · , f21

...
...

...

p133q
1
33 p133q

2
33 p133 · · · , f33


(2)

Thus, player 1 controls the third column of ˜(M ′|f) with their probabilities of playing choice 1.

Similarly replacing column 6 with the sum of columns 4, 5, and 6, we get a new column 6 with

entries

p211, p
2
12, p

2
13, p

2
21 − 1, p222 − 1, p223 − 1, p231, p

2
32, p

2
33

to conclude that player 1 controls 2 columns.

1.1 Memory in multi-choice games

In this section we repeat the argument of Appendix A of [1], which tells us that if player 1 has

memory m1 and player 2 has memory m2 > m1, then for any strategy played by player 2, there is

a memory m1 strategy that will yield the same expected payoff. Thus, in an evolving population,

if player 1 can resist invasion against all invaders with memory m1 she can also resist invasion

against all invaders of memory m2 > m1, and in particular strategies with memory-1 that are

robust against all other memory-1 strategies are also robust against all longer-memory strategies.

This argument should be qualified by clarifying that the expected payoff refers to expectation

with respect to all possible histories (as opposed to, say, expectation conditional on a given history

of play). Let Hn denote the history of plays up until the nth round, and let S1(n), S2(n) denote

the strategy played by player 1 and 2 respectively in the nth round. S1(n) and S2(n) are non-

anticipating random variables, so that S1(n+ 1) and S2(n+ 1) are independent conditional on the

prior history of play Hn.
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That player i has memory mi is the statement that

E[Si(n)|Hn] = E [Si(n)|(S1(n− 1), S2(n− 1)), . . . , (S1(n−mi), S2(n−mi))] ,

where E denotes the expectation with respect to the joint probability distribution for the pair of

random variables S1(n), S2(n) (here we are marginalizing over the second player). We note that

this is an identity, depending only on the memory of the players, and is independent of the further

specifics of the underlying joint probability distribution.

Now, let S̃2 be a random variable such that

P
(
S̃2(n) = s

∣∣∣(S1(n− 1), S2(n− 1)), . . . , (S1(n−m1), S2(n−m1))
)

= E [P (S2(n) = s|(S1(n− 1), S2(n− 1)), . . . , (S1(n−m2), S2(n−m2)))] ,

where the expectation is over the outcomes of the plays (S1(n − m1), S2(n − m1)), . . . , (S1(n −

m2), S2(n−m2)) i.e.we are defining a new probability distribution by marginalising over all history

longer than the shorter memory of player 1. Then S̃2 is a memory m1 strategy and it is shown

in [1] that player 1 has the same payoff playing against the new player S̃2 as against the original

opponent playing S2. Since the definition of equilibrium in an evolving population depends only

on the expected payoff, this tells us that we may equally well determine whether the strategy of

player 1 is an equilibrium by considering the payoff off the modified strategy S̃2 playing against the

shorter memory player 1.

2 Coordinate system for memory-1 strategies in multi-choice games

In this section we construct a coordinate system for memory-1 strategies under a d-choice action

space. The advantage of the coordinate system we construct is that it allows us to write the

longterm average payoffs received by the two players in a simple relationship, which can in turn

be used to determine whether a particular resident strategy in an evolving population can resist

invasion, and thus be “evolutionary robust” [2, 3]. We present our results for repeated games with

9



discounting factor δ, which can be understood as meaning either that the game is repeated after

each round with probability δ, or that the game is assuredly repeated but the payoff received in

each round is reduced by a factor δ [4, 5]. Regardless of the interpretation of δ the results are the

same. We first define the coordinate system, and we then use it to determine a simple relationship

between two players’ expected scores. Finally we explicitly write down the relationship between the

new coordinate system and the more standard coordinate system in which strategies are expressed

as probabilities pijk (probability of playing action i given that the focal player played j and her

opponent played k in the preceding round).

Consider a d-choice, two-player game with strategy (p1,p2, . . .,pd) where each pi is a vector

of d2 probabilities, each corresponding to the probability that a player makes choice i in the next

round given the outcome of the preceding round. In addition we must also specify the play in

the first round, which we denote p0i , i.e. the probability that a player makes choice i at time 0.

Each vector pi is composed of d2 coordinates pijk. These coordinates specify a point in “strategy

space” i. Each action i thus has it’s own “strategy space”, however, by definition, any realizable

strategy must satisfy
∑

i p
i
jk = 1,∀j, k ∈ D, where D is the set of possible choices in the game.

Each strategy space is thus composed of d2 basis vectors eijk, with each direction corresponding

to a different outcome jk of the preceding round. We wish to construct an alternate coordinate

system for this strategy space. In order to do so we must choose a new set of d2 vectors that form

a basis Rd2 . We make our choice as follows: in directions that correspond to both players behaving

the same way in the previous round (i.e. j = k) we retain the old coordinates. In directions that

correspond to players making different choices in the preceding round, we choose a new pair of

orthogonal vectors in directions eijk + eikj and eijk − eikj . This provides us with an alternate basis

for each strategy space i. Under this new coordinate system a strategy vector pi for playing choice

i is written as

pi =
∑
k

eiik −
∑
j

[
Λ+
jje

i
jj +

∑
k>j

Λ+
jk(e

i
jk + eikj) + Λ−jk(e

i
jk − eikj)

]
. (3)

Writing a strategy in this way, Eqs. 1 and 2 tell us that the following equality must hold
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d∑
i=1

Λ+
iivii +

d∑
j=i+1

Λ+
ij(vij + vji) + Λ−ij(vij − vji)

 = 0

where vij is the equilibrium rate of the play ij, with the focal player’s move is listed first. It is Eq.3

that we will use to derive our relationship between two player’s average payoffs.

2.1 The average payoff received by the two players

In this section we derive a relationship between the average payoffs received by two players X and

Y , given that player X uses strategy pi when choosing to play action i, which we write in terms of

the alternate coordinate system defined in the preceding section. Similarly, we assume that player

Y uses strategy qi when choosing to play action i. Let the expected payoff to a focal player X and

her opponent Y be Sxy and Syx respectively (we adopt the convention that, when referring to an

evolving population, we use player labels X and Y rather than 1 and 2 as in the previous section).

Furthermore let the probability that the play jk occurs in round t of the repeated game be vtjk.

In an iterated game the probability of play ij in round t+ 1 is given by

vt+1
ij =

∑
k

∑
l

vtklp
i
klq

j
lk

where pikl is the probability that the focal play plays i given that she played k and her opponent

played l in the preceding round and qjlk is the equivalent quantity for her opponent. We must also

specify an initial condition, which is the probability the each pair of plays jk in the first round,

v0jk. This probability is given by simply v0jk = p0jq
0
k where p0j is the probability that the focal player

makes choice j in the first round and q0k is the probability that her opponent makes choice k. Using

our assumed coordinate transform for p, Eq. 3, we recover

vt+1
ij = −

∑
k

(
Λ+
kkv

t
kkq

j
kk +

∑
l>k

Λ+
kl(v

t
klq

j
lk + vtlkq

j
kl) + Λ−kl(v

t
klq

j
lk − v

t
lkq

j
kl)

)
+
∑
l

vtilq
j
li
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We can now sum over j, the choice made by player Y, to give

∑
j

(vt+1
ij − v

t
ij) = −

∑
k

(
Λ+
kkv

t
kk +

∑
l>k

Λ+
kl(v

t
kl + vtlk) + Λ−kl(v

t
kl − vtlk)

)
.

If we now sum over t, from the first round up to round τ we get

∑
j

(vτij − v0ij) = −
τ∑
t=0

∑
k

(
Λ+
kkv

t
kk +

∑
l>k

Λ+
kl(v

t
kl + vtlk) + Λ−kl(v

t
kl − vtlk)

)
(4)

Here we note that ∑
j

v0ij = p0i

where p0i is the probability of using i as the initial play for player X. Equation 4 now allows us to

calculate the expected payoffs to both players as a function of their strategy. Assuming a rate of

discounting δ, and summing over all rounds from t = 0 to infinity, we can now write

∑
j

∞∑
t=0

δt(1− δ)vtij − p0i = −δ
∞∑
t=0

δt
∑
k

(
Λ+
kkv

t
kk +

∑
l>k

Λ+
kl(v

t
kl + vtlk) + Λ−kl(v

t
kl − vtlk)

)
(5)

Now note that, with discounting, the sum of the two players scores are given by

Sxy + Syx = (1− δ)
d∑
i=1

∞∑
t

δt

2Riiv
t
ii +

d∑
j=i+1

(Rij +Rji)(v
t
ij + vtji)



and the difference between the two player’s scores by
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Sxy − Syx = (1− δ)
d∑
i=1

d∑
j=i

∞∑
t

δt(Rij −Rji)(vtij − vtji)

This suggests the following strategy for choice i:

Λ+
ii = (φ− χ)Rii − (φ− χ)κ+ λiii −

1− δ
δ

Λ−ii = 0

Λ+
ij =

φ− χ
2

(Rij +Rji)− (φ− χ)κ+ (λiij + λiji)/2−
1− δ

2δ

Λ−ij = −φ+ χ

2
(Rij −Rji) + (λiij − λiji)/2−

1− δ
2δ

Λ+
kl =

φ− χ
2

(Rkl +Rkl)− (φ− χ)κ+ (λikl + λilk)/2

Λ−kl = −φ+ χ

2
(Rkl −Rkl) + (λikl − λilk)/2

(6)

for all terms j, k 6= i. Replacing this in Eq. 5 now leaves us with

φiSyx − χiSxy − (φi − χi)κi +
d∑

k=1

d∑
l=1

λikl
∑
t

(1− δ)δtvtkl −
1− δ
δ

p0i = 0 (7)

Of course there are d − 1 such equations for each choice i (rather than d equations, due to the

constraint that the probability of playing any possible action must sum to 1), and any linear

combination of these d− 1 equation must also hold. Notice that we now have three extraneous Λ

parameters. In general it is convenient to choose λ11 = λdd = 0 and λ1d = λd1, however other, more

convenient choices might be made depending on the payoff structure of the game being considered.

Equation 7 gives us the discrete version of the relationship in McAvoy & Hauert [5], genralized to

the full space of memory-1 strategies. For notational convenience we now write
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∞∑
t

(1− δ)δtvtkl = vkl

which is the equilibrium rate of the play kl in a game with discounting. This gives us the following

equalities

φiSyx − χiSxy − (φi − χi)κi +

d∑
k=1

d∑
l=1

λiklvkl −
1− δ
δ

p0i = 0 (8)

for the relationship between the equilibrium payoffs given the strategy of player X, where we recall

that p0i denotes the probability that the focal player makes choice i in the first round of play. Notice

that, with the introduction of discounting, Eq. 8 depends on the probability of X playing i in the

first round.

In our simplified notation we can also write

Sxy + Syx =
d∑
i=1

2Riiv
t
ii +

d∑
j=i+1

(Rij +Rji)(vij + vji)

 (9)

and

Sxy − Syx =
d∑
i=1

d∑
j=i

(Rij −Rji)(vij − vji) (10)

For the sum and the difference of the two player’s payoffs, which will be useful in the next section.

We now use this coordinate system and the equality Eq. 8 that it allows us to derive in order

to analyse two multi-choice cases of particular interest: two-choice strategies playing against multi-

choice invaders in a public goods game, and multi-choice strategies playing against single choice

invaders in a rock-paper scissors game.
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3 Robust strategies in multi-choice public goods games

In this section we determine the conditions for a two-choice strategy to able to resist invasion by any

rare mutant in an evolving population of N individuals playing pairwise public goods games. Under

a multi-choice public goods game, a pair of players who choose to invest Cj and Ck respectively in

a given round of play generate a total benefit Bjk such that the player who invested Cj receives

payoff

Rjk = Bjk/2− Cj

We focus on strategies that use only two investment levels, C1 and C2 > C1. We determine whether

a strategy which, when resident in a population, stabalizes investment at either C1 or C2, can resist

invasion by players with access to arbitrary investment levels. We then investigate particular cases

of two choice strategies that react to investment levels other than C1 and C2 according to a threshold

rule.

We are interested in whether a two-choice strategy can be evolutionary robust against an invader

who can vary his investment level in an arbitrary way. Thus we assume a focal strategy that can

invest either C1 or C2. We assume λ11 = λ22 = 0 and λ12 = λ21. When faced with an opponent

who plays with d investment levels, the two-choice player may in general have 2d probabilities for

investing at level C2:

15



p211 = − ((φ− χ)(B11/2− κ)− φC1 + χC1)

p212 = − ((φ− χ)(B12/2− κ)− φC2 + χC1 + λ12)

p213 = − ((φ− χ)(B13/2− κ)− φC3 + χC1 + λ13)

...

p21d = − ((φ− χ)(B1d/2− κ)− φCd + χC1 + λ1d)

p221 =
1

δ
− ((φ− χ)(B12/2− κ)− φC1 + χC2 + λ12)

p222 =
1

δ
− ((φ− χ)(B22/2− κ)− φC2 + χC2)

p223 =
1

δ
− ((φ− χ)(B23/2− κ)− φC3 + χC2 + λ23)

...

p12d =
1

δ
− ((φ− χ)(B2d/2− κ)− φCd + χC2 + λ2d)

where p1jk = 1− p2jk. The resulting relationship between players’ scores is given by

φSyx − χSxy − (φ− χ)κ+ λ12(v12 + v21) +

d∑
j=3

(λ1jv1j + λ2jv2j) =
1− δ
δ

p02 (11)

We can observe immediately that the first four terms of Eq. 11 correspond to the type of two-choice

games that have been studied extensively elsewhere.

Looking at the sum and difference between players’ scores in this game we find

Sxy+Syx = (B11−2C1)v11+(B22−2C2)v22+(B12−C1−C2)(v12+v12)+
d∑
j=3

(B1j−C1−Cj)v1j+(B2j−C2−Cj)v2j

(12)
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and

Sxy − Syx = (C2 − C1)(v12 − v21) +
d∑
j=3

(Cj − C1)v1j + (Cj − C2)v2j (13)

In the next section we will use Eqs. 11-13 to derive conditions for evolutionary robustness of the

resident strategy.

3.1 Robustness of strategies that stabalize investment at level C2

Now let us focus on a resident, two-choice strategy who can invest either C1 or C2 where C1 < C2,

and which stabalizes cooperation investment at C2 when resident in a population, i.e. a strategy

such that p222 = 1 which in turn implies that κ = B22/2 − C2 − 1
φ−χ

1−δ
δ . Notice that in order to

ensure investment is stabalized at C2 in the presence of discounting, the strategy must have p20 = 1,

i.e. players must always invest C2 in the first round. Such a strategy always invests C2 in the first

round and always invests C2 if both players invested C2 in the preceding round. In general, when

resident in a population, such a strategy ensures all players invest C2 at equilibrium.

From Eqs. 12 and 13 we can set upper and lower bounds on players scores such that

Sxy + Syx ≤ (B22 − 2C2) + (B21 + C2 − C1 −B22)(v12 + v12)

+

d∑
j=3

(B2j + C2 − Cj −B22)v2j + (B1j − C1 − Cj −B22 + 2C2)v1j (14)

which becomes an equality when v11 = 0, and

Sxy + Syx ≥ (B11 − 2C1) + (B21 − C2 + C1 −B11)(v12 + v12)

+

d∑
j=3

(B2j − C2 − Cj −B11 + 2C1)v2j + (B1j + C1 − Cj −B11)v1j (15)
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which becomes an equality when v22 = 0, and

Sxy − Syx ≥ −(C2 − C1)(v12 + v21) +

d∑
j=3

(Cj − C1)v1j + (Cj − C2)v2j (16)

which becomes an equality when an opponent never invests C1 and

Sxy − Syx ≤ (C2 − C1)(v12 + v21) +
d∑
j=3

(Cj − C1)v1j + (Cj − C2)v2j (17)

which becomes an equality when an opponent never invests C2.

In order for a rare mutant Y to invade a population with a resident X we must have

Syx >
N − 2

N − 1
(B22/2− C2) +

1

N − 1
Sxy. (18)

This condition means that selection favors the rare mutant over the resident strategy. Our goal is

to identify strategies that resist invasion by all possible mutants, which we call evolutionary robust

strategies. The condition above is related to the ESSN condition for a resident strategy to be

stable against invasion and replacement by a mutant in a finite population [6]. However, since we

are concerned only with strong selection we focus on the invasion condition alone. Furthermore,

we discuss our results in terms of the evolutionary robustness of strategies, (i.e. those that cannot

be selectively invaded) because, in the large space of memory-1 strategies, no strategy is strictly

stable because all strategies can be replaced neutrally by drift. The best that can be achieved is

robustness, i.e. the ability to resist selective invasion [3]. Combining the expression above with

Eq. 11 we obtain.

(
χ− φ 1

N − 1

)
(Sxy − (B22/2− C2)) > λ12(v12 + v21) +

d∑
j=3

(λ1jv1j + λ2jv2j) (19)
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Combining this with Eq. 14 and Eq. 16 we derive two conditions that together are necessary and

sufficient for evolutionary robustness. Firstly, if (N − 1)χ > φ we have

N

N − 1

λ12(v12 + v21) +

d∑
j=3

(λ1jv1j + λ2jv2j)

 >

(
χ− φ 1

N − 1

)[
(B21 + C2 − C1 −B22)(v12 + v12)

+

d∑
j=3

(B2j + C2 − Cj −B22)v2j + (B1j − C1 − Cj −B22 + 2C2)v1j

]
(20)

which means that in order to ensure robustness we must have

N

N − 1
(λij) > −

(
χ− φ 1

N − 1

)
(B22 − 2C2 −Bij + Ci + Cj) (21)

We also retrieve a second inequality when (N − 1)χ < φ:

N − 2

N − 1
λ12(v12 + v21) +

N − 2

N − 1

d∑
j=3

(λ1jv1j + λ2jv2j)

> −
(
χ− φ 1

N − 1

)(C2 − C1)(v12 + v21)−
d∑
j=3

(Cj − C2)v2j + (Cj − C1)v1j

 (22)

which means that in order to ensure robustness we must also have

N − 2

N − 1
λij >

(
χ− φ 1

N − 1

)
(Cj − Ci), ∀j > 2 (23)

This second condition is always hardest to satisfy when Cj is minimized.
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The first condition depends on how benefits change with investment. If we assume Bij =

r(Ci + Cj)
α we get

N

N − 1
λij >

(
χ− φ 1

N − 1

)
(r(2C2)

α − 2C2 − r(Ci + Cj)
α + (Ci + Cj))

which is hardest to satisfy when the right hand side is maximized. When this occurs depends in

general on the choice of α, but if α = 1 this condition is also hardest to satisfy when Cj = 0. We

can convert Eq. 20-23 back to the original coordinate system, i.e write conditions for robustness

in terms of the probability pijk of playing choice i given the outcome of the preceding round. This

yields the following set of two-choice strategies that are evolutionary robust against all possible

mutants and stabalize investment level at C2 when resident in a population:

Cd2 =

{
(p11, p12, . . . , p1d, p21, p22, . . . , p2d)

∣∣∣∣p22 = 1,

p2j < 1− N − 2

N
(1 + p12 − p21)

C2 − Cj
C2 − C1

[
N − 1

N − 2
− r

2

]
,

p1j +
1− δ
δ

<
N − 2

N
(1 + p12 − p21)

[
r

2
−
(
N − 1

N − 2
− r

2

)
C2 − Cj
C2 − C1

+
1

N − 2

]
,

p2j < 1− p11
r − 1

C2 − Cj
C2 − C1

[
N − 1

N − 2
− r

2

]
p1j +

1− δ
δ

<
p11
r − 1

[
r

2
−
(
N − 1

N − 2
− r

2

)
C2 − Cj
C2 − C1

+
1

N − 2

]}
,

(24)

Finally, in order for a robust strategy to exist it must be both viable and belong to the set described

by Eq. 24. The relevant values of r (i.e. those that produce a social dilemma in the public goods

game) are those in the range 1 ≤ r ≤ 2. Thus p2j can always be chosen to be both viable and

robust. However p1j can only be chosen to be both viable and robust in all cases if

20



1− δ
δ

< 2
N − 2

N

[
r

2
−
(
N − 1

N − 2
− r

2

)
C2 − Cj
C2 − C1

+
1

N − 2

]

and

1− δ
δ

<
1

r − 1

[
r

2
−
(
N − 1

N − 2
− r

2

)
C2 − Cj
C2 − C1

+
1

N − 2

]

are satisfied. The first condition is only the more stringent in general for values N < 4, thus we

calculate conditions for strategies to be viable under the second condition. This gives

(r − 1)(2δ − 1)

δ r2 + δ 1
N−2 − (1− δ)(r − 1)

>
C1

C2
(25)

as the condition which must be satisfied in large population (N > 4) in order for a robust two-choice

strategy to exist, i.e. in order for the set Cd2 to be non-empty.

3.2 Robustness of strategies that stabalize investment at level C1

In this section we repeat the results of the preceding section for strategies that stabalize investment

at level C1, i.e. those which have p11 = 0, which implies κ = B11 − C1 and p02 = 0. In order for a

rare mutant Y to invade a population with a resident X we must have

Syx >
N − 2

N − 1
(B11/2− C1) +

1

N − 1
Sxy (26)

Combining this with Eq. 11 we then get

(
χ− φ 1

N − 1

)
(Sxy − (B11/2− C1)) > λ12(v12 + v21) +

d∑
j=3

(λ1jv1j + λ2jv2j) (27)
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Combining this with Eq. 15 and Eq. 17 we then get two conditions for evolutionary robustness,

firstly, when (N − 1)χ < φ we find

N − 2

N − 1

λ12(v12 + v21) +

d∑
j=3

(λ1jv1j + λ2jv2j)

 >

(
χ− φ 1

N − 1

)[
(B21 + C1 − C2 −B11)(v12 + v12)

+

d∑
j=3

(B2j − C2 − Cj −B11 + 2C1)v2j + (B1j + C1 − Cj −B11)v1j

]
(28)

which means that in order to ensure robustness we must have

N − 2

N − 1
(λij) >

(
χ− φ 1

N − 1

)
(B11 − 2C1 −Bij + Ci + Cj) (29)

We also retrieve a second inequality when (N − 1)χ > φ:

N

N − 1
λ12(v12 + v21) +

N

N − 1

d∑
j=3

(λ1jv1j + λ2jv2j)

>

(
χ− φ 1

N − 1

)(C2 − C1)(v12 + v21) +
d∑
j=3

(Cj − C2)v2j + (Cj − C1)v1j

 (30)

which means that in order to ensure robustness we must also have

N

N − 1
λij >

(
χ− φ 1

N − 1

)
(Cj − Ci), ∀j > 2 (31)

Assuming a linear publics goods game, the first in equality is hardest to satisfy when Cj = 0.
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However the second in equality is hardest to satisfy when Cj in maximized. This latter result

is important because it illustrates the instability of extortionate strategies in larger populations.

Extortion strategies have λij = 0 and χ > 0. Our results show that two-choice extortion strategies

are never universally robust, and are vulnerable to invaders who contribute more than them to the

public good.

3.3 Two-choice strategies with thresholds

In this section we consider the robustness of two choice strategies that stabalize investment at C2

when resident in a population, but are constrained in their ability to “perceive” an invader who

invests at a level C 6= {C1, C2}. Such a case is highly relevant because it is natural to assume that a

player who is limited in her bility to access a large action space may also be limited in her ability to

perceive actions that she cannot access. The most natural case of limited perception is to assume

that the focal, two-choice player, reacts to all of her opponents plays as though they are investments

at either level C1 or C2. Thus her strategy consists of only four probabilities, {p11, p12, p21, p22}

as well as a probability of investing C2 in the first round, p02. We assume that this player uses

a threshold in her perception of her opponent’s investment, whereby an opponent’s investment of

C < CT results in her treating his play as an investment of C1 and otherwise she treats it as an

investment of C2. Clearly C1 ≤ CT ≤ C2 is the most realistic case.

Returning to the case of a resident strategy that stabalizes investment at level C2 we see from

Eq. 24 that, for values of CT < C2 the strategy cannot be robust (since these conditions imply that

p22 < 1 whereas a strategies that stabalize investment at C2 have p22 = 1 by definition). However

if we select a threshold CT = C2 we retrieve the following conditions for robusntess (for δ = 1):
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p12
C2

C2 − C1

[
N − 1

N − 2
− r

2

]
< (1− p21)

[
N

N − 2
− C2

C2 − C1

N − 1

N − 2
+
r

2

C2

C2 − C1

]
,

p11 <
N − 2

N
(1 + p12 − p21)

[
r

2
−
(
N − 1

N − 2
− r

2

)
C2

C2 − C1
+

1

N − 2

]
,

1− p21 >
p11
r − 1

C2

C2 − C1

[
N − 1

N − 2
− r

2

]
C1

C2
<

(r − 1)
r
2 + 1

N−2

(32)

All of these can be satisfied for some choice of {p11, p12, p21} provided the final condition is satisfied.

However this is precisely the condition for universal robustness given in section 1, in the case δ = 1.

We have also verified this condition via simulation (Fig. S1). Note that in order to derive these

conditions only Eq. 25 is required, and the same procedure can be repeated to determine whether

any “perception scheme” of interest can produce a universally robust strategy.

4 Games with non-transitive payoff structures

In this final section we consider the rock-paper-scissors game, which is a three-choice, non-transitive

game. We write down the coordinate transform for the three-choice non-transitive game and we

show that in general no ZD strategies can exist. We also determine the conditions for a mixed

strategy (one that makes use of all three choices) to be invaded by a pure strategy, which uses

only a single type of play. In this way we asses the ability of a population to maintain behavioral

diversity.

We assume a payoff structure R13 = B − C1, R21 = B − C2, R32 = B − C3, R31 = −C3,

R12 = −C1 and R23 = −C2 which gives a non-transitive relationship between the choices 1=rock,

2=paper and 3=scissors. We assume that when two players make the same choice they receive

equal payoff: R11 = B/2− C1, R22 = B/2− C1 and R33 = B/2− C1. In the alternate coordinate
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system without discounting (δ = 1), a strategy is written as

p111 = 1− (φ1 − χ1)
(
B/2− C1 − κ1

)
p112 = 1−

(
φ1(B − C2) + χ1C1 − (φ1 − χ1)κ1

)
p113 = 1 +

(
φ1C3 + χ1(B − C1) + (φ1 − χ1)κ1

)
p121 = λ121 +

(
φ1C2 + χ1(B − C1) + (φ1 − χ1)κ1

)
p122 = λ122 − (φ1 − χ1)

(
B/2− C2 − κ1

)
p123 = λ123 −

(
φ1(B − C3) + χ1C2 − (φ1 − χ1)κ1

)
p131 = λ131 −

(
φ1(B − C1) + χ1C3 − (φ1 − χ1)κ1

)
p132 = λ132 +

(
φ1C2 + χ1(B − C3) + (φ1 − χ1)κ1

)
p133 = λ133 − (φ1 − χ1)

(
B/2− C3 − κ1

)

and
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p211 = λ211 − (φ2 − χ2)
(
B/2− C1 − κ2

)
p212 = λ212 −

(
φ2(B − C2) + χ2C1 − (φ2 − χ2)κ2

)
p213 = λ213 +

(
φ2C3 + χ2(B − C1) + (φ2 − χ2)κ2

)
p221 = 1 +

(
φ2C2 + χ2(B − C1) + (φ2 − χ2)κ2

)
p222 = 1− (φ2 − χ2)

(
B/2− C2 − κ2

)
p223 = 1−

(
φ2(B − C3) + χ2C2 − (φ2 − χ2)κ2

)
p231 = λ231 −

(
φ2(B − C1) + χ2C3 − (φ2 − χ2)κ2

)
p232 = λ232 +

(
φ2C2 + χ2(B − C3) + (φ2 − χ2)κ2

)
p233 = λ233 − (φ2 − χ2)

(
B/2− C3 − κ2

)

where we set λ = 0 for the case where a player uses the same move as she played in the preceding

round. If we consider the symmetrical case C1 = C2 = C3 we can set
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poo = 1− (φ− χ) (B/2− C − κ)

p−− = 1− (φ(B − C) + χC − (φ− χ)κ)

p++ = 1 + (φC + χ(B − C) + (φ− χ)κ)

po+ = λo+ + (φC + χ(B − C) + (φ− χ)κ)

p−o = λ−o − (φ− χ) (B/2− C − κ)

p+− = λ+− − (φ(B − C) + χC − (φ− χ)κ)

po− = λo− − (φ(B − C) + χC − (φ− χ)κ)

p−+ = λ−+ + (φC + χ(B − C) + (φ− χ)κ)

p+o = λ+o − (φ− χ) (B/2− C − κ)

where subscript indicates the outcome of the preceding round: win (+), lose (-) or draw (o) and

the superscript refers to the choice to switch to the move that would have resulted in that outcome

in the preceding round. Note also that by definition p+o + p−o + poo = 1 etc so that the following

must hold:

λ−o + λ+o = 3(φ− χ) (B/2− C − κ)

λo+ + λ−+ = −3 (φC + χ(B − C) + (φ− χ)κ)

λ+− + λo− = 3 (φ(B − C) + χC − (φ− χ)κ) (33)

Against an opponent who only plays rock=1, the following relationships between players scores

must hold
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φSyx − χSxy − (φ− χ)κ+ λo+v21 + λo−v31 = 0

φSyx − χSxy − (φ− χ)κ+ λ+o v11 + λ+−v31 = 0

φSyx − χSxy − (φ− χ)κ+ λ−o v11 + λ−+v21 = 0

(34)

with equivalent equalities for invaders who only play paper or scissors, which we can ignore due to

the assumed symmetry of the problem.

Finally, note that in the totally symmetrical game the sum of both players longterm average

payoffs is constant:

Sxy + Syx = B − 2C (35)

and in order for a mutant to successfully invade therefore requires

Syx >
N − 2

N − 1
(B/2− C) +

1

N − 1
Sxy

which in turn implies

B/2− C > Sxy

Combining Eqs. 33-35 we can now solve for v and arrive at the following inequality as the condition

for a strategy to maintain behavioral diversity in the symmetrical rock-paper-scissors game:

p−o (1− p−− − p−+) > p+o (1− p++ − p+−) (36)

28



5 Supplementary figures
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Figure 1: The volume of universally robust two-choice strategies for the linear public goods game, with a
threshold perception model. We consider two-choice strategies that can invest either C1 or C2 > C1 and that
stabilize investment at C2 when resident in a population. We compete these strategies against opponents
with access to arbitrary investment levels, but we assumed that the resident two-choice strategy reacts to
all opponents as though they have invested either C1 or C2, treating investments C ≥ C2 as an investment
of C2 and treating everything else as an investment of C1. We drew 106 random resident strategies for each
value of the benefit scaling factor r and investment reduction C1 (keeping C2 = 1 fixed). We competed
each strategy against 106 invaders who use three investment levels C∗

1 = 0, C1 < C∗
2 < C2 and C∗

3 > C2,
where we draw C∗

2 ∈ [C1, C2] and C∗
3 ∈ [C2, 10C2] uniformly for each invader. From this we calculated the

volume of robust two-choice strategies, i.e. the probability that a random two-choice strategy of this type
can resist all simulated invaders. The white region indicates parameters for which no strategy was found to
be robust, in good agreement with the analytical prediction (black line, Eq. 3). Simulations were conducted
with population size N = 100 with selection strength σ = 10.
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