Mutations in phosphodiesterase 6 identified in familial cases of retinitis pigmentosa

Inayat Ullah,¹ Firoz Kabir,² Clare Brooks S. Gottsch,² Muhammad Asif Naeem,¹ Aditya A. Guru,³ Radha Ayyagari,³ Shaheen N. Khan,¹ Sheikh Riazuddin,^{1,4,5} Javed Akram,^{4,5} S. Amer Riazuddin^{2,6}

¹National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan; ²The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; ³Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA; ⁴Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan; ⁵National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan; ⁶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Correspondence: S. Amer Riazuddin (riazuddin@jhmi.edu)

Contents

Supplementary Figures

Supplementary Figure 1	3
Supplementary Figure 2	4
Supplementary Figure 3	5
Supplementary Figure 4	6
Supplementary Figure 5	7

Supplementary Tables

Supplementary Table 1	8
Supplementary Table 2	9
Supplementary Table 3	10
Supplementary Table 4	11
Supplementary Table 5	12
Supplementary Table 6	13

References1

Supplementary Figure 1: Fundus photographs of individuals diagnosed with retinitis pigmentosa. OD and OS of **A**) affected individual 17 and **B**) affected individual 18 of the family PKRP345; **C**) affected individual 9 and **D**) affected individual 10 of the family PKRP264. Fundus photographs of affected individuals show the peripheral fundus, which exhibit the characteristic symptoms of RP, including a waxy pallor of the optic disc, attenuated arterioles, and the accumulation of bone-spicule-like deposits. OD: oculus dexter; OS: oculus sinister.

Supplementary Figure 2: Sequence chromatograms showing the variation identified in the family PKRP264. Forward and reverse sequence chromatograms of **A**) individual 16 harboring the wild-type allele, and individuals **B**) 14 and **C**) 12 of PKRP264, who are heterozygous and homozygous, respectively, for the single-base-pair deletion, c.243delG (p.R82Afs68*), in *PDE6B*.

Supplementary Figure 3: Sequence chromatograms showing the variation identified in the family PKRP336. Forward and reverse sequence chromatograms of **A**) a normal control harboring the wild-type allele, and individuals **B**) 13 and **C**) 14 of PKRP336, who are heterozygous and homozygous, respectively, for the four-base-pair deletion, c.12_15delTGAG (p.S4Rfs23*), in *PDE6B*.

Supplementary Figure 4: Sequence chromatograms showing the variation identified in the family PKRP345. Forward and reverse sequence chromatograms of **A**) a normal control harboring the wild-type allele, and individuals **B**) 15 and **C**) 18 of PKRP345, who are heterozygous and homozygous, respectively, for the single-base-pair substitution, c.769C>T (p.R257*), in *PDE6A*.

Supplementary Figure 5: Sequence chromatograms showing the variation identified in the family PKRP360. Forward and reverse sequence chromatograms of **A**) individual 15 harboring the wild-type allele, and individuals **B**) 12 and **C**) 14 of PKRP360, who are heterozygous and homozygous, respectively, for the single-base-pair substitution, c.304C>A (p.R102S), in *PDE6A*.

Family	Individual	C-Age	C-Age D-Age (years) (years) S	Initial	Night Blindness	Fundus Examination Findings	ERG		Visual Acuity	
ID	ID (years)	(years)		Symptom			OD	os	OD	os
	9	74	6	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/36	6/40
	10	72	6	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/24	6/28
PKKP204	11	62	8	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/18	6/20
	12	76	7	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/24	6/28
DKDD336	14	18	6	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/20	6/20
PKRP336	9	20	7	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/25	6/25
	17	21	5	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/20	6/20
PKRP345	18	26	7	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/20	6/20
PKRP360	10	34	8	Night blindness	Progressive	MD, AA, PD, POD	NWR NFR	NWR NFR	6/20	6/20

Supplementary Table 1: Clinical characteristics of families linked to PDE6A and PDE6B.

Note: C-Age: current age; D-Age: age at first diagnosis of RP; MD: macular degeneration; AA: attenuated arteries; PD: pigment deposits; POD: pale optic disc; OD: oculus dexter; OS: oculus sinister; NWR: no a- or b-wave response; NFR: no flicker response.

Supplementary Table 2: Two-point LOD scores of chromosome 4p and 5q markers for the families **A**) PKRP264, **B**) PKRP336, **C**) PKRP345, and **D**) PKRP360.

Marker	Mb	сМ	0	0.01	0.05	0.1	0.2	0.3	Zmax	Θ _{max}
Α										
D4S3360	0.11	0.00	- 8	-1.86	-1.03	-0.47	0.12	0.25	0.25	0.30
D4S2936	0.69	1.48	2.04	1.98	1.75	1.44	0.80	0.14	2.04	0.00
D4S3038	1.10	1.48	3.10	3.04	2.81	2.49	1.84	1.19	3.10	0.00
D4S1614	2.64	4.74	- 8	-1.95	-1.12	-0.55	0.10	0.19	0.19	0.30
В										
D4S3360	0.11	0.00	- 8	-1.86	-1.03	-0.47	0.12	0.25	0.25	0.30
D4S2936	0.69	1.48	3.04	2.98	2.75	2.44	1.80	1.14	3.04	0.00
D4S3038	1.10	1.48	2.88	2.82	2.59	2.28	1.64	.98	2.88	0.00
D4S1614	2.64	4.74	1.86	1.85	1.78	1.63	1.25	.80	1.86	0.00
С										
D5S812	149.62	150.34	1.25	1.19	0.99	0.72	0.38	0.16	1.25	0.00
D5S2015	150.19	152.62	1.79	1.73	1.50	1.20	0.57	0.09	1.79	0.00
D5S2013	150.20	152.62	2.02	1.97	1.77	1.51	1.00	0.51	2.02	0.00
D5S1469	150.07	153.16	1.21	1.16	0.95	0.68	0.33	0.11	1.21	0.00
D										
D5S812	149.62	150.34	2.33	2.27	2.05	1.78	1.23	0.71	2.33	0.00
D5S2015	150.19	152.62	2.79	2.73	2.50	2.20	1.57	0.93	2.79	0.00
D5S2013	150.20	152.62	2.21	2.16	1.95	1.68	1.15	0.65	2.21	0.00
D5S1469	150.07	153.16	1.42	1.04	1.01	0.92	0.66	0.51	1.42	0.00

Exon	Forward primer	Reverse primer	Annealing temperature (°C)
1a	CCAGACTGGACTTGTTGCAG	GAACAGGCTCATGCGGTCT	70
1b	TGGAGGAGAGCGAAATCATC	ACCTGTACCCCAGAACTCCA	70
2	CCGTTCCACTGTTCTTGCTC	GCAAAGTTCAGGGGACTTCA	70
3	GCCAGAGGATGGATTTCTTC	TAGGCACCTTCATTCCCATC	70
4	TTGTTGTTATTCTCCAGCTAAGTG	TTGAATGTGTGCCAAGACTC	70
5	GACTCATGGAGGTGGGACAT	AGACAACCCAACGCAAAGAC	70
6	AGATCAAGCCATTGCACTCC	TTGCCCAATTCCAGAATCAC	70
7	TGTAAGCAGGTGCTGAGAGC	TCTTTCTTCCACGTGATCCA	70
8	CCTTGGACAAGAACATGGTG	CAGCAGAGTGGGTGGATTCT	70
9	TATCATCGTTGCCTCTGTGG	TGTGATAGCGCAGTGACACC	70
10	GGCAGCACACAGCTTATCAA	ACAGTGCACAAACCCATGC	70
11	GTTGCAAGGACTTTGGAGGA	ATGCTTTGCAAGGAGAAACC	70
12	TCTGATCCTTCCAGCAGACC	CACAGAGGAACAGCGTGTCT	70
13	GGCCATGCCTTCTTCATATT	CAACGCTGTTGCTACCATGT	70
14	CTCCTTACACCCGCCTTTTC	CCACAAGACTTCCCTGTTGG	70
15	TCACTTGTGGAGAAGGCTGA	GCCAATGGGAAGAATGCTC	70
16	CCATTGGTAGGTGGGTGACT	CCTGGGCAACAGAGTGAGAT	70
17	GCCAATGTTAGCAGCTCAGG	GCAAGAGCTGTCAGTGCATC	70
18	GGGTGGAGAAAGGTGAGAGA	AGTCCAAGCCTCATGACCTG	70
19	AGCAGGGGTAGGGGATTG	CTCCATCATGGCGAGGTC	70
20	TGCTTCATAGATAGGGTAGGTTTC	CTGGTCACCTGCTAGGGTTT	70
21	GCTACTCCGAAGCAGCTCAT	CACACACAGAATGGGGACAG	70
22	GTCAAAGGGGAAGCCCACT	GGTCTTCCACTGGCTTGAGT	70

Supplementary Table 3: Primer sequences for the amplification of *PDE6A* exons.

Exon	Forward primer	Reverse primer	Annealing temperature (°C)
1A	CTGGTTTTCCTGGAAGGT	TGGTTTTCCTGGAAGGT CTGGCGGTACATGAAGAG	
1B	AGGATATGCAGGAGAGCAT	CTCCTCAGCACAGAACTAGC	68
2	TCTGCTGGACTGAGCACT	GCAGGTAAAGAGGTGGATG	68
3	GTGCACCTGAGCTTGTGTGT	ACCTACCCAGGTGAGCACAA	68
4	CCACAAGCTCAGATGAAACCT	ATCAGCACAGACCACACGTC	68
5	AAGGAGAAGGTGAGGCTTCC	CTGGTGGAGACCACAGACAG	68
6	GGAACACAGACTGGGAAGAC	AGTGAGTCGGCTTCTGTCTC	68
7–8	ACACACGTGCAGCCTA	AGTGGCAAAAACGAATTCAC	68
9	AAACTCCAAATGCAGAGAGG	TGCTTCTGTGTGGGGTCT	68
10	AGACCCCACACAGAAGCACT	CTGTGACCCCTCAATGGAC	68
11	ACGGTCATTTGTCTCCAGAT	AGTCAGGCCCACTAAACATC	68
12	AACTGGGCAAGTTCTTCACT	TACTTCCCGTGTGCATTTTA	68
13	GAAGTCCAGGAGACGGTGT	AGGGGTTGGGATGACCTA	68
14	TACCAAGGGCAGCACTCA	CGCCACCATACACAGCTT	68
15	CAGGAGGTCAAGGCTGTATT	CACTGAGTGTCCAGGTCCTT	68
16	CCAAGGACCTGGACACTCA	GTGGGAGCAAGTGTGGAGA	68
17	CCTGGCCCTGTACTTCAA	CAAGGGCTACAGACCAATG	68
18	GAGGCTGAGGCACAAGAATC	ACTGCAGTACCCCCATCCTT	68
19	GGCAACGGACCATTGTTT	TGAGATAAGGACCCCACGAC	68
20	TCCATGAGCACATCTGAGTGA	TCCGGAAACTGATGTTCCTC	68
21	CGAGGTTTCTCCCTTCACAG	TGGCTCTGCTTTTCTCCATT	68
22	TGAGCATAATCAGGGCACAG	TTGGGCTTCCTAACCTCTTG	68

Supplementary Table 4: Primer sequences for the amplification of *PDE6B* exons.

Supplementary Table 5: Causal mutations reported in *PDE6A*-associated retinal dystrophies.

No.	Nucleotide change	Amino Acid Change	Inheritance	Reference
1	c.205C>T	p.Gln69*	arRP	1
2	c.298C>T	p.Arg100Trp	arRP	2
3	c.304C>A	p.Arg102Ser	arRP	3
4	c.304C>T	p.Arg102Cys	arRP	4
5	c.305G>A	p.Arg102His	arRP	3
6	c.889C>T	p.Arg256*	arRP	5*
7	c.769C>T	p.Arg257*	arRP	6
8	c.784G>A	p.Ala262Thr	arRP	2
9	c.878C>T	p.Pro293Leu	arRP	3
10	c.908C>G	p.Ser303Cys	arRP	4
11	c.923C>T	p.Pro308Leu	arRP	2
12	c.937del	p.Ile313fs	arRP	7
13	c.1032C>A	p.Ser344Arg	arRP	8
14	c.1166C>T	p.Pro389Leu	arRP	9
15	c.1171G>A	p.Val391Met	arRP	3
16	c.1363A>T	p.Lys455Ter	adRP	1
17	c.1630C>T	p.Arg544Trp	arRP	10
18	c.1675C>A	p.Tyr558*	arRP	11
19	c.1681G>A	p.Trp561Ter	arRP	8
20	c.1684C>T	p.R562W	arRP	12
21	c.1705C>A	p.Gln569Lys	arRP	3
22	c.1717T>C	p.Ser573Pro	arRP	3
23	c.1749C>G	p.Tyr583Ter	arRP	8
24	c.1960C>T	p.Gln654Term	arRP	13
25	c.1963C>T	p.His655Tyr	arRP	14
26	c.2053G>A	p.Val685Met	arRP	15
27	c.2333A>T	p.Asp778Val	adRP	1
28	c.2218-2219insT	p.Y700fs*714	arRP	5*
29	IVS6+1G→A	splicing effect	arRP	3
30	c.1408–2A>G	p.K470_L491del	arRP	5*, 16*
31	c.933+4C>T	splice effect	arRP	17
32	c.2028-1G>A	p.K677Rfs24*	arRP	16*
33	c.676delC	p.H226TfsX2 (heterozygous)	sporadic	18
34	c.1268delT	p.L423*	arRP	19
35	c.1336delA	p.R446Gfs8*	arRP	20

Note: All mutations are listed in the format of the original publication. Asterisks (*) indicate mutations previously identified by the authors. arRP: autosomal recessive retinitis pigmentosa; adRP: autosomal dominant retinitis pigmentosa.

Supplementary Table 6: Causal mutations reported in *PDE6B*-associated retinal dystrophies.

No.	Nucleotide change	Amino Acid Change	Inheritance	Reference
1	c.163G>T	p.Glu55*	arRP	21
2	c.299G>A	p.Arg100His	arRP, adRP	22
3	c.313G>A	p.Glu105Lys	arRP	23
4	c.496G>A	p.Glu166Lys	arRP	22
5	c.610G>T	p.E204*	arRP	23
6	c 669T>A	n Y223*	arRP	2
7	c 703C>T	n Arg235Cvs	arRP	2
8	c 774C>A	n His258Asn	arRP adCSNB	24
9	c.801C>A	n Tvr267*	arRP	22
10	c 810C>A	n Cys270*	arRP adRP	25
10	c 892C>T	p.Cys270	arRP adRP	25
12	c.022C>A	p.Glu208	arPD adPD	20
12	c.1010A>G	p.His337Arg	arDD	21
13	c.1010A/G	p.11855/Alg	arDD adDD	20
14	c.1045_1044IIISCO	p.Ala34918	arRP, aurr	22
15	C.11530-A	p. 11p3/81efin	aIRP	20
10		p.Pros8/Leu	arRP	29
1/	C.1189G>A	p.Gly39/Arg	arRP	30
18	c.1219G>A	p.01y40/Arg		31
19	0.123/U>1	p.0111413*	afKP	32
20	c.131/C>G	p.Asn439Lys	arRP	18
21	c.154/1>C	p.Leu516Pro	arRP, adRP	33
22	c.15681>G	p.Met523Arg	arRP	6
23	c.180751>C	p.Leu527Pro	arRP, adRP	34
24	c.1591C>1	p.Arg531X	arRP, adRP	26
25	c.1604T>A	p.lle535Asn	arRP, adRP	35
26	c.1655G>A	p.Arg552Gln	arRP	29*, 36
27	c.1624C>T	p.Arg542Trp	arRP	32
28	c.15001>C	p.Tyr557His	arRP, adRP	34
29	c.16/8C>1	p.Arg560Cys	arRP	37
30	c.1685G>A	p.Gly562Asp	arRP, adRP	33
31	c.1699C>1	p.Q56/*	arKP	2
32	c.1/12C>1	p. Inr5/INet	arRP	31
24	c.1/2/G>A	p.Gly576Asp	arRP, adRP	20
25	c.1/98 G-A	p.AspoolAsh	arRP, aurr	4
35				21
27	c.1839A~G	p.Hiso20Alg	arRP	30
20	- 2047() A	p.Pheo52Sel		39
38	c.204/G>A		arRP	2
39	200(T) C		arRP	21
40	0.2090120	p.Leu099Arg	arRP	30
41	0.2095_2094InSUCTOT	p.Leu/01Cysis:14	arDD adDD	40
42	C.∠188A>	p.Lys/00A	arRP, auKP	20
43	0.22491/0	p. vai/3001y	arDD adDD	2
44	C.23200->A	p.Asp//oAsn	arkP, aukP	22
43	0.23991/C	p.Leuovorio	arND	<u>J∠</u>
40		p.LeutotoArgisA1/	arRP	9
47	c 1923 1969ins6dal17	n T6/11Tfs¥31	arRP	41
40	c 1927_1969delinsGG	p. N643fs	arDD	
-+9 50	$VS2 \approx -1 \text{ G>T}$	agG_atG splice error	arRP	22
51	$1 \times 52 \text{ as} = 1 \text{ G} > 1$ IVS8 ds $+3 \text{ A} > \text{G}$	splicing	arRP	20
52	c 1722+1G>A	splicing	arRP	43
52	IVS15 ds +2 T>C	splicing	arRP	22
54	IVS18 ds +1 $G>\Delta$	splicing	arRP	34
55	Pro-496 (1-hn del)	splicing	arRP	26
56	dunlication of 71 h	splicing	arRP	44
57	c.1107+3A>G	splicing	arRP	22
58	c.1920+2T>C	splicing	arRP	22
-				

59	c.2503+5G>C	splicing	arRP	22
60	c.2503+2T>C	splicing	arRP	7
61	c.1615-1G>C	IVS12 as G-C -1	arRP	23
62	c.1060-1G>T	IVS7 as G-T -1	arRP	45
63	c.1467+1G>C	IVS11 ds G-C +1	arRP	46
64	c.1401+4_1401+48d	splicing	arRP	7

Note: All mutations are listed in the format of the original publication. Asterisks (*) indicate mutations previously identified by the authors. arRP: autosomal recessive retinitis pigmentosa; adRP: autosomal dominant retinitis pigmentosa; adCSNB: autosomal dominant congenital stationary night blindness.

References

- 1. Wang X, Wang H, Sun V, Tuan HF, Keser V, Wang K, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. *J Med Genet*. 2013;50:674-688.
- 2. Eisenberger T, Neuhaus C, Khan AO, Decker C, Preising MN, Friedburg C, et al. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. *PLoS One*. 2013;8:e78496.
- 3. Dryja TP, Rucinski DE, Chen SH, Berson EL. Frequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa. *Invest Ophthalmol Vis Sci.* 1999;40:1859-1865.
- 4. Tsang SH, Tsui I, Chou CL, Zernant J, Haamer E, Iranmanesh R, et al. A novel mutation and phenotypes in phosphodiesterase 6 deficiency. *Am J Ophthalmol*. 2008;146:780-788.
- 5. Riazuddin SA, Zulfiqar F, Zhang Q, Yao W, Li S, Jiao X, et al. Mutations in the gene encoding the alpha-subunit of rod phosphodiesterase in consanguineous Pakistani families. *Mol Vis*. 2006;12:1283-1291.
- 6. Bocquet B, Marzouka NA, Hebrard M, Manes G, Senechal A, Meunier I, et al. Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations. *Mol Vis.* 2013;19:2487-2500.
- van Huet RA, Pierrache LH, Meester-Smoor MA, Klaver CC, van den Born LI, Hoyng CB, et al. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice. *Mol Vis.* 2015;21:461-476.
- 8. Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. *Nat Genet.* 1995;11:468-471.
- 9. Collin RW, Safieh C, Littink KW, Shalev SA, Garzozi HJ, Rizel L, et al. Mutations in C2ORF71 cause autosomal-recessive retinitis pigmentosa. *Am J Hum Genet*. 2010;86:783-788.
- 10. Khan MI, Kersten FF, Azam M, Collin RW, Hussain A, Shah ST, et al. CLRN1 mutations cause nonsyndromic retinitis pigmentosa. *Ophthalmology*. 2011;118:1444-1448.
- 11. Siemiatkowska AM, Arimadyo K, Moruz LM, Astuti GD, de Castro-Miro M, Zonneveld MN, et al. Molecular genetic analysis of retinitis pigmentosa in Indonesia using genome-wide homozygosity mapping. *Mol Vis.* 2011;17:3013-3024.
- 12. Sothilingam V, Garcia GM, Jiao K, Buena-Atienza E, Sahaboglu A, Trifunovic D, et al. Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype. *Hum Mol Genet.* 2015;24:5486-5499.
- 13. Sharon D, Banin E. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. *Mol Vis.* 2015;21:783-792.
- 14. Simpson DA, Clark GR, Alexander S, Silvestri G, Willoughby CE. Molecular diagnosis for heterogeneous genetic diseases with targeted high-throughput DNA sequencing applied to retinitis pigmentosa. *J Med Genet*. 2011;48:145-151.
- 15. Corton M, Blanco MJ, Torres M, Sanchez-Salorio M, Carracedo A, Brion M. Identification of a novel mutation in the human PDE6A gene in autosomal recessive retinitis pigmentosa: homology with the nmf28/nmf28 mice model. *Clin Genet*. 2010;78:495-498.
- 16. Khan SY, Ali S, Naeem MA, Khan SN, Husnain T, Butt NH, et al. Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families. *Mol Vis.* 2015;21:871-882.

- 17. Anasagasti A, Barandika O, Irigoyen C, Benitez BA, Cooper B, Cruchaga C, et al. Genetic high throughput screening in Retinitis Pigmentosa based on high resolution melting (HRM) analysis. *Exp Eye Res.* 2013;116:386-394.
- 18. Glockle N, Kohl S, Mohr J, Scheurenbrand T, Sprecher A, Weisschuh N, et al. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. *Eur J Hum Genet*. 2014;22:99-104.
- Yang L, Cui H, Yin X, Dou H, Zhao L, Chen N, et al. Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing. *PLoS One*. 2015;10:e0140684.
- 20. Consugar MB, Navarro-Gomez D, Place EM, Bujakowska KM, Sousa ME, Fonseca-Kelly ZD, et al. Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. *Genet Med.* 2015;17:253-261.
- 21. Shanks ME, Downes SM, Copley RR, Lise S, Broxholme J, Hudspith KA, et al. Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. *Eur J Hum Genet*. 2013;21:274-280.
- 22. Neveling K, Collin RW, Gilissen C, van Huet RA, Visser L, Kwint MP, et al. Next-generation genetic testing for retinitis pigmentosa. *Hum Mutat.* 2012;33:963-972.
- 23. Xu Y, Guan L, Shen T, Zhang J, Xiao X, Jiang H, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. *Hum Genet*. 2014;133:1255-1271.
- 24. Gal A, Orth U, Baehr W, Schwinger E, Rosenberg T. Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. *Nat Genet.* 1994;7:551.
- 25. Danciger M, Heilbron V, Gao YQ, Zhao DY, Jacobson SG, Farber DB. A homozygous PDE6B mutation in a family with autosomal recessive retinitis pigmentosa. *Mol Vis.* 1996;2:10.
- 26. McLaughlin ME, Sandberg MA, Berson EL, Dryja TP. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. *Nat Genet.* 1993;4:130-134.
- 27. Jin ZB, Mandai M, Yokota T, Higuchi K, Ohmori K, Ohtsuki F, et al. Identifying pathogenic genetic background of simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening study. *J Med Genet*. 2008;45:465-472.
- Schorderet DF, Iouranova A, Favez T, Tiab L, Escher P. IROme, a new high-throughput molecular tool for the diagnosis of inherited retinal dystrophies. *Biomed Res Int.* 2013;2013:198089.
- 29. Ali S, Riazuddin SA, Shahzadi A, Nasir IA, Khan SN, Husnain T, et al. Mutations in the betasubunit of rod phosphodiesterase identified in consanguineous Pakistani families with autosomal recessive retinitis pigmentosa. *Mol Vis.* 2011;17:1373-1380.
- 30. van der Smagt JJ, Vink A, Kirkels JH, Nelen M, ter HH, Molenschot MM, et al. Congenital posterior pole cataract and adult onset dilating cardiomyopathy: expanding the phenotype of alphaB-crystallinopathies. *Clin Genet*. 2014;85:381-385.
- 31. Huang XF, Huang F, Wu KC, Wu J, Chen J, Pang CP, et al. Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. *Genet Med.* 2015;17:271-278.
- 32. Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, et al. Next generation sequencingbased molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. *Hum Genet*. 2014;133:331-345.

- 33. Clark GR, Crowe P, Muszynska D, O'Prey D, O'Neill J, Alexander S, et al. Development of a diagnostic genetic test for simplex and autosomal recessive retinitis pigmentosa. *Ophthalmology*. 2010;117:2169-2177.
- 34. McLaughlin ME, Ehrhart TL, Berson EL, Dryja TP. Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. *Proc Natl Acad Sci U S A*. 1995;92:3249-3253.
- 35. Saga M, Mashima Y, Akeo K, Kudoh J, Oguchi Y, Shimizu N. A novel homozygous Ile535Asn mutation in the rod cGMP phosphodiesterase beta-subunit gene in two brothers of a Japanese family with autosomal recessive retinitis pigmentosa. *Curr Eye Res.* 1998;17:332-335.
- Valverde D, Baiget M, Seminago R, del RE, Garcia-Sandoval B, del RT, et al. Identification of a novel R552O mutation in exon 13 of the beta-subunit of rod phosphodiesterase gene in a Spanish family with autosomal recessive retinitis pigmentosa. VALVERDE1996. *Hum Mutat.* 1996;8:393-394.
- 37. Pozo MG, Bravo-Gil N, Mendez-Vidal C, Montero-de-Espinosa I, Millan JM, Dopazo J, et al. Reevaluation casts doubt on the pathogenicity of homozygous USH2A p.C759F. *Am J Med Genet A*. 2015;167:1597-1600.
- Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, et al. A posthoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. *Hum Mutat*. 2013;34:1721-1726.
- Zhao L, Wang F, Wang H, Li Y, Alexander S, Wang K, et al. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. *Hum Genet*. 2015;134:217-230.
- 40. Ge Z, Bowles K, Goetz K, Scholl HP, Wang F, Wang X, et al. NGS-based Molecular diagnosis of 105 eyeGENE((R)) probands with Retinitis Pigmentosa. *Sci Rep.* 2015;5:18287.
- 41. Hmani-Aifa M, Benzina Z, Zulfiqar F, Dhouib H, Shahzadi A, Ghorbel A, et al. Identification of two new mutations in the GPR98 and the PDE6B genes segregating in a Tunisian family. *Eur J Hum Genet*. 2009;17:474-482.
- 42. Shen S, Sujirakul T, Tsang SH. Next-generation sequencing revealed a novel mutation in the gene encoding the beta subunit of rod phosphodiesterase. *Ophthalmic Genet*. 2014;35:142-150.
- 43. Azam M, Collin RW, Malik A, Khan MI, Shah ST, Shah AA, et al. Identification of novel mutations in Pakistani families with autosomal recessive retinitis pigmentosa. *Arch Ophthalmol.* 2011;129:1377-1378.
- 44. Bayes M, Giordano M, Balcells S, Grinberg D, Vilageliu L, Martinez I, et al. Homozygous tandem duplication within the gene encoding the beta-subunit of rod phosphodiesterase as a cause for autosomal recessive retinitis pigmentosa. *Hum Mutat.* 1995;5:228-234.
- 45. Beheshtian M, Saee RS, Babanejad M, Mohseni M, Hashemi H, Eshghabadi A, et al. Impact of whole exome sequencing among Iranian patients with autosomal recessive retinitis pigmentosa. *Arch Iran Med.* 2015;18:776-785.
- 46. Fu Q, Wang F, Wang H, Xu F, Zaneveld JE, Ren H, et al. Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. *Invest Ophthalmol Vis Sci.* 2013;54:4158-4166.