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1 SUPPLEMENTARY INFORMATION

1.1 Additional Methods and Materials

Each RNA sample came from an independent culture grown to exponential phase with an ODggy about 0.2
or 0.4 for slow (acetate) and fast-growing (MeOH, TMA) substrates, respectively. RNAseq was performed on
a total of 69 RNA samples. Dataset descriptions and accession numbers may be found in Table SS1. With
the exception of two TMA samples, the library preparation was carried out using the ScriptSeq™v2 kit from
EpiCenter. The two TMA samples were prepared with the Illumina TruSeq™v2 kit. Three samples for growth
on methanol were generated in a previous report [57]. RNA isolation was performed as described in the methods
section of the manuscript. Mapped reads in each sample were well fit by log-normal with a standard deviation

of ~1.0.

1.1.1 Differential Expression Calling Procedures

A total of 16 datasets were considered: 8 replicates for MeOH, 5 for TMA and 3 for acetate. The zero
timepoint from the degradation study accounts for three datasets in each growth condition. Additionally, 5
MeOH and 2 TMA replicates were obtained for exponentially growing cultures. Three methods were used for
calling differentially expressed genes: DESeq2, edgeR and PoissonSeq. These three methods were chosen due to
their relatively different assumptions about underlying distributions and method for normalization. Trimmed
and mapped reads were loaded as datasets into each program without normalization. Multifactor statistical
modeling was used when performing differential expression calling, where available, taking the growth substrate
as the first factor and the library preparation method as the second factor. This step is necessary as 67% of
the total variation observed in the experiment when multifactor design is not considered is due to the library
preparation kit. When using the two factor design, the first principle component accounted for variation between
methylotrophic and acetotrophic growth, and the second accounted for differences between methylotrophic
growth substrates TMA and MeOH (Fig. S1).

Computations were performed using the R packages edgeR v3.8.5 [34], PoissonSeq v1.1.2 [35], and DESeq2
v1.6.3 [36]. Genes were considered differentially expressed when the p-value was < 0.01. All differentially
expressed genes can be found in Supplementary Table “DifferentiallyExpressed Genes.MultiFactor.xlsx". All R
scripts used to perform differential expression calling may be found in the Supplementary File “DEGComputa-
tion.zip". Differential expression calling procedures were as follows:

DESeq2 — The library preparation was defined as the first experimental factor, and growth substrate as the



Table S1 A listing of all RNA-seq datasets used in the study. The first column designates the name of the
sample file, followed by the growth condition, and the GEO database accession number for the sample.

Sample Condition Accession Number
Steady-State?®
LK1 ATCACG_L007 R1 001 MeOH® GSM2058125
LK9 TTAGGC L003_R1 001 MeOH® GSM2058137
LK17 GGCTAC L004 R1 001 MeOH® GSM2058150
PK19 CAGATC LOOM R1 001 MeOH GSM1569045
PK20 ACTTGA LOOM_ R1 001 MeOH GSM1569046
PK21 GATCAG LOOM R1 001 MeOH GSM1569047
Metcalf C2AM1 RI1.PF MeOH GSM2058211
Metcalf C2AM3_ RI1.PF MeOH GSM2058212
LK25 ATCACG_L003_ R1_001 TMA® GSM2058193
LK31 CAGATC 1004 R1 001 TMAc® GSM2058199
LK37 ATCACG_L005 R1 001 TMA® GSM2058205
Metcalf2 C2AT RI1.PF TMAA GSM2058213
Metcalf2 C2AT R2.PF TMA4 GSM2058214
LK43 CAGATC L006 R1 001 Acetate® GSM2058164
LK49 ATCACG_L007 _R1 001 Acetate® GSM2058175
LK55 CAGATC L008 R1 001 Acetate® GSM2058187
RNA Degradation StudyP
LK2 CGATGT_ L007 R1 001 GSM2058127
LK10 TGACCA L003_R1_001 MeOH 5min GSM2058139
LK18 CTTGTA 1004 R1 001 GSM2058152
LK7 ATCACG_L003_R1 001 GSM2058128
LK11 ACAGTG_L003_R1 001 MeOH 10min GSM2058141
LK19 ATCACG L005 R1 001 GSM2058154
LK3 TTAGGC L007 R1 001 GSM2058130
LK12 GCCAAT 1003 R1 001 MeOH 20min GSM2058143
LK20 CGATGT L005 R1 001 GSM2058156
LK4 TGACCA L007 R1 001 GSM2058132
LK13 CAGATC_L004 R1 001 MeOH 30min GSM2058145
LK21 TTAGGC L005 R1 001 GSM2058158
LK5 ACAGTG_L007 _R1 001 GSM2058134
LK14 ACTTGA L1004 R1 001 MeOH 60min GSM2058147
LK22 TGACCA L005 R1_001 GSM2058160
LK6 GCCAAT L1007 R1 001 GSM2058136
LK15 GATCAG L004 R1 001 MeOH 120min GSM2058148
LK23 ACAGTG_L005 R1 001 GSM2058162
LK26 CGATGT L003 R1 001 GSM2058194
LK32 ACTTGA L004 R1 001 TMA 20min GSM2058200
LK39 TTAGGC L005 R1 001 GSM2058206
LK27 TTAGGC L003 R1 001 GSM2058195
LK33 GATCAG L004 R1 001 TMA 30min GSM2058201
LK40 TGACCA L005 R1 001 GSM2058207
LK28 TGACCA L003 R1 001 GSM2058196
LK34 TAGCTT L1004 R1 001 TMA 60min GSM2058202
LK41 ACAGTG _L005 R1 001 GSM2058208
LK29 ACAGTG_L003_R1 001 GSM2058197
LK35 GGCTAC L004 R1 001 TMA 120min GSM2058203
LK42 GCCAAT L005 R1 001 GSM2058209
LK30 GCCAAT L003_R1 001 GSM2058198
LK36 CTTGTA 1004 R1 001 TMA 240min GSM2058204
2 GSM2058210

LK75 TTAGGC L005 R1 001
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second factor. DESeq2 was run using the parallel implementation and the option “addMLE=TRUE", contrast-
ing the growth conditions. Differential expression statistics were sorted by the adjusted p-value (Benjamini—
Hochberg method) and stored to file. Additionally, a variance stabilizing transformation was performed on the
data before a PCA analysis. The first two principle components were plotted to show the separation by growth
types (Fig. S1).

edgeR — The library preparation was defined as the first experimental factor followed by the growth condi-
tion. Normalization factors were computed and a generalized linear model (GLM) was estimated. The dispersion
trend over multiple genes was then calculated followed by the per gene (tag-wise) dispersion. Finally, the GLM
model was fit, and the adjusted p-value (Benjamini-Hochberg method) was computed and the data stored.

PoissonSeq — Total mapped reads for each gene were scaled by a factor 0.1 so that the PoissonSeq method
did not overflow. The differential expression calling routine was run with the “pair parameter" set to false and
the data type taken to be “two—class" (substrate and library preparation kit). A total of 100,000 permutations
were performed per comparison. Data was sorted by adjusted p-value (using the PoissonSeq default method:

permutation plug—in) and stored to file.

1.1.2 Uncertainty in Differentially Expressed Genes

A nonparametric bootstraping approach was used to estimate the uncertainty in the number of differentially
expressed genes. Briefly, the DESeq2 workflow was applied to subsets of the all the RNAseq data sets and
the counts of DEG were enumerated. All combinations of sets of RNAseq data ranging from two to the
maximum number of replicates were generated for each growth condition (MeOH, TMA and Acetate). The
Cartesian product of these sets were generated, and the DESeq2 workflow was used to estimate the total
number of differentially expressed genes between the three conditions. For a given total count of datasets
(Nyeor +Nrara+N Acetate), the average and standard deviation in the number of genes called as differentially

expressed with confidence p<0.01 were computed. Mathematically,

Ve € {MeOH, TMA, Acetate} (S1)

Vi € {2,..,N:} (S2)
Ne

SI(GS]

P = SueoH X STMA X SAcetate (84)

where ¢ is the condition, IV, is the count of datasets measured in that condition, S, is the set of all combinations



containing 2 to N, datasets and P is the product of all unique datasets. This accounted for about 26,000 sets
of differential expression combinations. At each N € 2, N, the coefficient of variation in number of DEG was
computed (Fig. S2). This analysis demonstrates that the CV decreases as additional datasets are included.
The CV is a measure of the uncertainty in the set of DEG; we estimate an uncertainty of 24-30% when using

all 16 datasest.

1.2 Additional Experimental Results
1.2.1 Half-Life Data

To assess reproducibility of the experimental procedure, correlations were computed across timepoints. The
profiles were averaged across all three replicates before correlations were computed. As can be seen from the
correlation matrix in Fig. S3a, MeOH, TMA, and acetate correlate highly within condition and cluster together.

Limited data for half-lives of genes in Methanosarcina currently exist. Only half-lives for 5 genes have been
reported from the related organism Methanosarcina mazei zm-15 [67] where they measured the half-lives of the
methyltransferase genes (mtaA1, mtaCBI) from methanol grown cultures and acetoclastic genes (pta, ack) from
acetate grown cultures. As can be seen in Figure ?7A, the half-lives we measured agree quite well and within
one order of magnitude in the worst case. These differences might be due to uncertainty in the measurements,
differences inherent to the different organisms, and the fact that Cao et al. measured half-lives at 30°C—and
showed that there are different temperature stabilities for transcripts—while we measured half-lives from cells
growing at 37°C. In general, they agree quite well and provide confidence in our measurements. The comparison
also highlights an interesting fact, that the different transcripts have different stabilities after being grown in
different conditions. This supports our hypothesis that half-lives are differentially stabilized/destabilized in
different conditions and wy the control coefficients are important to compute, likely by post-transcriptional
modification as Cao et al. concluded [67] or via small RNA regulation.

A scaled value for each of the half-lives was computed for each condition. The scaled half-life value is
computed as HLs = HL/(DT x 60) where the HL is the unscaled half-life and DT is the doubling time in that
condition in units of hr. Growth rates used for scaling of data for were taken as the average of experimentally
determined values reported in literature. For MeOH, TMA and acetate, growth rates used were 7.5hr [95, 96, 43|,
8.9hr [43] and 24.6hr (97, 95, 43], respectively. This scaled half-life represents the fraction of the cell cycle that a
transcript will remain stable. As Fig. S4 demonstrates, regardless of the growth substrate, on average the RNA
molecules persist for about the same fraction of the cell cycle. The scaled half-lives are statistically the same
across all conditions (p>0.33, t-test) with an average value of 12.7%+3.5% of the cell cycle. Because growth

rate is linearly proportional to ATP production rate [48]|, and it is generally assumed that growth rate and



growth yield are co-optimized in prokaryotic organisms [98], we can hypothesize two scenarios that cause this
constant fraction of the cell cycle. First, the cell is optimized to use as little ATP as possible while maintaining
a level capable of allowing the translation of new proteins at the correct rate and thus is linearly proportional
to the ATP production rate. Since RNA turnover is a trade-off between degradation rate and production rate,
the latter of which should be directly proportional to the energy required to ligate nucleotides into new RNA
molecules, their steady-state values should be proportional to ATP production. An alternative but related
second scenario is also possible; namely, that RNA maintains a constant fraction of the total cellular weight
regardless of the growth rate. In this scenario, it is not the ATP consumption requirement in RNA production,
but instead the production and degradation kinetics that set the steady-state amount of RNA in a cell. Since
cell mass is proportional to ATP production rate and growth rate, the steady-state RNA is indirectly related
to ATP production rate through the maintenance of constant mass fraction. One might argue that because
the ATP cost of RNA production is such a low fraction of total energy expenditure, the latter of these two

explanations is more likely.

1.2.2 Differentially Expressed Genes

The coefficient of variation (CV) computed using our uncertainty estimation method (Supplemental Section
Uncertainty in Differentially Expressed Genes) decreases as the number of RNAseq dataset replicates
increase (Fig. S2). The falling CV is consistent with prior studies that showed for DESeq (the precursor to
DESeq2) as well as other similar methods such as edgeR and PoissonSeq, the sensitivity rate (fraction of true
positives) increases with number of replicates [99, 100]. At 15 datasets, the CV is about 30% of the mean.
Linearly extrapolating the trends to 16 datasets results in a CV of 24% of the mean. Therefore, we estimate
that the uncertainty in the number of differentially expressed genes is between 24 and 30% of the total number.

Among the differentially expressed genes, four putative regulatory proteins stood out: MA0866, MA13595,
MA2212 and MA4346. We compared the expression profiles across the three substrates to DEG that had nearly
the same pattern of conservation (42 genes) and these genes were found to be highly correlated /anticorrelated
to the regulators(Fig. S14). Analysis of these similarly conserved genes leads to interesting predictions that
the regulators could be either directly regulating the group of genes, or is coregulated with them by another
transcription factor.

The first highly conserved regulator MA0866 encodes a PhoU type protein that likely plays a role in phos-
phate uptake. As expected, its expression is highly correlated with a phosphate related genes including a
phosphate transporter subunit (pstS, MA0889), nicotinate phosphoribosyltransferase (pncB, MA2533) as well
as TCA cycle enzymes citrate synthase (MA0249) and malate dehydrogenase (mdh, MA0819). Additionally,



it is anticorrelated to the gene responsible for the final step of lysine synthesis (lysA, MA0762). These results
suggest the gene could play a role in maintaining phosphate and energy balance in the cell, if it were to regulate
these enzymes.
MA2212 is a TrmB-like regulator. It is notable because it is correlated highly with acetotrophic genes ack
(MA3606), pta (MA3607), and cam (MA2556) as well as subunits of the ATP synthase (MA2433/ MA2435/ MA2440)
The final regulator with high correlation to genes with similar conservation MA4346 was specific to the

family Methanosarcina but most genes that were similarly had nonspecific or no annotated function.

1.2.3 Estimating mRNA Levels

An estimate of the average copy number of each mRNA in an average cell, N; for each of the three growth

substrates were computed using the following equation,

a
Ni = TRNA - Peell - Veell — (S5)
m;
subject to the constraint
N
MRNA = Zaimi (S6)

(2

where a; is the fraction of total mRNA mass mprna that the transcripts from a single gene accounts for, which
is taken to be linearly proportional to the RPKM values from the RNAseq data; peen is the density of an E.
coli cell taken from the CyberCell Database [101]; Veep is the volume of the cell computed from our previous
characterization of cell dimensions [85]; xrna is the mass fraction of total cell mass that is RNA, which is taken
from the metabolic model (24% of total cell dry mass) [48]; N is the total number of genes considered in the
analysis; and m; is the molar mass of the transcript of interest. Since the volume of cells grown in TMA were
not measured, but the growth rates are similar to those for cells grown in MeOH, the volume were assumed to
be the same. Total RNA for a single “average" cell was estimated to be 23.8 and 10.6 fg from MeOH/TMA and
acetate grown cells, respectively. The counts of each RNA estimated using this analysis for the three substrates
can be found in Supplementary File “EstimatedRNACounts.xlsx".

As a quality check, the numbers computed through this analysis were compared to those that were reported
in Cao et al [67] measured for M. mazei growing in MeOH and acetate using RT-qPCR as shown in Fig. S13.

In Cao et al [67], the values were originally reported per 100,000 16s-rRNA transcripts. We rescaled these



numbers to be proportional to 14,000 rRNA transcripts, the average number of ribosomal protein Rpl18p count
we measured previously [85] using a single-molecule pulldown [102]. As can be seen in the figure, all transcript
counts except mtaA2, mtaB2, and cdhB are statistically indistinguishable, suggesting that estimates for mRNA
numbers are good. The minor disagreement for the three transcripts could be due to the difference in the two

species.

1.2.4 Control Coefficients

The confounding effects of changes in transcription and degradation rates on average mRNA level that occur
with changes in growth rate can be deconvoluted. We attempt to estimate the effect of each by using a recently
reported method that computes the extent that transcription and degradation have in setting the steady-state
level of mRNA in a cell |7, 8, 9]. The analysis is based on the assumption that the cell is at steady-state,

implying the transcription rate and the degradation rate are balanced, or

ktrn:’Y’M+N'M7 (87)

where k., in the transcription rate, v is the mRNA’s degradation rate constant as computed from RNAseq
data, p is cell growth rate and M is the average copy number of a transcript. The transcription rate—which is a
proxy for change in growth rate (ribosomal count, etc.) and changes in promotion or repression of a gene—and
degradation rate—changes due to active or passive degradation by RNAses or post-transcriptional control by
sRNA—are computed per mRNA. Writing down the total differential and manipulating, the contribution of

each process can be estimated as

dkirn d d
dM = ! - trnifyz - ktrniuz- (SS)
VTR (v+n) (v +n)
Rearranging and noticing that at steady state, M = ky,., /7y yields

M B ktrn _'7+,u_7+:u
which can then be written as a relation between relative changes in transcript count due to changes in each rate,

1= dinM — dinM dinM

(S10)

where here we use | - | to denote that this value is held constant in this term. Two cases for this equation can

be considered: 1) the degradation of mRNA due to dilution is negligible, v >> pu, and 2) degradation due to



dilution cannot be neglected. In the former, the contributions are due to transcription pr and degradation pp,

or

dlny

__ dink¢rn _

L = dinM dinM (Sll>
=pr  +pp- (S12)

In the latter, the contributions are due to transcription pr, degradation pp and growth (dilution) pg, or

— dinkyy _ din(y+[p) _ din(ptly))
U = St — amst -~ — it (S13)
= pr + pD t pG- (S14)

The majority of mRNA satisfy v >> u. Therefore, we proceed neglecting pg. Dressaire et al. applied
Eqn. S11 to L. lactis growing in chemostats at different rates and found that only a few percent of genes are
degradationally controlled [8]. Esquerré et al. applied the same analysis to E. coli growing in chemostats at
several different rates [7|. Both studies ignored the dilution effects, citing the small average half-lives relative
to the doubling times studied (1-8%) similar to our average 12.7%. In contrast to these studies, we found a
significantly higher number of genes that appear to be degradationally controlled (16-28%). This percentage
was even higher when considering only genes associated with metabolic reactions (48-60%). Control coefficients
calculated between each of the three growth substrates can be found mapped onto the metabolic network in

Figs. S19 and S20.

1.3 Additional Modeling Methods and Results
1.3.1 Modifications to metabolic model

COBRAPy [103] was used to handle the flux balance computations and all changes to the metabolic model.
The M. acetivorans model (iMB745) [48] required additional improvements in order to accurately predict the
metabolic behavior when grown in the standard high-salt medium [63] used for the RNA seq experiments. All
components of this medium that could be taken up by the metabolic model are listed below and were turned

on with a default lower bound of -1000 g”;)”w‘,%.

In addition to refining the methanofuran biosynthesis pathway, the alternate aminoacylation pathway for

cysteine and the pyrrolysine biosynthesis pathways—two evolutionarily significant pathways—were added to the



Table S2 Components of high-salt medium used to grow methanogens [63]. Starred (*) metabolites currently
do not have exchange uptake reactions in model.

Core components || NaCl, MgCl, CaCl,, NaHCOj3, KCl, KHyPO4, NH4CI,
NayS", Cysteine, resazurin”

Trace elements Fe(NH4)2(SO4)2, CoCly, MnSO4, NagMoOy, NagWOy,
ZnS0y4, NiCly, CuSOy, H3BO3", NagSeO3”, nitrilotriacetic
acid”

Vitamins p-aminobenzoic acid, Ca pantothenate, riboflavin, thiamine
HCI, biotin, folic acid, vitamin Bjs, pyridoxine HCI", a-
lipoic acid”, nicotinic acid”

model. Addtionally, reactions to allow uptake of methylmercaptopropionate (MMPA) were added, and the gene-
reaction-protein rules for methylated sulfur compound metabolism were significantly revised according to new
genetic evidence [57]. The new metabolic model iST807 maintains its predictive capability from the previous
model and reproduces the methanogen’s inability to grow on methylamine substrates without pyrrolysine. The
resulting model growth rates, methane production, and carbon dioxide production are in good agreement with

the experiments (Fig. S11).

Alternate cysteine aminoacylation pathway In 2005, O’Donoghue, et al. [50] predicted the existence
of the alternate cysteine aminoacylation pathway within a handful of methanogens, including M. acetivorans,
which was later confirmed [51|. This indirect charging pathway for cysteine, shown in Fig S9, is unique to
archaeal species. In certain methanogens, such as M. jannaschii, it is the only mechanism to charge cysteine
onto its tRNA. Many archaeal species obtained the canonical cysteine charging pathway through horizontal gene
transfer, explaining the presence of both pathways within M. acetivorans. Since iMB745 did not include this
evolutionarily significant alternate cysteine charging pathway, it was incorporated into the modified metabolic
model.

Briefly, SepRS acylates the precursor O-phosphoserine onto the cysteinyl-tRNA, then SepCysS converts the
acylated O-phosphoserine into cysteine. iMB745 originally had the SepRS reaction only, leaving this pathway
incomplete. The SepCysS reaction was added to the model and connected to the canonical cysteine aminoacy-
lation reaction to complete the alternate pathway (Fig. S9). It is important to note that, to our knowledge,
the actual sulfur source in the SepCysS reaction remains unknown. However, it has been shown that sodium
sulfide provides the highest activity in vitro [104]. We decided to use hydrogen sulfide as the sulfur source
because it is a sulfide produced within the organism. The parsimonius FBA solution of the model with this
modification interestingly showed that it only uses the canonical charging pathway even if both pathways are
turned on and will only use the alternate pathway if the canonical pathway is knocked out. The RPKM values

from the RNAseq data, however, suggests that SepRS is expressed at least twice as much as CysRS on average



across MeOH, Acetate, and TMA (Table S10). In order to constrain the pathways to reflect this, flux variability
analysis was first used to determine the allowable flux ranges for SepRS and CysRS. The maximum allowable
flux through CysRS was then set to equal half that of SepRS. In iMB745, allowing any cysteine uptake led
to an overproduction of ATP and resulted in unrealistically high growth rates. To reflect media component

consumption accurately in addition to the SepRS/CysRS constraints, iST807 constrains the cysteine uptake at

mmol
gDWh

a maximum rate of 0.3 which is the uptake rate that minimized the differences between simulated and
experimental growth rate on methanol, acetate, and carbon monoxide. Dynamic flux balance analysis was also
performed to verify that this cysteine is not growth-limiting over a period of about 38 hrs as consistent with

experiment [39]. These constraints successfully forced flux through both cysteine aminoacylation pathways.

Pyrrolysine Biosynthesis Pathway MMA methyltransferase is responsible for activating MMA for a methyl
transfer to a cognate corrinoid protetin. In 2002, the crystal structure [105] of this enzyme from M. barkeri
revealed the presence of pyrrolysine (pyl) within the catalytic site. Later studies by Mahapatra, et al. [106]
on M. acetivorans showed that this methanogen could not grow on any methylamine substrates (MMA, DMA,
and TMA) without the gene for pyl-tRNA, demonstrating that pyl is required for growth on methylamine
substrates. The pathways involving pyl synthesis in iMB745 were present but flawed. First, the pyl-tRNA
charging pathway mistakenly used the alanyl-tRNA instead of the known pyl-tRNA. Second, the hypothesized
pyl biosynthesis pathways were outdated and no fluxes ran through them even when successfully simulating the
model on methylamine substrates. The model essentially allowed for growth on methylamine substrates without
the synthesis of pyl anywhere. These two errors were fixed by replacing the alanyl-tRNA with pyl-tRNA in
the pyl aminoacylation pathway and replacing the pyl biosynthesis pathway with the most recent and accepted
pathway from Gaston, et al. [107] shown in Fig. S8.

In order to force the model to recognize that pyl is required for growth on methylamine substrates, the
biomass reaction was modified to reflect amino acid use more accurately. The first modification altered the
biomass reaction to draw in aminoacylated tRNAs instead of free amino acids, keeping the coefficients the same.
This change was based on the realization that it is amino acids charged onto their tRNAs that eventually become
part of the cell biomass through protein synthesis rather than any free amino acid produced in the cell. The
second modification adds a pyl-tRNA term to the biomass when simulating growth on methylamine substrates.
For non-methylamine growth, the model sets the coefficient for pyl-tRNA to zero. For methylamine growth,
the model turns on the coefficient. This coefficient was estimated from the approximate number of CTA codons
in the M. acetivorans genome. CTA is canonically a stop codon but regulatory mechanisms exist within M.
acetivorans to express this as the pyl amino acid. Since the fraction of CTA codons actually coding for pyl

is unknown in this methanogen, it was taken to be 50% as an upper limit estimate. This gives a pyl-tRNA
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: . : _mmol pyl
biomass coefficient of 0.081 GDWoprotein

Biosynthesis Pathway During the curation of :tMB745, the methanofuran biosynthesis pathway for M. ace-
tivorans was largely hypothesized based on the known pathway from M. janaschii at the time. Since then, con-
crete experimental evidence documenting gene-reaction associations for the methanofuran biosynthesis pathway
in M. janaschii has been published by the White lab [52, 53, 54, 55]. The homologous genes MA 4436, MA06306,
and MA1475in M. acetivorans were identified and respectively incorporated into the model for the reactions
MFRS1, MFRS2, and MFRS3. MFRS6 and MFRS7 were deleted from the model to match the experimentally

verified pathway in M. janaschii.

Adding Osmolytes to Biomass Reaction In 1995, Sowers and Gunsalus [61] published a study in which
they measured the concentrations of unbound cations within Methanosarcina spp. in media with varying osmo-
larity. It was found that Mg?t, Na™, B, Zn?", Ca?", Fe?", Ni?", and Co?" concentrations remained relatively
constant despite the changing extracellular osmolarities. These unbound cations were incorporated into the
biomass reaction with the coefficients: K+, 0.4; Mg?", 0.163; Na*t, 0.017; B, 0.012; Zn?*, 0.011; Ca?", 0.0038;
Fe?", 0.0035; Ni?, 0.011; and Co?", 0.001 mmol/gDW. The osmolyte N-epsilon-acetyl-beta-lysine was included

in a the biomass expression at a ratio of 1.11 mmol/gDW.

Adding Gluconeogenesis Intermediates/Products to Biomass Reaction A recent paper measured
glycogen, gluconeogenesis fluxes and gluconeogenesis intermediate concentrations in M. acetivorans growing
on methanol in exponential growth and stationary phase [62]. The glycogen content was significantly higher
than assumed in the :MB745 model. As such, we have added/updated the biomass coefficients for glyco-
gen and these intermediates based on these new quantitative measurements. The high glycogen content (~
0.93651mmol /gDCW), consumes significant energy of the cell during growth; therefore, the ATP maintenance
cost had to be lowered to match growth experiments. A final value of 44.1 mmolATP/gDCW. Comparing
this value to the previous value of 65.0 mmolATP/gDCW indicates that nearly 33% of energy derived by the

methanogen is used in storing glycogen. This could confer evolutionary advantage when nutrients are scarce.

1.3.2 Modelling Alternate Biomasses for Different Growth Substrates

Biomass for growth on acetate and TMA were fit taking MeOH to be associated with the published biomass
coefficients. Additionally, acetate was fit using TMA as the starting biomass coefficients. Fit biomass coefficients
can be seen in Figure S15. Flux comparisons for MeOH vs Acetate and MeOH vs TMA can be seen in

Figs. S21 and S22 respectively, where it is demonstrated that significant changes to fluxes in amino acid and
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cofactor biosynthetic pathways are predicted. Many coefficients can vary significantly, as indicated by the large
standard deviations and it is unclear as to whether physiologically requirements differ. However, a handful
of biomass components were statistically different (p<0.01, t-test, n=96) in the second condition compared
with the first, possibly suggesting a different physiological requirement (a greater or smaller fraction of total
biomass when growing in one media compared to another). When comparing methylotrophic to acetotrophic
growth, our fitting procedure suggests that nickel, cobalt and AMP requirements decreases, while cellular zinc
and potassium increase. The cobalamin cofactors in methyltransferases contain cobalt and the downregulation
of these enzymes under acetotrophic growth is consistent with a decrease in requirement for cobalt [39]. The
decreased requirement for nickel is counterintuitive as methyl-coenzyme M reductase and carbon monoxide
dehydrogenase are both nickel containing and upregulated on acetate growth. Decrease in AMP requirement
could be due to slower growth relating to the phosphate balance.

The average coenzyme M (CoM) increases by a factor of 10 going from MeOH to acetate, similar to results
from a recent paper that showed CoM, and sulfide content in general, increases roughly by a factor of 2.8-3x
for acetate grown cells [82]. Interestingly, glycogen galactan and polyglucuronate are predicted to be produced
at higher levels, along with phosphorylated myo-inositol phospholipids, which are possibly used in producing
extracellular matrices that are common in cell aggregates for acetate grown M. acetivorans |97].

The fitting procedure suggests a decreased biomass requirement for adenosylcobalamin and coenzyme B
(CoB) when grown in acetate as compared to TMA. The former can be explained by the fact that methyltrans-
ferase which are composed of at least one corrinoid cofactor are severely downregulated when grown on acetate
(and generally not of use to acetotrophic methanogenesis). Most cofactors were required in higher levels for
growth on TMA than on MeOH, including coenzyme A, both the adenosinyl- and guanosinyl-coenzyme F390
analogs, succinyl-CoA and tetrahydrofolate. The reason for these increases is unclear.

The modeling indicated that several variants of coenzyme F420 was generally lower while grown on MeOH
than on acetate or TMA, however the reason for this is unclear. Reports in literature on various M. barkeri
and M. mazei strains are conflicting; one study indicating that F420 concentrations are significantly higher
comparing MeOH to acetate grown cells [108], while other studies found a higher level for acetate grown
cells [109, 110, 111]. Interestingly, one report found that different variants of the coenzyme F420 predominated
in different Methanosarcina species. Further experiment and modeling is required to uncover the role of the

various analogs and their regulation.
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Figure. S1 Principle component analysis results of the zero time RNA expression datasets computed via
DESeq2. The first component separates methylotrophic and acetotrophic growth accounting for most of the
variation seen, while the second component distinguishes the two methylotrophic substrates. The PCA reaffirms
the traditional classification of acetotrophic and methylotrophic growth as being orthogonal.
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Figure. S2 Estimated coefficient of variation in the number of differentially expressed genes as a function of
the number of RNAseq datasets considered as computed in Section S1.1.2. The CV decreases as the number of
datasets increases, suggesting the method become converge on a consistent set of differentially expressed genes.
Using these curves we estimate a CV of about 0.25-0.3 when using all 16 datasets.
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Figure. S3 Pearson correlation matrices. (A) Comparison at various time points after transcriptional arrest.
Each pixel represents the correlation between the averages of from three replicate measurements, computed over
the full expression profiles. (B) Comparison of data normalized using the procedure of DESeq2 [36] for the 8
methanol, 5 TMA and 3 acetate replicates. The three growth conditions form obvious clusters, supporting the
idea that the experiments were reproducible. Color bars shows the magnitude of the correlation coefficient.
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Figure. S4 The distributions that result after the half-lives have been normalized by doubling time in the
respective condition. The scaled half-life is a measure of the fraction of the cell cycle that an RNA molecule is
likely to persist. As can be seen, the scaled distributions overlap and the mean fraction of the cell cycle that an
RNA persists (0.127£0.035) are not statistically different (p>0.33, t-test.)
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Figure. S5 mRNA half-life statistics by class showing median and quartiles for MeOH (blue), acetate (green)
and TMA (red) growth. Percentiles were computed using the weighting method of Edgeworth [112]. The
overall range (whiskers) of the distributions are generally the same across classes, however the quartiles and
median can be significantly different, supporting the conclusions in the main text that mRNAs are selectively

stabilized /destabilized depending on function.
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Figure. S6 Comparison of RNAseq data to previous experiments. The line indicates the exact diagonal. (A) A
comparison of fold change between conditions computed from our RNAseq data of this study to qtRT-PCR or
Microarray data from previous studies shows a linear relationship with a slope of 0.96 and an overall correlation
of 0.82. (B) A comparison of fold change from our RNAseq data to fold change in reported protein abundances

demonstrates a correlation of 0.63.
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Figure. S7 Count of differentially expressed genes where p < 0.01 predicted by each method when comparing;:
(A) Methanol vs. Acetate, (B) Methanol vs. TMA, and (C) TMA vs. Acetate. In general DESeq2 is the most
conservative method. The overlap drastically reduces the number of DEG and provides a more certain set of
predictions.
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Figure. S9 Alternate cysteine aminoacylation pathway involving SepRS and SepCysS enzymes.
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57, 114, 115, 96, 27, 74]. B) Growth yields (gDW /mol substrate) [97, 116, 117]. Note that experimental TMA
growth yield was computed from TMA growth rate and a fitted TMA uptake rate as there were no experimental
uptake values available. C) CHy production rate (mmol/hr/gDW) [43, 118, 117, 119]
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Figure. S12 Metabolic map of the updated M. acetivorans model published with this paper. Red dots denote
reactions and metabolites while edges describe the connection of metabolites through reactions. In general,
reactions are drawn such that metabolic flux flows down and to the right; however, there are many exceptions
notably in gluconeogenesis and cofactor/lipid metabolism. Reactions are colored by metabolic classification.
This map is available in format in formats compatible with Cytoscape [64] and Escher [65] in the Supporting
File “ModelAndMaps.zip".
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Figure. S13 A comparison of mRNA copies per cell estimated via our RNAseq data, and previous studies that
utilized RT-qPCR to quantify transcript abundance in the related organism Methanosarcina mazei [67] grown
in (A) methanol and (B) acetate. Error bars are standard deviation of the mean for 3 replicates. Values from
Cao et al. are for cells grown at 30°C compared to our cells which were grown at 37°C. All values agree within

uncertanties except for cdh, mtaA2, and mtaB2 indicating the organisms have similar expression profiles and
our estimates for mRNA counts are good.
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Figure. S14 Heatmaps of relative expression for 4 putative regulators that are differentially expressed between
at least one pair of conditions. Each regulator is highly conserved among the Methanosarinales. MA1395
is highly conserved among most methanogens and encodes for a nickel response regulator. The regulator is
indicated in the title of each heatmap along with the correlation of the regulator’s expression to the other genes
that have the same conservation pattern.
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Figure. S15 Biomass coefficients after fitting metabolic flux distributions to (green circles) compared with
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Figure. S17 Conservation of the genes that are differentially expressed between MeOH and TMA across the
tree of methanogens. Each vertical bar indicates that a homolog for the differentially expressed gene exists
in the indicated species (computed as the bidirectional best hits functionality in the ITEP software [92] with
an E-value cut-off of 1077 for a database of ~125000 proteins). Most differentially expressed genes are highly
conserved among the Methanosarcinales; however a core set of genes are conserved across all methanogens.
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Figure. S18 Conservation of the genes that are differentially expressed between TMA and Acetate across the
tree of methanogens. Each vertical bar indicates that a homolog for the differentially expressed gene exists
in the indicated species (computed as the bidirectional best hits functionality in the ITEP software [92| with
an E-value cut-off of 1077 for a database of ~125000 proteins). Most differentially expressed genes are highly
conserved among the Methanosarcinales; however a core set of genes are conserved across all methanogens.
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are affected by both transcription and degradation rate.
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Figure. S20 A mapping of the control coefficients for changing mRNA expression levels between TMA and
acetate. Red indicate reactions where mRNA levels are regulated by shifts in the degradation rate, while green
indicates mRNA level shifts due to changes in transcription rate. Blue indicates reactions where mRNA levels
are affected by both transcription and degradation rate.
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Figure. S21 Changes in metabolic pathway usage that is consistent with the differentially expressed genes
comparing MeOH to acetate growth. Pathways with significant changes in fluxes are shown in red (up in acetate)
and cyan (down in acetate) while reactions showing no change in flux (change in flux <2x) or having no associated
genes in gray. Significant metabolic changes are observed across nearly all of metabolism, however no changes
are are predicted for coenzyme A and M biosynthesis, thiamine metabolism, or leucine/isoleucine/methionine
synthesis. Additionally, only changes in phosphoethanolamine and phosphoglycerol based lipids.
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Figure. S22 Changes in metabolic pathway usage that is consistent with the differentially expressed genes
comparing MeOH to TMA growth. Pathways with significant changes in fluxes are shown in red (up in TMA)
and cyan (down in TMA) while reactions showing no change in flux (change in flux <2x) or having no associated
genes in gray. Cofactor and vitamin metabolism show the most significant changes, along with central amino
acid metabolism (including production of a-ketoglutarate and malate) and the pathway producing glucosaminyl
archaetidyl-myo-inositol lipids.
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