

Fig S7. Impact of Fur and PvdS on the PpqsA and PpqsR promoter regions

(A-D) Maximal promoter activity in the strains carrying the transcriptional fusions PpqsA::lux (A and B) or PpqsR::lux (C and D). White bars indicate the *pvdS*-proficient genetic backgrounds ($\Delta 4AQ$ and $\Delta 5AQ$); grey bars indicate the *pvdS*-mutant genetic backgrounds ($\Delta 4AQ\Delta pvdS$ and $\Delta 5AQ\Delta pvdS$). Strains were grown in LB or in LB supplemented with 40 μ M HHQ or PQS, as indicated. Diamonds indicate the pyoverdine levels measured in culture supernatants in the *pvdS*-proficient (white diamonds) or *pvdS*-mutant (grey diamonds) genetic backgrounds. Promoter activity is reported as Relative Light Units (RLU)/OD₆₀₀; pyoverdine levels are reported as OD₄₀₅ normalized to cell density (OD₆₀₀). (E) Maximal *PpqsA::lux* and *PpqsR::lux* promoter activity is reported as Relative Light Units (RLU)/OD₆₀₀. (F) *E. coli* H1717 cells containing the plasmids indicated and grown for 24 h at 37°C on McConkey agar supplemented with 10 μ g ml⁻¹ Tc and 20 μ M FeSO4. Red-staining indicates the ability to ferment lactose and hence the binding of Fur to the target promoter. miniCTX-PpchR::lux, positive control (red colonies); miniCTX-lux, negative control (white colonies).