Sample	Specimen	Tumour	Tissue	Patient	Age	Ethnicity	RT	Gender	BMI	Stage	Location	Site
10T	FF	Sporadic	Т	10	63	MA	Ν	М	24.7	III	Distal	Descending colon
11T	FF	Sporadic	Т	11	84	С	Ν	М	28.7	Ι	Proximal	Transverse colon
13T	FF	HNPCC	Т	13	46	MA	Ν	F	22.3	II	Proximal	Caecum
14T	FF	Sporadic	Т	14	80	MA	Ν	М	23.5	IV	Distal	Sigmoid colon
15T	FF	Sporadic	Т	15	74	Ι	Ν	М	24.2	II	Distal	Rectum
18T	FF	HNPCC	Т	18	44	MA	Ν	F	NA	Ι	Proximal	Transverse colon
20T	FF	HNPCC	Т	20	NA	MA	Ν	F	NA	NA	Proximal	Caecum
23T	FF	Sporadic	Т	23	70	MA	Ν	F	NA	III	Distal	Splenic flexure
33T	FF	Sporadic	Т	33	69	MA	Ν	F	28.7	III	Distal	Rectum
34T	FF	Sporadic	Т	34	70	MA	Ν	F	25.4	III	Distal	Rectum
37T	FF	Sporadic	Т	37	49	В	Ν	М	20	III	Distal	Proximal descending
3T	FF	Sporadic	Т	3	70	MA	Ν	М	29.5	III	Distal	RSJ
41T	FF	Sporadic	Т	41	71	MA	Ν	F	31.6	II	Distal	Rectum
44T	FF	Sporadic	Т	44	36	В	Ν	М	18.2	III	Proximal	Caecum
48T	FF	Sporadic	Т	48	37	MA	Ν	М	30.7	IV	Distal	NA
4T	FF	HNPCC	Т	4	44	MA	Ν	F	26.7	III	Proximal	Caecum
55T	FF	Sporadic	Т	55	64	MA	Ν	М	25.8	III	Distal	NA
56T	FF	Sporadic	Т	56	54	MA	Ν	F	26.9	III	Distal	RSJ
60T	FF	Sporadic	Т	60	65	MA	Ν	М	NA	II	Distal	RSJ
63T	FF	Sporadic	Т	63	78	С	Ν	F	26.8	II	Proximal	Hepatic flexure

Supplemental Table 1a: Participant-level characteristics. FF = fresh-frozen; Tissue type: T=tumour tissue; Ethnicity: MA=mixed ancestry, C = caucasian, B = black, I=indian; Gender: M=male, F=female; RT=radiotherapy; N=No RT received before surgery; Stage: Dukes stage of tumour tissue.

Supplemental Table 1b. Bacterial copy numbers detected (per 50ng of DNA extracted from tissue). ETBF: Enterotoxigenic *B. fragilis*; EPEC=Enteropathogenic *E. coli*; EF=E. faecalis; FB=Fusobacterium; afaC=afaC gene from AIEC; CIB=Colibactin gene from AIEC.

Sample	ETBF	EPEC	EF	FB	afaC	CIB
10N	12	0	NA	8	2177	0
10T	139	0	0	1	170	0
11N	0	0	0	0	0	0
11T	0	0	0	0	0	0
13N	374	0	0	65	3787	0
13T	3186	0	1	3273	19200	0
14N	3423	0	331	67	261	0
14T	987	0	151	271	729	0
15N	2	0	0	9	4787	1172
15T	0	0	0	17	9887	1707
18N	0	0	5	377	1937	0
18T	0	0	3	2610	7593	994
20N	3	0	NA	0	0	0
20T	13	0	NA	2	0	0
23N	5	0	1	26	0	0
23T	3	0	250	4820	0	0
33N	0	0	0	3	0	677
33T	0	0	0	14	0	622
34N	0	52	0	25	30900	1263
34T	3	63	1	289	33433	1400
37N	1620	0	NA	1897	0	3693
37T	35300	0	0	4773	0	1800
3N	0	0	0	1	0	0
3T	0	0	0	3	0	0
41N	0	0	NA	69	0	0
41T	0	0	NA	213	2	0
44N	0	3037	0	1110	1197	36
44T	0	1111	0	68700	156	0
48N	2328	0	0	1	0	0
48T	1106	0	0	44	0	0
4N	0	0	0	20	195	0
4T	3	0	0	60767	6537	0
55N	4	0	0	99	0	5777
55T	3	0	0	9	0	536
56N	698	0	0	46	0	0
56T	648	0	0	378	0	0
60N	20	0	0	3	2750	78
60T	0	0	0	22	5237	69
63N	0	0	NA	73	0	0
63T	0	13	4	2730	0	0

Model specified	Number of samples/category	$FDR \leq 0.05, FC \geq 2$
EF+ vs. EF–	7 vs. 10	128
FB-H vs. FB-L/N	7 vs. 12	3
afaC-H vs. afaC-L/N	5 vs. 14	0
afaC+ vs. afaC–	13 vs. 8	0
ClB+ vs. ClB–	6 vs.13	0
ETBF-H vs. ETBF L/N	3 vs. 16	0
ETBF+ vs. ETBF-	10 vs. 9	0
EPEC+ vs. EPEC-	3 vs. 16	0

Supplemental Table 2. Summary of differential gene expression analyses conducted for *tumour* samples showing the number of transcript clusters differentially expressed for each comparison made.

11. Ingli-level infection, D. low-level infection, 14. no infection, 1 D. 1 usobacterium, D1. D. jac
--

Supplemental Table 3: Summary of differential gene expression analyses conducted for *normal* samples showing the number of transcript clusters differentially expressed for each comparison made.

Model specified	Number of samples/category	$FDR \le 0.05$ & FC \ge 2
ETBF+ vs. ETBF-	10 vs. 9	0
ETBF-H vs. ETBF-L/N	4 vs. 20	0
ClB+ vs. ClB-	6 vs. 13	0
afaC+ vs. afaC-	10 vs. 9	0
afaC-H vs. afaC-L/N	3 vs. 16	0
EF+ vs. EF-	4 vs. 10	0
FB-H vs. FB-L/N	3 vs. 16	0
FB+ vs. FB-	16 vs. 3	0

H: high-level infection; L: low-level infection; N: no infection; FB: Fusobacterium; EF: E. faecalis

	Group A $(N = 9)$	Group B (N = 10)	P (Fisher's exact)
MSI-H	3	4	1.00
HNPCC+	2	2	1.00
Stage*			
I/II	2	5	0.37
III/IV	6	5	0.37
Site			
Proximal colon	2	5	0.35
Distal colon	5	2	0.35
Rectum	2	3	1.00
Age*			
<i>≤</i> 60	2	4	0.63
> 60	6	6	1
Gender			
Male	5	4	0.66
Female	4	6	0.66
Ethnicity			
Mixed ancestry	8	5	0.14
Black	0	2	0.47
White	0	3	0.2
Indian	1	0	0.47

Supplemental Table 4: Descriptive characteristics by CRC subtype.

*One case had missing information

Ingenuity Canonical Pathways	-log(p-	Downregulat	Upregulated
EIF2 Signaling	13.4	8/169 (5%)	109/169 (64%)
Role of BRCA1 in DNA Damage Response	10.6	0/60 (0%)	46/60 (77%)
Protein Ubiquitination Pathway	9.27	20/249 (8%)	126/249 (51%)
Cell Cycle Control of Chromosomal Replication	9.25	1/27 (4%)	25/27 (93%)
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	8.48	1/48 (2%)	32/48 (67%)
Mitotic Roles of Polo-Like Kinase	8.32	4/63 (6%)	39/63 (62%)
Hereditary Breast Cancer Signaling	7.29	7/111 (6%)	61/111 (55%)
Role of CHK Proteins in Cell Cycle Checkpoint Control	6.52	4/55 (7%)	36/55 (65%)
tRNA Charging	5.72	0/38 (0%)	26/38 (68%)
RAN Signaling	5.61	0/16 (0%)	15/16 (94%)
Mismatch Repair in Eukaryotes	5.61	0/16 (0%)	13/16 (81%)
Cell Cycle: G1/S Checkpoint Regulation	4.86	7/63 (11%)	32/63 (51%)
Regulation of eIF4 and p70S6K Signaling	4.54	10/141 (7%)	72/141 (51%)
Cyclins and Cell Cycle Regulation	4.46	10/77 (13%)	36/77 (47%)
ATM Signaling	4.09	2/59 (3%)	31/59 (53%)
Telomere Extension by Telomerase	4.09	0/15 (0%)	14/15 (93%)
Purine Nucleotides De Novo Biosynthesis II	4.03	1/11 (9%)	8/11 (73%)
DNA Double-Strand Break Repair by Homologous Recombination	3.60	0/14 (0%)	10/14 (71%)
DNA Double-Strand Break Repair by Non- Homologous End Joining	3.60	0/14 (0%)	11/14 (79%)
DNA damage-induced 14-3-3"€ Signaling	3.47	3/19 (16%)	11/19 (58%)
Estrogen-mediated S-phase Entry	3.45	3/24 (13%)	16/24 (67%)

Supplemental Table 5a: Top 20 most significant IPA canonical pathways in group B vs. group A samples of our cohort.

Ingenuity Canonical Pathways	-log(p- value)	Downregulate d	Upregulated
Antigen Presentation Pathway	9.28	1/34 (3%)	28/34 (82%)
IGF-1 Signaling	8.40	14/96 (15%)	46/96 (48%)
Glucocorticoid Receptor Signaling	8.38	24/256 (9%)	106/256 (41%)
Role of NFAT in Regulation of the Immune Response	8.31	14/158 (9%)	74/158 (47%)
CD28 Signaling in T Helper Cells	7.83	9/107 (8%)	55/107 (51%)
OX40 Signaling Pathway	7.71	2/46 (4%)	32/46 (70%)
Role of Tissue Factor in Cancer	7.35	11/107 (10%)	52/107 (49%)
Cdc42 Signaling	7.21	8/121 (7%)	61/121 (50%)
B Cell Receptor Signaling	7.17	16/167 (10%)	73/167 (44%)
Leukocyte Extravasation Signaling	6.76	13/191 (7%)	85/191 (45%)
Integrin Signaling	6.68	18/194 (9%)	81/194 (42%)
Protein Ubiquitination Pathway	6.54	21/251 (8%)	101/251 (40%)
Virus Entry via Endocytic Pathways	6.51	10/89 (11%)	43/89 (48%)
Caveolar-mediated Endocytosis Signaling	6.19	6/71 (8%)	38/71 (54%)
HGF Signaling	6.16	12/104 (12%)	47/104 (45%)
PI3K/AKT Signaling	6.14	13/120 (11%)	53/120 (44%)
IL-17 Signaling	5.94	4/72 (6%)	40/72 (56%)
Type I Diabetes Mellitus Signaling	5.63	3/100 (3%)	53/100 (53%)
Prostate Cancer Signaling	5.61	7/80 (9%)	40/80 (50%)
PKCëü Signaling in T Lymphocytes	5.60	7/107 (7%)	52/107 (49%)

Supplemental Table 5b: Top 20 most significant IPA canonical pathways in group B vs. group A samples of the Jorissen cohort.

Upstream Regulator	Molecule Type	Activation	p-value of
CDKN1A	Other	-3.688	3.68E-17
E2F1	transcription regulator	5	1.91E-15
MYC	transcription regulator	7.745	1.84E-14
XBP1	transcription regulator	7.864	5.63E-14
let-7	microRNA	-7.67	2.62E-13
MYCN	transcription regulator	5.696	1.88E-12
RB1	transcription regulator	-4.904	1.91E-12
CDKN2A	transcription regulator	-5.151	3.04E-12
NFE2L2	transcription regulator	6.705	3.33E-10
E2f	Group	3.208	8.82E-10
TBX2	transcription regulator	5.857	2.86E-09
PTGER2	G-protein coupled receptor	5.092	4.28E-09
EP400	Other	4.029	7.37E-09
CCND1	transcription regulator	4.56	8.15E-09
NUPR1	transcription regulator	-9.207	3.79E-08
miR-1 (and other miRNAs w/seed GGAAUGU)	mature microRNA	-7.472	1.92E-07
E2F2	transcription regulator	2.5	2.75E-07
RICTOR	Other	-7.97	4.30E-07
Rb	Group	-4.619	5.80E-07
KDM5B	transcription regulator	-5.879	3.53E-06

Supplemental Table 6a: Top 20 most significant upstream regulators predicted to be significantly altered in group B vs. group A samples in **our cohort**, with absolute activation z-scores \geq 2. Chemical upstream regulators were excluded

Upstream Regulator	Molecule Type	Activation z-score	p-value of overlap
TGFB1	growth factor	7.62	4.62E-43
IFNG	cytokine	11.73	9.13E-42
TP53	transcription regulator	4.115	1.14E-41
TNF	cytokine	11.051	7.45E-33
IL2	cytokine	6.836	3.86E-26
STAT3	transcription regulator	6.512	1.81E-23
IFNA2	cytokine	8.837	7.99E-23
OSM	cytokine	7.171	1.63E-22
CD40LG	cytokine	7.058	9.83E-22
IL4	cytokine	5.298	4.38E-21
CD3	complex	-4.992	5.04E-21
IL1B	cytokine	10.491	1.23E-20
HRAS	enzyme	2.703	1.50E-20
IL6	cytokine	8.821	8.31E-20
HGF	growth factor	5.829	1.13E-19
APP	other	4.657	1.50E-19
Interferon alpha	group	8.861	1.51E-19
NFKBIA	transcription regulator	4.071	2.99E-19
Vegf	group	7.696	2.77E-18
CSF2	cytokine	8	3.87E-18

Supplemental Table 6b: Top 20 most significant upstream regulators predicted to be significantly altered in group B vs. group A samples in the **Jorissen cohort**, with absolute activation z-scores \geq 2. Chemical upstream regulators were excluded.

Upstream Regulator	Molecule Type	Activation	p-value of	Activation	p-value of
BAX	Transporter	3.223	0.0103	3.471	9.67E-06
CD28	transmembrane receptor	-6.198	0.0313	-3.741	4.54E-13
KDM5B	transcription regulator	-5.879	3.53E-06	-4.241	3.05E-07
TSC22D1	transcription regulator	2.236	0.00386	2.449	0.00112
E2F2	transcription regulator	2.5	2.75E-07	2.63	0.00495
SREBF1	transcription regulator	3.145	0.00983	2.371	0.00225
ATF4	transcription regulator	4.22	0.000396	3.736	0.000108
FOXM1	transcription regulator	4.498	1.65E-05	3.503	0.000101
E2F1	transcription regulator	5	1.91E-15	3.969	3.23E-08
NFE2L2	transcription regulator	6.705	3.33E-10	4.295	5.58E-07
XBP1	transcription regulator	7.864	5.63E-14	7.336	1.58E-10
Irgm1	Other	-4.101	0.00292	-4.208	5.15E-06
BID	Other	2.121	0.0136	3.302	0.000496
APP	Other	2.403	0.00363	4.657	1.50E-19
PRNP	Other	2.714	0.034	2.283	2.34E-05
RAB1B	Other	2.864	0.00401	2.469	0.00657
SCAP	Other	3.59	0.00525	2.652	0.0429
GAST	Other	4.8	0.0156	3.616	0.00011
CD24	Other	5.385	0.0145	2.853	4.10E-10
let-7	microRNA	-7.67	2.62E-13	-2.755	5.97E-07
miR-124-3p (and	mature microRNA	-8.019	3.20E-05	-7.563	3.17E-12
miR-1 (and other	mature microRNA	-7.472	1.92E-07	-6.004	3.74E-12
miR-16-5p (and	mature microRNA	-7.363	8.80E-06	-4.226	1.12E-08
miR-155-5p	mature microRNA	-5.855	0.00501	-5.971	4.12E-15
miR-30c-5p (and	mature microRNA	-5.81	0.00016	-4.682	4.68E-09
let-7a-5p (and other	mature microRNA	-5.531	0.0158	-2.946	0.00713
miR-291a-3p (and	mature microRNA	-4.991	0.0457	-2.811	0.000176
miR-145-5p (and	mature microRNA	-3.312	0.0471	-4.289	8.14E-05
miR-34a-5p (and	mature microRNA	-2.707	0.0207	-2.88	2.14E-06
PIM1	Kinase	2.113	0.0221	2.175	0.0018
ATM	Kinase	2.685	0.000793	2.635	1.93E-06
ANGPT2	growth factor	5.468	0.000382	5.213	2.70E-10
HGF	growth factor	7.825	0.00285	5.829	1.13E-19
caspase	Group	2.538	0.016	2.55	0.0373
Jnk	Group	3.323	0.0293	5.8	8.19E-12
PTGER2	G-protein coupled	5.092	4.28E-09	2.702	0.0102
	receptor				
CAT	Enzyme	-2.745	0.025	-3.046	7.31E-12
PLA2G2A	Enzyme	2.228	0.0108	2.559	0.00036
PIN1	Enzyme	2.534	0.0128	2.107	0.00232
CD38	Enzyme	4.713	0.0189	5.897	5.13E-07
IL3	Cytokine	3.316	0.0132	4.617	4.88E-08
IL5	Cytokine	5.279	0.0306	7.804	1.99E-14
CSF2	Cytokine	8.068	0.000137	8	3.87E-18
CD2	Complex	-7.035	0.00874	-4.992	5.04E-21

Supplemental Table 6c: Upstream regulators predicted to be significantly altered in **our cohort and the Jorissen cohort** in group B vs. group A samples, with absolute activation z-scores ≥ 2 . Chemical upstream regulators are not shown.

Categories	Diseases or Functions	p-Value	Activation
Cell Cycle, DNA Replication, Recombination, and Repair	checkpoint control	7.43E-16	3.38
DNA Replication, Recombination, and Repair	DNA replication	5.96E-14	2.439
DNA Replication, Recombination, and Repair	repair of DNA	1.05E-11	3.485
Cell Cycle	cell cycle progression	5.97E-11	3.578
Infectious Disease	infection of cells	7.81E-09	9.811
Gene Expression, Protein Synthesis	translation of RNA	1.02E-08	-3.348
Cell Cycle	M phase	1.28E-08	3.17
Gene Expression, Protein Synthesis	translation of mRNA	1.93E-08	-3.348
Cellular Compromise, DNA Replication, Recombination, and Repair	damage of chromosomes	2.05E-08	-3.861
DNA Replication, Recombination, and Repair	metabolism of DNA	6.24E-08	3.059
Cellular Compromise, DNA Replication, Recombination, and Repair	breakage of chromosomes	1.74E-07	-3.422
Cell Cycle	interphase	2.32E-07	3.233
Cell Cycle	cycling of centrosome	5.55E-07	2.759
Infectious Disease	infection by RNA virus	5.75E-07	10.075
Infectious Disease	infection by HIV-1	5.77E-07	9.176
Infectious Disease	infection of tumour cell lines	6.62E-07	7.739
Infectious Disease, Reproductive System Disease	infection of cervical cancer cell lines	6.76E-07	7.737
Cell Cycle, DNA Replication, Recombination, and Repair	S phase checkpoint control	6.85E-07	2.23
Cell Cycle, DNA Replication, Recombination, and Repair	checkpoint control of tumour cell lines	7.64E-07	2.059
Cell Cycle	senescence of cells	1.17E-06	-3.239

Supplemental Table 7a: Top 20 most significantly different IPA diseases and functions group B vs. group A samples in our cohort. A p-value of overlap of 0.05 and lz-scorel cutoff of 2 was used.

Supplemental Table 7b: Top 20 most significantly different IPA diseases and functions group B vs. group A samples in the Jorissen cohort. A p-value of overlap of 0.05 and lz-scorel cutoff of 2 was used.

Categories	Diseases or Functions	p-Value	Predicted	Activation
Cellular Growth and Proliferation	proliferation of cells	6.09E-46	Increased	6.123
Cellular Movement	cell movement	2.13E-35	Increased	7.194
Cellular Movement	migration of cells	1.42E-33	Increased	7.233
Cellular Movement	invasion of cells	3.58E-32	Increased	4.663
Hematological System	quantity of leukocytes	1.71E-31	Increased	5.323
Cell Death and Survival	cell death of immune cells	8.35E-30	Increased	3.67
Hematological System Development and Function, Tissue Morphology	quantity of blood cells	1.50E-28	Increased	4.982
Cell Death and Survival	cell death of blood cells	1.52E-28	Increased	3.468
Cancer	advanced malignant tumour	2.44E-28	Increased	2.61
Cancer	growth of tumour	6.45E-28	Increased	3.179
Infectious Disease	Viral Infection	9.93E-28	Increased	5.851
Cancer	metastasis	3.59E-27	Increased	2.61
Cellular Function and	function of blood cells	7.51E-26	Increased	2.927
Cellular Development, Cellular Growth and Proliferation, Hematological System Development and Function	proliferation of immune cells	1.34E-25	Increased	2.709
Cellular Function and Maintenance	function of leukocytes	2.27E-25	Increased	2.715
Cellular Development, Cellular Growth and Proliferation	proliferation of tumour cell lines	8.51E-25	Increased	3.402
Cellular Movement	cell movement of tumour cell lines	4.11E-24	Increased	4.435
Cellular Movement	cell movement of blood cells	5.40E-24	Increased	8.081
Cellular Development, Cellular Growth and Proliferation	proliferation of blood cells	6.64E-24	Increased	2.627
Cellular Movement	migration of blood cells	9.14E-24	Increased	8.181

Categories	Diseases or functions annotation	p-value	Activation z score	p-value (Jorissen)	Activation z score. (Jorissen)
Protein Synthesis	metabolism of protein	0.000524	2.722	4.07E-09	2.824
Molecular Transport, Protein Trafficking	transport of protein	0.0022	3.648	1.25E-11	2.364
Cell Death and Survival	cell viability of tumour cell lines	0.000651	7.672	3.49E-14	4.475
Cell Death and Survival	cell survival	0.00393	8.121	6.58E-22	7.171
Cellular Growth and Proliferation	proliferation of cells	0.0019	8.856	6.09E-46	6.123
Infectious Disease	infection by lentivirus	3.47E-06	9.31	4.27E-08	7.254
Infectious Disease	HIV infection	4.09E-06	9.419	6.95E-08	7.356
Infectious Disease	infection by Retroviridae	4.78E-06	9.423	5.37E-08	7.442
Infectious Disease	infection of cells	7.81E-09	9.811	1.49E-11	7.583
Infectious Disease	infection by RNA virus	5.75E-07	10.075	2.01E-10	7.491
Infectious Disease	Viral Infection	9.10E-05	10.224	9.93E-28	5.851

Supplemental Table 7c: IPA diseases and functions categories shared between subgroups in our cohort (columns 3&4) and that of the Jorissen cohort (columns 5&6). A p-value of overlap of 0.05 and lz-scorel cutoff of 2 was used.

Supplemental Table 8. PARADIGM-derived abstract processes significantly altered (FDR ≤ 0.05 , absolute median difference between subgroups ≥ 0.25) between RPMM-subgroups in our cohort as well as the Jorissen cohort.

Integrated pathway level (IPL)	FDR	Subgro up diff.	FDR (Jorissen)	Subgro up diff. (Jorisse n)
negative_regulation_of_DNA_binding_(abstract)	6.31E-03	2.7	7.76E-16	2.6
anoikis_(abstract)	3.66E-02	2.2	3.68E-16	3.3
protein_catabolic_process_(abstract)	8.22E-04	1.9	3.81E-15	1.2
G2/M_transition_DNA_damage_checkpoint_(abstr act)	2.26E-02	1.9	7.77E-15	1.6
response_to_radiation_(abstract)	4.74E-02	1.7	8.62E-17	2.3
DNA_damage_checkpoint_(abstract)	1.27E-03	1.6	1.99E-04	0.9
regulation_of_transcription_(abstract)	1.21E-03	1.6	7.59E-04	0.6
prostaglandin_biosynthetic_process_(abstract)	2.36E-02	1.3	3.58E-07	0.7
spindle_assembly_(abstract)	1.99E-02	1.2	1.37E-02	0.6
regulation_of_mitotic_centrosome_separation_(abs tract)	3.72E-03	1.2	3.22E-02	0.3
protein_folding_(abstract)	2.24E-03	1.2	7.27E-04	0.9
G1/S_transition_checkpoint_(abstract)	8.83E-03	1.0	1.59E-03	0.4
Golgi_organization_(abstract)	8.32E-03	1.0	4.35E-02	0.6
activation_of_caspase_activity_by_cytochrome_c_ (abstract)	2.64E-02	0.8	3.34E-16	1.0
cell_cycle_arrest_(abstract)	3.09E-02	-1.2	2.08E-06	-0.5
ribosome_biogenesis_(abstract)	3.24E-02	-2.9	8.79E-13	-2.7

Subgroup diff.: median difference in PARADIGM activity score between each subgroup. The first two columns represent the FDR and difference in medians for our cohort

Supplemental Table 9: comparison of canonical pathways with particular biological interest in B group vs. A group CRCs compared to MSI vs. MSS status in the same cohort.

Ingenuity Canonical Pathways	-log(p- value) (MSI vs. MSS)	Down- regulated (MSI vs. MSS)	Up- regulated (MSI vs. MSS)	-log(p- value) (group B vs. A)	Down- regulated (group B vs. A)	Up- regulate d (group B vs. A)
Antigen Presentation Pathway	6.28	1/34 (3%)	22/34 (65%)	9.28	1/34 (3%)	28/34 (82%)
Colorectal Cancer Metastasis Signaling	4.65	46/230 (20%)	67/230 (29%)	5.27	20/230 (9%)	89/230 (39%)
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	3.61	36/179 (20%)	64/179 (36%)	3.52	18/179 (10%)	64/179 (36%)
VEGF Signaling	2.73	19/89 (21%)	25/89 (28%)	3.61	10/89 (11%)	36/89 (40%)
RoleofPatternRecognitioninReceptorsinRecognitionofBacteria and Viruses	2.53	17/118 (14%)	42/118 (36%)	2.51	8/118 (7%)	46/118 (39%)
IL-17 Signaling	2.47	12/72 (17%)	29/72 (40%)	5.94	4/72 (6%)	40/72 (56%)
IL-8 Signaling	2.19	32/183 (17%)	55/183 (30%)	4.14	15/183 (8%)	71/183 (39%)
Protein Ubiquitination Pathway	1.32	40/251 (16%)	90/251 (36%)	6.54	21/251 (8%)	101/251 (40%)
Role of BRCA1 in DNA Damage Response	1.13	12/61 (20%)	16/61 (26%)	1.85	12/61 (20%)	17/61 (28%)
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	7.53E-01	13/49 (27%)	13/49 (27%)	1.79	7/49 (14%)	17/49 (35%)
ATM Signaling	4.80E-01	9/59 (15%)	18/59 (31%)	2.77	6/59 (10%)	25/59 (42%)

Probeset ID	Gene symbol	FDR (MSI vs. MSS)	FC (MSI vs. MSS)	FDR (group B vs. group A)	FC (group B vs. group A)	Relative subtype- specific effect
201137_s_at	HLA-DPB1	3.0E-06	2.4	4.0E-14	3.6	increased
203932_at	HLA-DMB	3.3E-09	2.3	3.1E-10	2.4	increased
205671_s_at	HLA-DOB	3.7E-05	1.6	1.4E-02	1.3	decreased
208894_at	HLA-DRA	4.0E-06	3.1	9.9E-13	5.2	increased
209480_at	HLA-DQB1	9.9E-03	1.8	6.4E-03	1.8	decreased
209823_x_at	HLA-DQB1	2.3E-06	2.3	1.2E-12	3.3	increased
210982_s_at	HLA-DRA	2.0E-06	3.0	5.8E-13	4.7	increased
211654_x_at	HLA-DQB1	2.1E-05	2.1	5.5E-07	2.3	increased
211656_x_at	HLA-DQB1	1.1E-05	1.9	1.8E-10	2.4	increased
211990_at	HLA-DPA1	1.7E-06	2.8	4.0E-10	3.6	increased
211991_s_at	HLA-DPA1	5.7E-07	3.1	2.9E-12	4.4	increased
212998_x_at	HLA-DQB1	1.2E-05	2.7	1.4E-08	3.4	increased
212999_x_at	HLA-DQB1	1.5E-03	1.7	4.2E-04	1.7	increased
213537_at	HLA-DPA1	4.0E-06	2.6	1.9E-07	2.8	increased
213831_at	HLA-DQA1	8.2E-03	2.1	1.3E-05	3.0	increased
217362_x_at	HLA-DRB6	5.2E-07	1.7	4.0E-10	1.9	increased
217478_s_at	HLA-DMA	7.8E-08	3.0	4.4E-10	3.4	increased
226878_at	HLA-DOA	1.5E-05	1.9	2.2E-06	1.9	increased
236203_at	HLA-DQA1	8.2E-04	1.6	3.3E-03	1.5	decreased

Supplemental Table 10: Comparison of HLA genes significantly differentially expressed in a) MSI vs. MSS cancers and b) group B vs. group A CRCs of the Jorissen cohort.

Relative subtype-specific effect indicates a relative increase or decrease in the result comparing the CRC subtype-specific effect to the MSI-specific effect.

Model specified	Number of samples/category	$FDR \leq 0.05, FC \geq 2$
EF+ vs. EF–	7 vs. 10	128
FB-H vs. FB-L/N	7 vs. 12	3
afaC-H vs. afaC-L/N	5 vs. 14	0
afaC+ vs. afaC–	13 vs. 8	0
ClB+ vs. ClB-	6 vs.13	0
ETBF-H vs. ETBF L/N	3 vs. 16	0
ETBF+ vs. ETBF-	10 vs. 9	0
EPEC+ vs. EPEC-	3 vs. 16	0

Supplemental Table 11a. Summary of differential gene expression analyses conducted for *tumour* samples showing the number of transcript clusters differentially expressed for each comparison made.

H: high-level infection; L: low-level infection; N: no infection; FB: Fusobacterium; EF: E. faecalis

Gene ID	Gene symbol	Gene Name	P value	FDR	FC
8166906	GPR34	G protein-coupled receptor 34	2.6E-07	3.9E-03	2.4
8126784	PLA2G7	phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma)	4.3E-07	3.9E-03	2.7
8138289	ETV1	ets variant 1	5.3E-07	3.9E-03	2.3
7965410	DCN	decorin	2.5E-06	8.6E-03	3.9
8100541	IGFBP7	insulin-like growth factor binding protein 7	2.6E-06	8.6E-03	2.9
8101126	CXCL10	chemokine (C-X-C motif) ligand 10	2.6E-06	8.6E-03	5.8
8102792	PCDH18	protocadherin 18	3.1E-06	8.6E-03	3.7
7957737	ТМРО	thymopoietin	3.1E-06	8.6E-03	2.1
7965403	LUM	lumican	4.1E-06	9.4E-03	6.1
8076292	DNAJB7	DnaJ (Hsp40) homolog, subfamily B, member 7	4.9E-06	9.4E-03	-1.8
8125556	HLA-DPA1	major histocompatibility complex, class II, DP alpha 1	5.0E-06	9.4E-03	3.6
8017210	AP1S2	adaptor-related protein complex 1, sigma 2 subunit	5.2E-06	9.4E-03	2.2
7898988	CLIC4	chloride intracellular channel 4	6.3E-06	1.0E-02	2.1
7919815	CTSK	cathepsin K	6.7E-06	1.0E-02	3.5
8178891	HLA-DPA1	major histocompatibility complex, class II, DP alpha 1	7.4E-06	1.1E-02	3.5
8001800	CDH11	cadherin 11, type 2, OB-cadherin (osteoblast)	7.9E-06	1.1E-02	3.1
8094625	KLHL5	kelch-like family member 5	9.3E-06	1.1E-02	2.6
8160238	PSIP1	PC4 and SFRS1 interacting protein 1	9.4E-06	1.1E-02	1.7
8157890	PBX3	pre-B-cell leukemia homeobox 3	1.0E-05	1.2E-02	1.9
7926609	BMI1	BMI1 polycomb ring finger oncogene	1.1E-05	1.2E-02	2.0
8145470	DPYSL2	dihydropyrimidinase-like 2	1.2E-05	1.2E-02	2.1
8105229	PELO	pelota homolog (Drosophila)	1.4E-05	1.4E-02	2.8
8180100	HLA-DPA1	major histocompatibility complex, class II, DP alpha 1	1.5E-05	1.4E-02	2.8
8140840	STEAP4	STEAP family member 4	1.6E-05	1.4E-02	2.4
8127563	COL12A1	collagen, type XII, alpha 1	1.9E-05	1.6E-02	4.1
8128007	GJB7	gap junction protein, beta 7, 25kDa	2.0E-05	1.7E-02	-1.6
8091032	FOXL2	forkhead box L2	2.3E-05	1.8E-02	-1.7
8046895	FAM171B	family with sequence similarity 171, member B	2.5E-05	1.9E-02	2.9
8174322	MORC4	MORC family CW-type zinc finger 4	2.7E-05	2.0E-02	2.3
7981377	ANKRD9	ankyrin repeat domain 9	2.8E-05	2.0E-02	-1.5
7957260	GLIPR1	GLI pathogenesis-related 1	2.8E-05	2.0E-02	2.8
8036324	ZNF260	zinc finger protein 260	3.1E-05	2.0E-02	2.3
8053882	DUSP2	dual specificity phosphatase 2	3.1E-05	2.0E-02	-1.6

Supplemental Table 11b. Genes differentially expressed in *E. faecalis*+ CRCs. The top 50 (of 128) transcriptclusters (sorted by FDR) are shown.

8121319	SOBP	sine oculis binding protein homolog (Drosophila)	3.1E-05	2.0E-02	2.1
8173732	TAF9B	TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor,	3.2E-05	2.0E-02	2.1
8176263	TAF9B	TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor,	3.2E-05	2.0E-02	2.1
8143040	SLC35B4	solute carrier family 35, member B4	3.8E-05	2.1E-02	1.7
8143054	AKR1B1	aldo-keto reductase family 1, member B1 (aldose reductase)	3.9E-05	2.1E-02	2.1
8157605	STOM	stomatin	3.9E-05	2.1E-02	1.5
7936322	GPAM	glycerol-3-phosphate acyltransferase, mitochondrial	3.9E-05	2.1E-02	1.6
7959761	FAM101A	family with sequence similarity 101, member A	4.0E-05	2.2E-02	-1.6
8042439	ANTXR1	anthrax toxin receptor 1	4.4E-05	2.3E-02	3.3
7930833	KCNK18	potassium channel, subfamily K, member 18	4.6E-05	2.3E-02	-1.6
8089714	LSAMP	limbic system-associated membrane protein	4.7E-05	2.3E-02	2.1
7958913	OAS2	2'-5'-oligoadenylate synthetase 2, 69/71kDa	5.0E-05	2.3E-02	2.3
7912852	EIF1AX	eukaryotic translation initiation factor 1A, X-linked	5.0E-05	2.3E-02	1.7
8115234	ANXA6	annexin A6	5.1E-05	2.3E-02	1.7
8169473	PLS3	plastin 3	5.1E-05	2.3E-02	3.1
8138805	CPVL	carboxypeptidase, vitellogenic-like	5.6E-05	2.4E-02	2.0
8135734	CPED1	cadherin-like and PC-esterase domain containing 1	5.6E-05	2.4E-02	2.4

Supplemental Table 11c: In	ngenuity Canonical Pathway	ys significantly associated	d with E. faecalis colonisation
in CRCs (p≤0.05). Boldfac	e entries were also significa	nt in the comparison betw	veen B vs. A group B CRCs.

Ingenuity Canonical Pathways	-log(p- value)	Downregulated	Upregulated
Antigen Presentation Pathway	2.88	0/33 (0%)	15/33 (45%)
Hepatic Fibrosis / Hepatic Stellate Cell Activation	2.48	22/191 (12%)	44/191 (23%)
Human Embryonic Stem Cell Pluripotency	2.27	23/129 (18%)	29/129 (22%)
Leukocyte Extravasation Signaling	2.06	15/190 (8%)	48/190 (25%)
Agranulocyte Adhesion and Diapedesis	1.98	17/169 (10%)	38/169 (22%)
Allograft Rejection Signaling	1.91	0/36 (0%)	11/36 (31%)
T Helper Cell Differentiation	1.71	4/62 (6%)	13/62 (21%)
Aryl Hydrocarbon Receptor Signaling	1.68	7/135 (5%)	41/135 (30%)
Chondroitin Sulfate Biosynthesis (Late Stages)	1.65	6/43 (14%)	5/43 (12%)
L-dopachrome Biosynthesis	1.60	1/1 (100%)	0/1 (0%)
Glucocorticoid Receptor Signaling	1.58	18/252 (7%)	67/252 (27%)
Antiproliferative Role of TOB in T Cell Signaling	1.57	0/26 (0%)	14/26 (54%)
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses	1.56	11/116 (9%)	28/116 (24%)
OX40 Signaling Pathway	1.55	0/46 (0%)	17/46 (37%)
Growth Hormone Signaling	1.53	6/69 (9%)	15/69 (22%)
Colorectal Cancer Metastasis Signaling	1.53	27/228 (12%)	50/228 (22%)
Cdc42 Signaling	1.48	11/121 (9%)	32/121 (26%)
Chondroitin Sulfate Biosynthesis	1.41	8/51 (16%)	6/51 (12%)
Axonal Guidance Signaling	1.39	57/424 (13%)	81/424 (19%)
Calcium-induced T Lymphocyte Apoptosis	1.36	3/53 (6%)	18/53 (34%)
Dermatan Sulfate Biosynthesis	1.36	8/53 (15%)	7/53 (13%)
Role of JAK2 in Hormone-like Cytokine Signaling	1.34	2/32 (6%)	5/32 (16%)
Granulocyte Adhesion and Diapedesis	1.32	12/159 (8%)	35/159 (22%)
Hypusine Biosynthesis	1.30	1/2 (50%)	0/2 (0%)
Cardiolipin Biosynthesis II	1.30	1/2 (50%)	0/2 (0%)