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Monte Carlo simulations of EGFR movement in live cells 

We performed five different sets of Monte Carlo simulations to generate 3D trajectories in 

silico that mimicked (i) Brownian diffusion; (ii) corralled diffusion in confinements with 

impermeable boundaries; (iii) hop diffusion in confinements with permeable boundaries; (iv) cage 

diffusion in vesicles that themselves can diffuse; and (v) directed motion along linear tracks with 

lateral diffusivity. Brownian diffusion simulations were performed by generating a set of random 

displacements (∆𝑥, ∆𝑦, ∆𝑧) at each time step. These displacements followed a normal distribution 

with the following standard deviation:  

𝜎𝑥,𝑦,𝑧 = (2𝐷𝐵𝑟𝑛 ∆𝑡)1/2 

where DBrn is the given diffusion coefficient and Δt is the time step used in simulation. In our 

simulation, DBrn ranged from 0.01 to 0.16 µm/s2, which were close to the reported EGFR 

diffusivities (tagged with a nanoparticle and diffusing on the plasma membrane) (1-3). Corralled 

diffusion simulations were performed by having a particle freely diffuse in cubes (Dmicro) with 

impermeable boundaries and linear sizes (L) of 25, 50, 100 and 200 nm. If particles attempt to 

penetrate the boundaries of any dimension, the random displacement in the specific dimension(s) 

will be zero at this time step. Hop diffusion simulations were performed by having a particle freely 

diffuse in cubes (Dmicro) with the same linear sizes, but now cubes had permeable boundaries 

(probability of penetration per attempt P = 0.01). The selected cube sizes were close to the 40 to 

300 nm linear compartment sizes reported by other groups (2, 4, 5). Cage diffusion simulations 

were performed by having a particle freely diffuse within vesicles with impermeable boundaries 

and diameters (⌀) of 25, 50, 100 and 200 nm. Vesicles themselves were also diffusing (Dvesicle). 

These simulations were performed with Dmicro = 0.5 µm2/s and Dvesicle = 0.01 µm2/s. Corralled, hop 

and cage diffusion are all considered as “confined diffusion”. Directed diffusion simulations were 

performed along linear tracks with active transport speeds (V) and lateral diffusivities (Dlateral). 

The movement of an internalized early endosome is mostly assisted by molecular motors on 

microtubules, therefore showing a characteristic transport speed (V) about 1 µm/s  (6, 7) with 

lateral diffusivity (Dlateral) around 0.003 m2/s (8). The directed diffusion simulations were 

performed with V = 0.5 and 1 µm/s, and Dlateral = 0.0025, 0.005, 0.01 and 0.02 m2/s. All 

simulations were performed with the time step (Δt) of 2.5 ms. 

Simulation and experiment statements 

For Figures S5 and S8, the Monte Carlo simulations were performed for 10 s per run and 100 

runs per case. White Gaussian noise type of tracking error (error = 0 and error = 15 nm) was added 

to the Monte Carlo simulation generated trajectories before being analyzed by the developed 

algorithm. The rolling window of 1.6 s (w) and the sliding time step of 0.1 s (Δs) were used to 

analyze the stimulated trajectories (time step Δt = 2.5 ms). 

For Figures S4, S9, S10-13, the simulated movement experiments (SME) were performed for 

30 s per run and 10 runs per case. ⌀200 nm fluorescent beads (F-8810, Thermo Fisher Scientific) 

were embedded in 1.3% agarose within chambered coverglass at 20 pM. Monte-Carlo-simulation-

generated trajectories (without the white noise error) were used to command the movement of the 

xyz piezo stage every 2.5 ms. Although there were finite differences between the Monte-Carlo-

simulation-generated trajectory and the actual trajectory that the stage performed (output from the 

capacitance sensors in the xyz piezo stage), we conveniently called both these two trajectories the 

prescribed trajectories. The xyz piezo stage moved once every 2.5 ms and the capacitance sensor 

recorded the piezo stage voltages every 1 ms, while the integration period of TSUNAMI 
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microscope was 5 ms. The rolling window of 1.6 s (w) and the sliding time step of 0.1 s (Δs) were 

used to analyze the experimental trajectories (time step Δt = 5 ms). 

Data processing 

All data processing was performed in MATLAB (Mathworks). Saved in a binary format, the 

trajectory raw data contained photon counts and voltage outputs from the actuators (i.e. the xy 

scanning galvo mirrors (6125H, Cambridge Technology) and the objective z-piezo stage (P-726 

PIFOC, PI)) at each time point. Conversion of voltage outputs to particle xyz positions was carried 

out by multiplying a gain factor for each axis. Trajectories were plotted by simply connecting 

particle positions of consecutive time points. The particle-trajectory-derived diffusivities of 

membrane proteins were previously shown to have a broad distribution (9, 10) due to membrane 

heterogeneity (9). Rather than normal distribution, lognormal distribution was often used to 

describe the broad distribution of particle-trajectory-derived diffusivity (9, 10). We also observed 

this trend of lognormal distribution for our particle-trajectory-derived DBrn, Dmicro, Dmacro, D0, V, 

Vi and L values. The histograms of logD, logV and logL were fitted with a Gaussian mixture model 

(MATLAB, MathWorks). The fitted arithmetic means (μ) and standard deviations (σ) of logD, 

LogV, and logL were converted to arithmetic means and standard deviations in a linear scale (11). 

Optimization of thresholds used for classification 

The calculations of these three classification parameters, the scaling component (α) of MSD 

curves, the directional persistence (Δ𝜙), and the confinement index (Λ) were shown in Figure S3. 

The schematic in Figure S3 also demonstrate the difference of classification parameters in various 

motional modes.  

Table S1 summarized the threshold optimization for the segmentation and classification 

algorithm. To find out the optimal rolling window length for our segmentation analysis, we 

calculated scaling exponents α and directional persistence Δ𝜙 of directed diffusion SME 

trajectories (Figure S4). The scaling exponent and directional persistence are functions of width 

of rolling window (w), lateral diffusion coefficient (DLat), and speed of active transport (V). To set 

the thresholds to differentiate directed diffusion from passive motion, SME with a set of various 

w, DLat , and V were tested and evaluated to determine the optimal w and the thresholds of α and 

Δ𝜙 (Figure S4). The simulation parameters (DLat and V) were referred to values observed in live 

cells. The DLat of an endosome conducting active transport in live cell is usually less than 0.01 

µm2/s (12, 13), and the V ranges from 0.3 to 2 µm/s (8, 13, 14).  

The confinement levels were calibrated with Monte Carlo simulations of Brownian diffusion, 

confined diffusion, and immobilization (Figure S5). The ΛBrn would be a constant under the 

assumption that Dmax equals to DBrn (15). To analyze tracking trajectories, the Dmax need to be 

derived from experimental trajectories. The ΛIm is determined by the detection limit of tracking 

system (tracking error (σerror), Figure S6) (16). The confinement levels of these three motional 

modes were defined by ΛBrn and ΛIm. The test of differentiating confined diffusion from Brownian 

diffusion were conduct in SME (Figure S7).  
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Flow chart for threshold optimiaztion 

  

 

Table S1 | Threshold optimization  

Classification 

parameters 

Calibration models 

(Monte Carlo 

Simulation) 

Threshold values Note 

α = f1 (w, DLat, V) 

Δ𝜙 = f2 (w, DLat, V) 

Directed diffusion (DD) 

DLat = 0.0025-0.02 µm2/s  

V = 0.5, 1 µm/s 

w = 0.06-1.6 s 

σerror= 15 nm 

 Directed diffuison 

{
α > 1.4 

Δϕ < 0.1 
 

 Passive motion 

{
α < 1.4 

Δϕ > 0.1 
 

 w = 1.6 s 

1.1 The thresholds of w, α, and Δ𝜙 were 

determined by the SME results (Figure S4).  

1.2 If the DLat of directed diffusion is greater 

than 0.02 µm2/s or V is slower than 0.5 µm/s, 

the w  might need to be increased to identify 

directed diffusion. 

Λ = f3 (w, D, Dmax, L) Brownian diffusion (BD) 

D = 0.08 µm2/s  

Confined diffusion (CD) 

D = 0.08 µm2/s  

L = 25-1000 nm 

Immobilization (IM) 

σerror= 15 nm 

 BD: Λ ≤ ΛBrn 

 CD: ΛBrn < Λ < ΛIm 

 IM: Λ ≥ ΛIm  

 

 ΛBrn = 14.32   

 ΛIm = 677.59  

 w = 1.6 s 

2.1 Dmax is the cutoff of top 5% of diffusion 

coefficients derived from all trajectories, and 

Dmax is assumed to be the DBrn in live cells. The 

Λ of Brownian  diffusion would be 

independent of w.  

2.2 The ΛBrn is defined as the cutoff of  top 5% 

of Λ derived from Brownian diffusion. The 

ΛBrn will be a constant if Dmax equals to DBrn. 

2.3 The ΛIm  is determined by tracking error 

and defined as the cutoff of  bottom 5% of Λ 

derived from immobilization trajectories. 
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Figure S1 | TSUNAMI microscope setup (including the independent xyz piezo stage for SME) 

(A) The schematic and photograph of the Schematics of TSUNAMI (Tracking of Single particles Using 

Nonlinear And Multiplexed Illumination) 3D tracking microscope (17). The pulsed laser (76 MHz from a 

Ti-sapphire laser) is separated into four beams, which are delayed by 3.3 ns each and focused through a 

high-N.A. objective, generating four barely overlapped two-photon excitation volumes (colored oval balls 

in (B)). Using time-correlated-single-photon counting (TCSPC) detection, each detected photon attributed 

from an individual excitation volume is assigned to a specific time gated fluorescence decay histogram. An 

offset of the particle from the tetrahedron center can be estimated from the normalized photon count 

differences in the four time gates. As described in the paper, an independent xyz piezo stage (P-733K130, 

PI) is added to the system for SME, which allows us to quantify the tracking error of TSUNAMI microscope. 

Lz: lens set for z-offset control; BS: beam splitter; /2: half-wave plate; PBS: polarizing beam splitter; DM: 

dichroic mirror; BD: beam dump; GM: galvo mirrors; M: steering mirrors; PMT: photomultiplier tube. (C) 

When the particle (the golden sphere) sits right at the center of the illumination tetrahedron, photon counts 

are about equal in the four histograms. (D) The photon counts in the four histograms fluctuate according to 

the position of particle in the illumination tetrahedron.  
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Figure S2 | TSUNAMI feed-back control schematic (including scheme for SME) 

A Control Schematic demonstrating system level interaction, feedback control loop, and prescribed motion 

driven by an xyz piezo stage. The 835 nm excitation ray generated by a Ti:Al2O3 laser (Mira 900, Coherent) 

at 76 MHz repetition rate passes through the beam multiplexer and creates an illumination tetrahedron onto 

the sample. The sample is driven by an independent xyz piezo stage with a prescribed trajectory 

( 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) ). The piezo controller can simultaneously generate defined motion and record the 

corresponding motion profile which is then converted to a stage trajectory (�̃�(𝑡), �̃�(𝑡), �̃�(𝑡)). Fluorescence 

is detected by a cooled low dark count PMT (H7422PA-40, Hamamatsu Corp.) and amplified with a 2 GHz 

cutoff bandwidth preamplifier (HFAC-26, Becker and Hickl GmbH). The amplified signal is then measured 

and correlated to the reference clock of the Ti:Al2O3 laser with a TCSPC board (SPC-150, Becker and Hickl 

GmbH). Every 1-20 ms a photon histogram is sampled from the TCSPC module and processed in the 

software loop run in LabVIEW (National Instruments). The tracking algorithm employs a proportional 

control to convert the error signals to new stage positions. Furthermore, Liu and coworkers have 

demonstrated that the z-tracking accuracy can be significantly increased using maximum likelihood 

estimations (MLE) (18). New voltages are sent out through a DAQ (PCIe-6353, National Instruments) to 

their respective actuators, galvo mirrors for X and Y, piezo objective stage for Z. The saved voltages are 

converted to a 3D tracking trajectory (𝑥(𝑡), �̂�(𝑡), �̂�(𝑡)).  
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Figure S3 | Parameters for trajectory classification and segmentation 

(A) Schematics show the calculation of a MSD curve and the representative MSD curves of directed 

diffusion, Brownian diffusion, and confined diffusion. (B) Schematics demonstrate the calculation of the 

directional persistence and the comparison of directional angles of directional diffusion and Brownian 

diffusion. (C) Calculation of confinement index and the indices derived from there three types of diffusions. 
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Figure S4 | Selecting threshold of the scaling exponent (α), directional persistence (Δ𝜙) and length 

of the rolling window (w) for directed diffusion detection (SME results) 

Directed motions with various lateral diffusion coefficients (0.0025, 0.005, 0.01, or 0.02 µm2/s) and 

velocities (0.5 or 1 µm/s) were conducted in SME. The track duration for each trajectory is 10 seconds, and 

the time step is 2.5 ms. The α and Δ𝜙 values were derived from the MSD curves of the SME trajectoires. 

(A) The results demonstrate the diffusion would conceal the identification of directed motions, and the 

accuray of the algorithm depends on the window sizeWe set the threshold of identifying directed motion to 

be 1.4, because the active transport along microtubules exhibits α values of range from 1.4 to 2 in the cytosol 

(8).   The time window was chosen as 1.6 s to achieve sufficient discrimination of active transport states. 

(B) Considering the time window of 1.6 s chosen to calculate α values, we set the threshold of ∆𝜙 values 

to be 0.1. Error bars (represented by color ribbons) show standard deviations of 10 runs. 
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Figure S5 | Selecting thresholds of the confinement index 𝛬 for confinement detection (Monte 

Carlo simulation results) 

(A) The confinement index of Brownian motion is independent of the rolling window length (w) 

(15), but the confined index () of confined diffusion is a function of the rolling window length. 

(B) Histograms of confinement indices of freely diffusing particles (DBrn = 0.08 µm2/s, blue lines), particles 

diffusing within confinements of different sizes (Dmicro,pre = 0.08 µm2/s and Lpre = 25, 50, 100, 200, and 

1000 nm, green lines) and immobilized particles (D = Dmin = 4×10-4 µm2/s, black lines). In this simulation, 

we created diffusion confinements of various linear dimensions (Lpre = 25, 50, 100, 200, and 1000 nm) and 

penetrable boundary conditions (which mimic actin-cytoskeleton associated barriers and anchors). The 

particle can freely diffuse within the confinement (Dmicro,pre = 0.08 µm2/s), with a probability of penetration 

P = 0.01 at the boundaries. We found the 𝛬 threshod value of 14.32 can adequately differentiate confined 

diffusion from Brownian diffusion and the 𝛬 threshod value of 677.59 can adequately differentiate confined 

diffusion from immobilization, repectively. As a result, here we define confinement diffusion to be 14.32 

< Λ ≤ 677.59, where Λ ≤ 14.32 is Brownian diffusion and Λ > 677.59 is immobilization. With this set of 

criteria, only 5% of simulated Brownian diffusion and immobilized trajectories were misclassified as 

confined diffusion. Our simulation results also indicated that the measured confinement index is a function 

of confinement size itself. As shown here, the set of criteria worked relatively well when the linear 

dimension of confinement is about 50-200 nm. The diameters of actin-induced compartments within plasma 

membrane range from 40 to 300 nm (5). (C) This plot shows that the power of distinguishing confined 

diffusion from Brownian diffusion. The 𝛬 threshod value of 14.32  effectively separates confined diffusion 

from Brownian motion within the linear dimension of confinement (Lpre) below 200 nm (Power > 0.98). 

The statistical power is the probability that the test correctly differentiates trajectories of confined diffusion 

from those of Brownian diffusion.  
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Figure S6 | Detection limit of TSUNAMI microscope (experimental tracking result) 

To understand the lowest diffusion coefficient and the shortest linear dimension of confinement that 

TSUNAMI microscope can resolve, we performed tracking of fluorescent beads (⌀40 nm, Cat. No. F8770, 

Thermo Fisher Scientific) fixed in a 1.3% agarose matrix. The laser power was adjusted to achieve a photon 

count rate comparable to that of a real live cell tracking experiment (~400 kHz). (A) Representative 

trajectory of a bead immobilized in argarose matrix. (B) Segmented MSD curves using the rolling window 

of 1.6 s (w). The time step is 20 ms (Δt) and the sliding time step is 0.1 s (Δs). (C) Static tracking errors 

recored for x, y, and z dimesions respectively. The distances between each position (xi, yi, zi) to the mean 

postion (�̅�, �̅�, 𝑧̅) are Δx, Δy, and Δz. The static tracking errors, σx, σy, and σx, are the standard deviations of 

Δx, Δy, and Δz. Considering the “dynamic error” (i.e. tracking error) of the TSUNAMI microscope, the 

“static error” (due to the microscope thermomechanial instability) is estimated to be ~10 nm in x/y and 30 

nm in z for 100-second-long experiments. (D) The finite values extracted from the MSD of immobilized 

bead represent the detection limit of the TSUNAMI system. To understand the how the number of MSD 

points affects the estimation of diffusion coefficients, the D0 was estimated by fitting a MSD curve with a 

linear regreassion line using the first 3, 5, 16, or 42 MSD points. The number of MSD points were 

determined using a covariance-based estimator (19) with these following parameters: 10 nm tracking error 

in xy, 20 ms time step, 1.6 s tracking duration, 10-2, 10-3, 10-4, or 10-5 µm2/s estimated diffusion coefficients, 

respectively. The D0 converges with more MSD points, however, more MSD points also increase the 

variation of D0. The number of MSD points used to estimate diffusivity of EGFRs is 3-5 points, so the 

lower bound of D0  was defined as D0= (19 ± 4)×10-5 µm2/s using the first 5 MSD points.  
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Figure S7 | Testing of MSD analysis and confinement detection (SME results) 

(A) A Simulated trajectory composed of segments exhibiting Brownian diffusion and confined diffusion 

alternatively. Simulated condition: Dpre = 0.08 µm2/s, the linear dimension of confinements Lpre = 100 nm, 

probability of penetration P = 0.01 at the boundaries. The 64 s long trajectory  is constituted of 8 segmemts 

exhibiting Brownian diffusion and confined diffusion (hop diffusion) by truns. Their motion patterns are 

determined by MSD analysis and confinement detection, and the trajectory are color-coded with either blue 

or green colors indicating Brownian diffusion and confined diffusion, respectively. The red arrow head 

indicates the starting point of the trajectory. (B) Profile of confinement index (𝛬) of the trajectory. (C) MSD 

plots of segments classfied into Brownian diffusion (upper plot) or confined diffusion (lower plot). (D) 

Histograms of recovered diffusion coefficients, lengths of confined regions from Brownian diffusion (blue) 

or confined diffusion trajectories (green). The histograms were then fitted with a Gaussian mixture model. 

The fitted means and standard deviations were shown in the plots. DBrn represents the recovered diffusion 

coefficient of Brownian trajectories. Dmicro represents the recovered short-term diffusion coefficient of 

confined diffusion trajectories and Dmacro is the recovered long-term diffusion coefficient extracted from 

the same trajectories. L is the recovered linear dimension of confinements.  
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Figure S8 | MSD curves of simulation models (Monte Carlo simulation results) 
MSD analysis on three types of confined diffusion models: corralled diffusion, hop diffusion and cage 

diffusion, which represent the possible motion patterns of EGFR trafficking. The stalled EGFRs in plasma 

membrane exhibits corralled diffusion (2). The hop diffusion represents the diffusion of EGFRs between 

membrane compartments (2, 20). The internalized EGFRs may demonstrate cage diffusion within 

endocytotic vesicles (13). We may be able to reveal the motion signatures of these three confined diffusion 

models using the MSD analysis. (A) Simulated corralled diffusion represents 3D isotropic diffusion in a 

meshwork of impenetrable barriers. (B) MSD plot starts linear and then reaches a plateau which identifies 

the confinement area and the corresponding length, L. The diffusion coefficient of this simulated confined 

diffusion is Dmicro,pre = 0.5 µm2/s. (C) Simulated hop diffusion represents 3D isotropic diffusion in a 

meshwork of penetrable barriers. The prescribed length of square confinement area is Lpre and particles 

have a probability (P) of penetrating the barriers in every attempt to across barriers. (D) The slope of the 

MSD curve in long timescale is related to Dmacro, and the meshwork constraints particle diffusion. The Dmicro 

of freely diffusing particle in compartments is Dmicro,pre = 0.5 µm2/s and the penetrating probability, P = 

0.01. (E) Simulated cage diffusion represents freely diffusing particle (Dmicro,pre = 0.5 µm2/s) restricted to a 

limited vesicle that itself can diffuse (the diffusion coefficient of the vesicle is Dvesicle,pre = 0.01 µm2/s and 

its diameter is ∅pre = 25 to 200 nm). (F) The slope of the MSD curve in short timescale is related to Dmicro, 

and the slope in long timescale depends on Dvesicle. Error bars (represented by color ribbons) show standard 

deviations of 100 runs. 
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Figure S9 | Localization uncertainty of the xyz piezo stage and tracking error of TSUNAMI 

microscope are both related to the diffusivity of the particle (SME results) 

(A) The localization uncertainty of the xyz piezo stage is defined as the standard deviation of the difference 

between the Monte-Carlo-simulation-generated trajectory that is used to command the movement of the 

xyz piezo stage and the actual trajectory that the stage performs (output from the capacitance sensors in the 

xyz piezo stage). The stage localization uncertainty increases with increasing diffusion coefficient in the 

SME. (B) The tracking error of TSUNAMI microscope is defined as the standard deviation of the difference 

between the stage trajectory (output from the capacitance sensors in the xyz piezo stage) and the TSUNAMI 

tracking trajectory. The tracking error was less than 20 nm in x and y and ranged from 50.8 nm to 91.4 nm 

in z, depending on the diffusivities used in the SME. Error bars show standard deviations of 10 runs. 
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Figure S10 | TSUNAMI tracking error in 2D confined diffusion (SME results) 
(A) The tracer was driven by an independent xyz piezo stage along the prescribed trajectories mimicking 

various motions, and the stage trajectory and the tracking trajectory were read from the piezo stage and 

TSUNAMI microscope. (B) The one-dimensional trajectories in x, y, z. The red line represents the stage 

trajectories and the blue ones are from tracking trajectories. (C) Comparing these two trajectories, the 

tracking errors in x, y, z directions were evaluated. The prescribed trajectory was simulated from a 2D 

confined diffusion model with diffusion coefficient D = 0.5 µm2/s, probability of penetration P = 0.01 at 

the boundaries, and length of square compartment L = 100 nm. 
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Figure S11 | MSD analysis on Brownian, confined and directed diffusion (SME results) 

These SME results demonstrate that the TSUNAMI microscope is able to follow the trajectories of all three 

types of predefined motions (Brownian, confined, and directed diffusion), and our MSD analysis algorithm 

is capable of recovering the physical parameters (DBrn, L and V) encoded in the prescribed trajectories. (A) 

A representative 3D tracking trajectory of Brownian diffusion with diffusivity DBrn = 0.08 µm2/s. (B) For 

Brownian diffusion, the resulting MSD curves are linear with an increasing slope for larger diffusivity. (C) 

The experimental diffusivities recovered from the MSD analysis (DBrn) match well with the values encoded 

in the prescribed trajectories (Dpre). R-squared values of fitted MSD curves are all above 0.99. goodness-

of-fit of the fitted MSD curves was(D) A representative 3D tracking trajectory of confined diffusion with 

diffusivity D = 0.5 µm2/s in confinements of linear dimension L = 100 nm. The particle has the probability 

of penetration P = 0.01 at the boundaries. (E) For confined diffusion, the resulting MSD curves are linear 

initially (with a slope depends on Dmicro) and then deviates toward a lower slope value (so-called 

subdiffusion). (F) The experimental linear dimensions of confinements recovered from the MSD analysis 

(Lexp) match well with the values encoded in the prescribed trajectories (Lpre). (G) A representative 3D 

tracking trajectory of directed diffusion with active transport speed V = 0.5 µm/s and lateral diffusivity 

Dlateral = 0.0025 µm2/s. (H) For directed diffusion, the resulting MSD curves exhibit increasing slope at 

longer time lag (so-called superdiffusion), with the scaling exponent α = 2 for pure directed transport. 

Increasing lateral diffusivity in directed diffusion reduces the scaling exponent. (I) The experimental 

transport speeds recovered from the MSD analysis (Vexp) match well with the values encoded in the 

prescribed trajectories (Vpre). Error bars and ribbons represent standard deviations from 10 runs for each 

condition. 
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Figure S12 | More MSD analysis on confined diffusion (SME results) 

We further tested our MSD analysis algorithm using the confined diffusion with various Dmicro and L values 

encoded in the simulated trajecotries used for SME. The particle had the probability of penetration P = 0.01 

at the boundaries. This thorough examination further validates the reliablity of our MSD analysis algorithm 

in extracting encoded dynamic parameters (L and Dmicro) and the fidelity of TSUNAMI microscope in 

tracking single particles under physiologically relevant conditions. (A) As expected, the resulting MSD 

curves show the signature of subdiffusion. (B) The experimental linear dimensions of confinements 

recovered from the MSD analysis (Lexp) match well with the values encoded in the predefined trajectories 

(Lpre) at all three diffusivities. (C) The short-term microscopic diffusivity, Dmicro, obtained from the MSD 

analysis is influenced by the confinement size. Here we show that the short-term microscopic diffusivity 

Dmicro estimated from the confined diffusion model (Equations 6 and 7) is a function of confinement size, 

and this finding agrees with the research of Salome’s group. (21). Dmicro is approaching the encoded value 

of 0.08 µm2/s only when the confinement size is sufficiently large. This result is in agreement with other 

research. Eggeling’s group has reported that the cortical actin cytoskeleotn compartmentalised phospholipid 

diffusion and reduced the diffusivity of phospholipid (22). (D) The long-term macroscopic diffusivity, 

Dmacro, obtained from the MSD analysis is also influenced by the confinement size. (E) Tracking error is 

quantified by the standard deviations of the difference between the stage trajectory (output from the 

capacitance sensor in the xyz piezo stage) and the TSUNAMI tracking trajectory. The tracking errors shown 

here are consistent with our previous observation. Error bars and ribbons represent standard deviations from 

10 runs for each condition. (F) The goodness-of-fit of MSD curve fitting with Equation 6 (confined 

diffusion, in main text) was evaluated by R-squared measurment.    
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Figure S13 | More MSD analysis on directed diffusion (SME results) 

We further tested our MSD analysis algorithm using the directed diffusion with various D and V values 

encoded in the simulated trajecotries used for SME. (A) The MSD curves grow with time lag, exhibiting 

the signature of super-diffusion. The scaling exponent α is approaching 2 when the diffusivity D is 

vanishing. However, if D is large, the random motion would mask the directed transport. (B) The Vexp values 

extracted from the MSD analysis match well with the encoded V values. (C) The Dexp values extracted from 

the MSD analysis match well with the encoded D values at all three transport speeds. (D) Tracking error is 

quantified by the standard deviation of the difference between the stage trajectory (output from the 

capacitance sensor in the xyz piezo stage) and TSUNAMI tracking trajectory. The tracking error results 

shown here are consistent with our previous observation. Error bars and ribbons represent standard 

deviations from 10 runs for each condition. (E) The goodness-of-fit of MSD curve fitting with Equation 5 

(directed diffusion, in main text) was evaluated by R-squared measurment.    
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Figure S14 | Dynamic parameters of the EGFR in these four phases 

Histograms of log Do (A) and log Vi (B) in four phases of a 442-second-long trajectory (shown in Figure 5 

of main text). This trajectory was dissected using the algorithm of segmentation and classification. The 

classified and color-coded trajectory provides a reliable guidance to identify the motional patterns of 

EGFRs in various phases, such as diffusion on the cell membrane, endocytosis, and active transport in 

cytoplasm. The dynamic parameters extracted from different phases could be used to characterized the 

motional features of EGFR trafficking. The diffusion coefficients (D0) and the instantaneous velocities (Vi) 

recovered from the segmented trajectories of Phase III significantly differentiate from those parameters of 

the other three phases. As shown in the plots, the increase of instantaneous velocities is also correlated with 

the increase of diffusion coefficients.   
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Figure S15 | Spheroid formation 

Bright field imaging of multicellular cancer spheroids formed in liquid overlay from dissociated, 

exponentially growing A431 skin epidermoid carcinoma cells after a 96-hr initiation interval in agarose-

coated 96-well microliter plates. The seeding density was between 125 and 3000 per well in 200 μl of 

serum-conditioned high glucose standard medium. The concentration to routinely and reproducibly obtain 

spheroids with a diameter of 90-110 μm is 125 cells per well. Scale bar is 100 μm. The preparation of 

multicellular spheroids was based on the method developed by Kunz-Schughart’s group. (23)  
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Figure S16 | Characterization of fluorescent beads for 3D tracking 

(A) FCS Experiments and (B) TSUNAMI tracking trajectory analysis were used to characterize the single 

-bead brightness (SBB) and to estimate the number of beads attached to EGFR molecules during live cell 

experiments. FCS was performed with ⌀40 nm fluorescent microspheres (F8770, Thermo Fisher Scientific) 

in 16 nM concentration with a single excitation beam at 3 mW average power. Laser power and detector 

gain settings were matched to live cell experimental conditions. Raw photon counts were auto-correlated 

in real-time using a digital correlator (7002/USB, ALV). Autocorrelation curves (black dots) were averaged 

from 20 runs of 10 seconds each. Further verification of SBB is done by analyzing 95 individual trajectories’ 

count rates. (B) Histogram of trajectory count rates at early time points in a fixed sample of ⌀40 nm 

fluorescent beads suspended in agarose. The initial count rate was taken to be the first 5 seconds of the 

trajectory after the controller had stably locked onto the particle (~100 ms). The histogram uncovers two 

peaks of brightness surrounded by a wide distribution ranging from 200 kHz to 1.1 MHz. The first peak is 

most likely the single bead brightness of 255 kHz whereas the second peak, at ~500 kHz, is likely a dimer. 

In our experiments, we made sure that we were following a single bead, not a two-bead system.  This 

characterization has been done and published in Nature Communications (17), and more detailed discussion 

please see the supplementary information of the Nature Communications article. 
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Figure S17 | Preparation of samples for EGFR tracking 

A431 cells were expanded in flasks and the dissociated into single-cell suspension with trypsin treatment. 

For EGFR tracking on monolayer cells, the cells from suspension were directly seeded into chambered 

coverglasses and incubated for 24-48 hr. After 24-hr serum starvation, the monolayer cells were stained 

with CellMask™ Deep Red and their EGFRs were recognized by monoclonal anti-EGFR IgG conjugated 

𝜙 40 nm fluorescent nanoparticles. For spheroids, the suspended single cells were seeded into agarose-

coated and incubated for 96 hours to form spheroids. Both monolayer cells and spheroids were treated with 

serum starvation 24 hour before EGFR tracking. The spheroids were then transferred to chambered 

coverglasses for membrane staining and EGFR labeling.  
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Figure S18 | EGF induces internalization of EGFR 

Monolayer A431 cells were exposed to serum-free media overnight, and then their EGFRs were tagged 

with biotin-conjugated anti-EGFR antibodies, and NeutrAvidin® conjugated red FluoSpheres (F8770, 

Thermo Fisher Scientific) bound to biotins to label EGFRs. In control group, we didn’t label EGFR with 

anti-EGFR antibodies. After labeling, cells were treated with EGF (10 ng/ml) for indicated time. The white 

arrows indicate nuclear translocation of EGFR. The boxed areas are shown in detail in the zoom-in. Scale 

bar is 25 μm.  
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