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ABSTRACT Whereas important discoveries made by single-particle tracking have changed our view of the plasma membrane
organization and motor protein dynamics in the past three decades, experimental studies of intracellular processes using single-
particle tracking are rather scarce because of the lack of three-dimensional (3D) tracking capacity. In this study we use a newly
developed 3D single-particle tracking method termed TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed
Illumination) to investigate epidermal growth factor receptor (EGFR) trafficking dynamics in live cells at 16/43 nm (xy/z) spatial
resolution, with track duration ranging from 2 to 10 min and vertical tracking depth up to tens of microns. To analyze the long 3D
trajectories generated by the TSUNAMI microscope, we developed a trajectory analysis algorithm, which reaches 81% segment
classification accuracy in control experiments (termed simulated movement experiments). When analyzing 95 EGF-stimulated
EGFR trajectories acquired in live skin cancer cells, we find that these trajectories can be separated into three groups—immo-
bilization (24.2%), membrane diffusion only (51.6%), and transport from membrane to cytoplasm (24.2%). When EGFRs are
membrane-bound, they show an interchange of Brownian diffusion and confined diffusion. When EGFRs are internalized,
transitions from confined diffusion to directed diffusion and from directed diffusion back to confined diffusion are clearly seen.
This observation agrees well with the model of clathrin-mediated endocytosis.
INTRODUCTION
Single-molecule detection in aqueous solution has advanced
our knowledge in molecular and cellular biology since its
introduction in early 1990s (1–3). Whereas single-molecule
imaging has led to the development of pointillism micro-
scopy (4), such as PALM (5,6) and STORM (7), complex
molecular trafficking and interaction dynamics inside live
cells often cannot be deciphered by pointillism microscopy
because of its limited temporal resolution (8). For nearly
four decades, cellular dynamic processes have been probed
using two ensemble and time-averaging techniques—fluo-
rescence recovery after photobleaching (FRAP (9)) and fluo-
rescence correlation spectroscopy (FCS (10)). Although
FRAP and FCS provide sufficient temporal resolution (sub-
milliseconds) to monitor fast molecular dynamic processes,
their spatial resolution is limited by diffraction (11). Alterna-
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tively, rapid molecular dynamics can be studied at high
spatial resolution using single-particle tracking (SPT
(11–19)). Whereas SPT has made important discoveries
that change our view of plasma membrane organization
(17,19) and molecular motor dynamics (20), the use of SPT
in monitoring ‘‘intracellular’’ processes is rather limited
because of the lack of three-dimensional (3D) tracking capac-
ity that can follow a single particle inside a live cell for a long
period of time. In the past decade, new SPT techniques have
been developed tovisualizemolecularmotion in the 3D space
(termed3D-SPT), includingmultiple imaging planes (21,22),
orbital tracking (23–25), point spread function engineering
(26,27), and confocal tracking (28,29). Although allowing
for direct observation of transport processes from membrane
to cytoplasm, current 3D-SPT methods often suffer from
shallow imaging depth (because of the use of one-photon
excitation) and limited z-tracking range (e.g., astigmatism-
based, nonfeedback tracking systems (27)), which prevent
these methods from tracking single molecules inside multi-
cellular models such as spheroids (see our review in (8)).
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Segmentation of 3D Trajectories
Our group has recently developed a new, to our knowl-
edge, 3D-SPT method termed TSUNAMI (Tracking of
Single particles Using Nonlinear And Multiplexed Illumi-
nation) that enables high-resolution tracking of single
epidermal growth factor receptor (EGFR) complexes in
live cancer spheroids (~100 mm thick), with track duration
up to 10 min and vertical tracking depth up to tens of mi-
crons (30–33). As a wealth of information about membrane
structure, interior organization, and receptor biology can
be derived from the long 3D trajectories acquired by
TSUNAMI, a sophisticated tool is needed to segment and
classify these trajectories according to their motional
modes (34–37), extract physical parameters of the motion
(30,38), and correlate that motion to the surrounding envi-
ronment (39), all with the goal of understanding the
physical scenarios behind the observed motion (40,41).
Considerable effort has been devoted to the identification
of change points in motion (36) or diffusivity (38) along
the same trajectory and to the visualization of spatial
regions with different dynamic behaviors (34,35,38,42).
Such an analysis is called trajectory segmentation and
classification (11), which is often carried out by calculating
a number of classification parameters over the trajec-
tory using methods such as rolling window analysis
(34,36,43), supervised segmentation (44), mean-squared-
displacement (MSD) curvature (34,35,45,46), maximum
likelihood estimator (38), Bayesian methods (47,48), F-sta-
tistics (49), hidden Markov model (50,51), and wavelet
analysis (42,52).

In this study, we demonstrate an integrated trajectory
analysis tool that adopts a combination of analytical
strategies (34–37,39) and classification parameters
(MSD scaling exponent (53–56), directional persistence
(36,57), and confinement index (37,58)) in achieving
effective segmentation and classification of both simu-
lated and real-world trajectories. Our algorithm has
achieved 81% accuracy in classifying segments along
simulated 3D trajectories. From visual inspection, we
find most of the misidentified segments near the change
points of different motional modes. When analyzing 95
EGF-stimulated EGFR trajectories acquired in live skin
cancer cells, we find that these trajectories can be sepa-
rated into three groups—immobilization (24.2%), mem-
brane diffusion only (51.6%), and transport from
membrane to cytoplasm (24.2%). When EGFRs are mem-
brane-bound, they show an interchange of Brownian
diffusion and confined diffusion. When EGFRs are inter-
nalized, transitions from confined diffusion to directed
diffusion and from directed diffusion back to confined
diffusion are clearly seen. As expected, the speed
observed in the directed diffusion matches well with the
speed of the typical molecular motor-mediated transport
(0.5–2 mm/s) (59–62). When compared with the stimu-
lated EGFRs, the untreated EGFRs clearly show increased
mobility on membrane. Reduced mobility for stimulated
EGFRs is likely due to EGFR dimerization (50,63), which
induces endocytosis (64).
MATERIALS AND METHODS

TSUNAMI tracking microscope

TSUNAMI is a feedback-control tracking system that employs a spatiotem-

porally multiplexed two-photon excitation and temporally demultiplexed

detection scheme (Figs. S1 and S2 in the SupportingMaterial). Submillisec-

ond temporal resolution (under high signal-to-noise conditions) and subdif-

fraction tracking precision in all three dimensions have been previously

demonstrated (30). Tracking can be performed at depths up to 200 mm in

highly scattering environments (30,31).

Excitation of 835 nm from a Ti:Al2O3 laser (Mira 900, Coherent, Santa

Clara, CA) is used for tracking experiments. Following the optical

multiplexer, the beams pass through a galvo scanning system (6125H,

Cambridge Technology, Bedford, MA), before being focused through a

60 � N.A. 1.3 silicone oil objective (UPLSAPO 60X, Olympus, Center

Valley, PA). The total laser power was ~8mWat the objective back aperture.

For a typical 40 nm red fluorescent bead (F8770, Thermo Fisher Scientific,

Waltham, MA), photon count rates were in the range of 200–500 kHz.

Background fluorescence signal was on the order of 3 kHz that includes

a 150 Hz background signal from the detector. Signal-to-noise ratios

were typically above 20. Demultiplexed detection is performed electroni-

cally via time-correlated single-photon counting (TCSPC) analysis. Fluo-

rescence signals are detected by a cooled GaAsP photomultiplier tube

with 5 mm square active area (H7422PA-40, Hamamatsu, Bridgewater,

NJ) in nondescanned configuration. The current output from the PMT is

amplified through a 2 GHz cutoff bandwidth preamplifier (HFAC-26,

Becker and Hickl, Berlin, Germany) and sent into a photon-counting board

(SPC-150, Becker and Hickl, Berlin, Germany) to be counted and corre-

lated to the 76 MHz reference clock of the laser oscillator. The instrument

response function (IRF) is measured to be 230 ps FWHM. Every 1–20 ms a

photon histogram is sampled from the TCSPC module and processed in

the software loop run in LabVIEW (National Instruments, Austin, TX).

The tracking algorithm employs a proportional control to convert the error

signals to new stage positions. New voltages are sent out through a DAQ

card (PCIe-6353, National Instruments, Austin, TX) to their respective ac-

tuators—galvo mirrors for x and y tracking and piezo objective stage for z

tracking. The saved voltages are converted to build a 3D tracking trajectory.
Trajectory segmentation and classification

We have developed a procedure to perform trajectory segmentation and

classification (Fig. 1). First, a temporal rolling window of length w centered

at time s on the trajectory (34,36) is adopted for calculating the segmented

MSD at s (MSDw,s, Fig. 1 A). As the motional mode of the tracked particle

can vary significantly from one segment to another, a wide distribution of

the segmented MSD curves is expected. We then perform a two-step test

(Fig. 1 B) to classify the motion of each segment into four modes:

1) directed diffusion, 2) Brownian diffusion, 3) confined diffusion, and

4) immobilization. Within each segment only one of these motional modes

is assigned.

The first step of the test is to differentiate directed motion (active trans-

port) from Brownian diffusion, confined diffusion, and transient immobili-

zation (passive motion) by evaluating two parameters from the segmented

trajectories and their derived MSD curves—scaling exponent (a) (34) and

directional persistence (Df) (36). By fitting each segmented MSD curve

with the following power-law equation (41), a single a value is obtained

and is assigned to each time point s along the trajectory as follows:

MSDðtÞ � ta: (1)
Biophysical Journal 111, 2214–2227, November 15, 2016 2215



FIGURE 1 Procedure for segmentation and classification of trajectories. (A) The rolling window analysis is conducted at a given time point s with the

length of rolling window of 1.6 s (w ¼ 1.6 s) and the sliding time step (Ds) of 0.1 s. (B) The transient behaviors of a trajectory are identified using the three

classification parameters: scaling exponent of MSD curve (a), directional persistence (Df), and confinement index (L). The MSD curve of each segment is

fitted with the proper model to extract the dynamic parameters including V, DBrn, Dmicro, Dmacro, L, and Dmin. To see this figure in color, go online.
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Directional persistence function (Df) in a temporal rolling window of

length w centered at time s is defined as (36) follows:

DfðtÞ ¼
D
ðfðt0 þ tÞ � fðt0ÞÞ2

E1
2
; t0˛

h
s� w

2
; sþ w

2

i
; (2)

where f is the directional vector at each data point (see Fig. S3 B).

Although, each rolling window centered at s generates a directional
persistence function Df(t), we use the single value, Df(w/4), to represent

the direction persistence Df at s. The time lag of w/4 is chosen in

consideration of the microtubule bending during a motor-driven event

(36). The Df is equal to zero when the motion is unidirectional. Similar

angle analysis (e.g., jump angle analysis) is used to probe diffusion bias

inside nucleus (65,66).

The segment at time s is classified as active transport when a R 1.4 and

Df% 0.1 (test 1 in Fig. 1 B). Otherwise the segment is classified as passive

motion (threshold optimization is discussed in the Supporting Material and

Fig. S4). In the complex intracellular environment, the active transport

along microtubules has a values ranging from 1.4 to 2 (53). Whereas

some biological studies also used the a value of 1.4 as a criterion for

classification (54,55), an a value of 1.7 was used in a microfluidic

experiment (36). In the same report, the criterion of Df % 0.1 was found

suitable to achieve sufficient discrimination between active and passive

motion (36). The threshold values of a and Df have also been validated

in our simulated movement experiment (SME; see the detailed discussion

on SME below).

The second step of test is to classify passive motion into Brownian

diffusion, confined diffusion, and immobilization by evaluating confine-

ment index (L) from the segmented trajectories (test 2 in Fig. 1 B). Confine-

ment index (L) is defined as (37,58) follows:

L ¼ Dmaxw

varðrÞ; (3)

whereDmax is the unconstrained diffusivity of particles and var(r) stands for

the variance of particle positions (r) within a temporal rolling window of
lengthw. In the early reports, confinement index is defined as the ratio ofDmax

w and r2max, where rmax is the largest displacement from the starting point

within the rolling window (43). Under Brownian diffusion, r2max scales line-

arly withDmaxw. But when the particle is confined in a domain of linear size

L, r2max is limited by L2. Thus the value ofL becomes significantly larger than

that in Brownian diffusion. In Eq. 3, r2max is replaced with var(r) in the L

calculation. As a result, L becomes the ratio of the variance of Brownian

diffusion (Dmaxw) and the variance of trajectory segmented under study

(var(r)). This modified definition of L has advantage in detecting confine-

ment in a wider class of trapping potential shapes (37). Two threshold values
2216 Biophysical Journal 111, 2214–2227, November 15, 2016
were selected: LBrn ¼ 14.32 and LIm ¼ 677.59. Based on these thresholds,

trajectories were classified into Brownian diffusion (L % LBrn), confined

diffusion (LBrn<L<LIm), and immobilization (LRLIm). Threshold opti-

mization is discussed in Discussion (also see Fig. S5).

For trajectory segmentation and classification, the length of temporal

rolling window (w) should be sufficiently long to ensure good estimation

of a, Df, and L (36). On the other hand, the w should be kept short to

maintain decent temporal resolution. Optimization of rolling window

length is discussed in the Supporting Material (Fig. S4). We found that

the reasonably short rolling window of 1.6 s (w) can effectively differentiate

active transport from passive motion (Fig. S4) and distinguish confined

diffusion from Brownian diffusion (Fig. S5). The sliding time step (Ds)

for the rolling window analysis is set as 0.1 s, whereas the time step for

position acquisition (Dt) is either 2.5 ms for simulated trajectories or

20 ms for experimental trajectories. In our simulations, we also found

that the confinement index of Brownian motion is independent of the rolling

window length (w), but the scaling exponent (a) of directed diffusion, the

directional persistence (Df) of directed diffusion, and the confined index

(L) of confined diffusion are all functions of the rolling window length

(Figs. S4 and S5).
Extracting dynamic parameters from MSD

The typical approach to analyze a single-particle trajectory starts with the

calculation of MSD, which describes the average squared distance ðr2Þ that
the particle has explored in space at a given time lag (t) (see Fig. S3 A).

Because the cellular environment is highly crowded with a compartmental-

ized structure, the dynamics for receptors, even of the same type, can be

highly heterogeneous (67). Observed motion in a live cell can be comprised

of periods of Brownian diffusion, directed diffusion, confined diffusion, and

transient immobilization, all within an individual receptor trajectory. For

Brownian diffusion, theMSDcan be calculated as thevariance of the solution

to the Fick’s law of diffusion and it scales linearly with t as follows:

MSDðtÞ ¼
D
ðrðt0 þ tÞ � rðt0ÞÞ2

E
¼ 2dDBrnt; (4)

where d represents the dimensionality of the space in which the motion

takes place, DBrn is the Brownian diffusion coefficient, and r is the position

vector of the particle.

Directed diffusion corresponds to the superposition of a ballistic move-

ment and Brownian diffusion. It is characterized by the following quadratic

scaling relationship (68):

MSDðtÞ ¼ 2dDlateralt þ ðVtÞ2; (5)
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where V represents the speed of the ballistic movement that is most likely

caused by molecular motor-assisted active transport along microtubules. As

Brownian diffusion is most noticeable in the lateral direction of ballistic

movement, Dlateral is used to represent it.

Confined diffusion, the constrained particle diffusion due to receptors

being trapped in small cellular compartments such as cortical cytoskeleton,

membrane cavities, and vesicles (37), is featured by an abrupt

change of slope in the MSD curve (35) after a characteristic equilibration

time t (see Fig. S8 for discussion on various types of confined diffusion).

Although the exact expression of MSD depends on the shape of the

confining region and on spatial dimensionality, the two-dimensional (2D)

MSD of confined diffusion can be approximated by (39,69)

MSD2DðtÞyL2

3

h
1� exp

�
� t

t

�i
þ 4Dmacrot; (6)

where Dmacro is the long-term ‘‘macroscopic’’ diffusion coefficient (69) and

L is the linear dimension of the confinement. The characteristic equilibra-

tion time t can be related to L by the following (39):

t ¼ L2

12ðDmicro � DmacroÞ; (7)

where Dmicro is the short-term ‘‘microscopic’’ diffusion coefficient (39,69).

This intradomain diffusivity Dmicro is measured using the same method as

described in Brownian diffusion section.

Transient immobilization takes place when the diffusivity falls below a

predefined value Dmin (1.9 � 10�4 mm2/s), which is the detection limit of

our TSUNAMI microscope (see Fig. S6 for detailed discussion).
MSD curve fitting

Curve fitting of segmented MSD using Eqs. 4–6 can extract local dynamic

parameters such as Brownian diffusion coefficient (DBrn and Dlateral),

active transport speed (V), linear dimension of compartments (L), macro-

scopic diffusivity (Dmacro), and microscopic diffusivity (Dmicro). For each

segment classified as Brownian diffusion, the associated DBrn is optimally

determined using a covariance-based estimator (70). Here we define the

instantaneous diffusivity (D0) as the linear MSD fitting result of each

rolling window (regardless the classification result of that rolling window).

Since MSD at a longer time lag is averaged over fewer samples (i.e.,

noisier), typically only the first 1–20 data points in the MSD curve are

used for diffusivity estimation in a short time period (35,69,71–73).

The optimal number of data points used for D0 estimation should be

determined by expected diffusion coefficient, tracking error, size of time

step, and track duration. Considering these factors in our experiments,

we estimate D0 based on the first 3–5 points in the MSD curve. The detec-

tion limit of the TSUNAMI microscope is currently at 1.9 � 10�4 mm2/s

(Dmin, Fig. S6).

Following the definition of D0, we define the instantaneous velocity (Vi)

as the absolute displacement within a rolling window divided by the length

of that rolling window, regardless of the classification result of that rolling

window. In this report, DBrn and Vare the dynamic parameters derived from

the segments classified as Brownian and directed diffusion, respectively,

whereas Do and Vi are the parameters derived from all segments regardless

their classification results. Readers are advised to pay attention to these

different notations and their associated definitions.

For segments classified as directed diffusion or confined diffusion, a

least squares regression line is fitted through the first Nf points of the

MSD curve with each point weighted by the reciprocal of its relative

variance varrel (68):

varrelðtÞ ¼ tð2t2 þ 1Þ
w� t þ 1

; (8)
where w is the length of rolling window and t is the time lag of MSD

curve. The values of Nf are typically N/3 (Nf ¼ 16) (74), N/2 (Nf ¼ 28)

(75), and 2N/3 (Nf ¼ 50), where N is the number of total MSD data points

(34). As a precise measure of the dynamic parameters requires a sufficient

number of MSD points, we choose Nf ¼ 40 (N/2, N ¼ 80 (w ¼ 1.6 s and

Dt ¼ 20 ms)) in calculating the dynamics parameters of directed and

confined diffusion.
Verifying 3D tracking and trajectory analysis
algorithm using SME

The accuracy of dynamic parameters extracted from MSD curves is limited

by the tracking error of our system. To precisely quantify the tracking error

of TSUNAMI microscope, we tracked a fixed fluorescent bead (200 nm,

F-8810, Thermo Fisher Scientific) loaded on an independent xyz piezo

stage (P-733K130, Physik Instrumente (PI), Karlsruhe, Germany), which

is programmed to carry out motion patterns generated by Monte Carlo

simulation. This control experiment is termed the SME (Fig. S1) and the

simulation-generated trajectory is termed the prescribed trajectory. To char-

acterize the tracking error in a scattering environment, fluorescent beads

were embedded in 1.3% agarose within chambered coverglasses. We ne-

glected the finite differences between the Monte-Carlo-simulation-gener-

ated trajectory (that was used to command the movement of the xyz piezo

stage) and the trajectory that the stage actually performed (determined by

the capacitive sensors of the stage). The tracking error of TSUNAMI micro-

scope is defined as the standard deviation of the differences between the

stage trajectory and the TSUNAMI tracking trajectory. The tracking error

was found less than 20 nm in x and y and ranged from 51–91 nm in z, de-

pending on the diffusivities used in the SME (Fig. S9). In a prescribed

motion that mimicked the typical 2D confined diffusion of membrane re-

ceptors, the TSUNAMI tracking error was found to be 16 nm in xy and

43 nm in z (Fig. S10). Tracking error can also be caused by the thermome-

chanical instability of the microscope (69). For 100 s tracking experiments,

the static error is found significantly smaller than the dynamic error

(Fig. S6).
Cell culture

Used as the model system, EGFR-overexpressed A431 skin cancer

cell was purchased from ATCC and grown in DMEM (Dulbecco’s Modi-

fied Eagle Medium, 11995-065, Thermo Fisher Scientific) supplemented

with 10% fetal bovine serum (16140-071, Thermo Fisher Scientific).

The cell cultures were kept in humidified atmosphere with 5% CO2 at

37�C. Single suspensions were prepared by mild enzymatic dissociation

using a 0.25% trypsin/EDTA solution (25200-056, Thermo Fisher Scien-

tific). For EGFR tracking in monolayer cells, A431 cells were seeded

onto optical imaging eight-well chambered coverglasses (154534, Thermo

Fisher Scientific) with cell density of 1 � 105 cells per well and allowed

to adhere overnight.
Multicellular spheroid preparation

Agarose-coated 96-well plates (130188, Thermo Fisher Scientific) were

used to cultivate A431 spheroids. Agarose coating was conducted by filling

each well with 50 mL DMEM sterilized agarose solution (1.5% by weight,

A9539-100G, Sigma-Aldrich). The spheroids were prepared following the

procedure described in literature (76) and the plates were incubated for 96 h

in humidified atmosphere with 5% CO2 at 37
�C. To generate spheroids with

various sizes, single-cell suspensions from liquid overlay culture were

seeded onto agarose-coated plates at different cell densities: 125, 250,

500, 1000, 1500, 2000, and 3000 cells per well (Fig. S15). Considering

the penetration depth of the cell membrane dye (CellMask Deep Red,

C10046, Thermo Fisher Scientific) and the working distance of the
Biophysical Journal 111, 2214–2227, November 15, 2016 2217
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objective, spheroids with diameters of 90 to 110 mm (seeding density ~125

cells per well) were selected for the tracking experiments.
Fluorescent probe labeling to EGFRs

Anti-EGFR antibody-conjugated fluorescent nanoparticles were used to

label EGFRs for tracking. Biotinylated monoclonal anti-EGFR IgG

(Ab-3, MS-311-B, Thermo Fisher Scientific) was mixed at 1:1 ratio

with 40 nm red fluorescent nanoparticles (F8770, Thermo Fisher

Scientific) in 1.5% BSA/phosphate-buffered saline solution (BSA, S7806,

Sigma-Aldrich). The antibody-conjugated fluorescence nanoparticles

(~30 nM, the stock solution) can be stored at 4�C for up to 1 week. The

number of antibodies per nanoparticle should follow a Poisson distribution

(77). In our experiments, we cannot rule out the possibility of cross-linking

due to conjugating multiple antibodies on a single nanoparticle. The bright-

ness of an antibody-conjugated fluorescent nanoparticle was characterized

by fluorescence correlation spectroscopy and tracking of fixed particles

(Fig. S16).

Before tracking experiments, both monolayer cells and spheroids were

kept under serum-starvation conditions for 24 h. For monolayer samples,

cells were stained with CellMask Deep Red (1:1000 dilution in DMEM)

for 10 min at 37�C. For spheroid samples, spheroids were transferred

from a 96-well plate to an 8-well chambered coverglass using micropi-

pette (8 to 10 spheroids per well). To ensure thorough membrane stain-

ing, a higher concentration of CellMask Deep Red (1:500 dilution) and a

longer incubation time (1 h) were employed. After membrane staining,

the staining buffer was replaced with the EGFR-labeling solution (anti-

body-conjugated fluorescent nanoparticles at 100 pM) diluted from

the stock solution (30 nM). The reaction was incubated for 30 min

at 37�C (preparation steps are graphically presented in Fig. S17). The

EGFR-labeling solution was removed, and the samples were washed

twice using phosphate-buffered saline to remove the unbound fluorescent

nanoparticles. Under these conditions, each A431 cell was expected

to have 3–8 EGFRs labeled with a single fluorescent bead. At such a

low labeling density, the chance for one fluorescent bead to encounter

another bead or to crosslink multiple EGFRs was minimal. Without

anti-EGFR antibodies in reaction, very few fluorescent beads (typi-

cally aggregates) were found on the cell membrane (<0.27 bead/cell)

(Fig. S18).

Upon completion of membrane staining and EGFR labeling, the

chambered coverglass was immediately put on the TSUNAMI micro-

scope for tracking experiments. Internalization of EGFR was initiated

by replacing the media with DMEM containing 10 ng/ml EGF (recom-

binant human epidermal growth factor, PHG0311L, Thermo Fisher

Scientific) (64). As membrane-bound EGFRs were typically internalized

within 30 min upon EGF stimulation (78), 2–4 EGFR trajectories

(duration ranged from 2–10 min) were typically obtained from each

well. The volumes of all solutions and washing buffers used in staining

were 200 ml per well.
RESULTS

Verifying 3D tracking and trajectory analysis
algorithm using SME

The reliability of the TSUNAMI 3D tracking microscope
and the trajectory analysis algorithm was verified by
following prescribed trajectories that imitated EGFR traf-
ficking in live cells. One 35 s representative prescribed
trajectory (Fig. 2) was divided into seven 5-s-long regions,
where three were encoded with confined diffusion (green
areas), two were encoded with Brownian diffusion (blue),
one was encoded with directed diffusion (red), and the last
2218 Biophysical Journal 111, 2214–2227, November 15, 2016
one was encoded with immobilization (gray). In our trajec-
tory analysis, every 0.1-s-long segment was classified into
one of the four motional modes (the sliding time step (Ds)
was 0.1 s, Fig. 1) and color-coded for visual inspection. It
is obvious to see that one classification parameter alone
could not well identify the motional modes (Fig. 2 B). In
this example, our algorithm successfully recovered the
seven regions and reached 81% overall segment classifica-
tion accuracy.

The misclassified segments concentrated near the
change points between regions. In particular, misiden-
tification of confined diffusion as Brownian diffusion
took place when the motion changed from confined
diffusion (green, 10–15 s) to directed diffusion (red, 15–
20 s). Similarly, when motion changed from Brownian
diffusion (blue, 25–30 s) to immobilization (gray, 30–
35 s), misclassification of immobilization as confined
diffusion was also noticed. These systematic misidentifi-
cations around the change points were understandable as
the classification parameters were averaged over a 1.6-s-
long rolling window (w), which could span two or more
distinctive motion modes. Because of these misclassifi-
cations, the experimentally derived dynamic parameters
often needed to be fitted with a Gaussian mixture model
(MATLAB, The MathWorks, Natick, MA). For the
directed diffusion region (red areas in Fig. 2 B), the pre-
determined active transport speed (Vpre) and the experi-
mentally recovered active transport speed (V) were
2 mm/s and 2.05 5 0.06 mm/s, respectively (where the
error was the standard deviation of the Gaussian fit,
Fig. 2 D). Here the 2.05 5 0.06 mm/s was the major pop-
ulation, whereas the overall population (considering the
presence of subpopulation) was calculated to be 1.96 5
0.28 mm/s. For the Brownian diffusion regions (blue
areas), the predetermined diffusivity (Dpre) and the exper-
imentally recovered diffusivity (DBrn) were 0.08 mm2/s
and 0.05 5 0.02 mm2/s, respectively (whereas the over-
all population to be 0.04 5 0.03 mm2/s). For the
confined diffusion regions (green areas), the predeter-
mined confinement size (Lpre) and the experimentally
recovered confinement size (Lexp) were 100 nm and
100.1 5 46.2 nm, respectively (whereas the overall pop-
ulation to be 131.1 5 84.2 nm). More SME results that
demonstrate the reliability of the trajectory analysis algo-
rithm can be found in Figs. S11–S13.
Revealing membrane dynamics of EGFRs

We used the developed algorithm to analyze 112 EGFR tra-
jectories acquired in live A431 epidermoid carcinoma cells
(95 with stimulation of EGFs and 17 without stimulation).
These trajectories all started on the apical surfaces of the
cells, and consequently were expected to exhibit an inter-
change of confined diffusion and Brownian diffusion at
the beginning (16). One representative 120-s-long



FIGURE 2 Verifying the trajectory analysis al-

gorithm using SME system (n ¼ 16). (A) A repre-

sentative prescribed trajectory is composed of

Brownian diffusion (BD), confined diffusion

(CD), directed diffusion (DD), and immobilization

(IM). Simulated conditions are Brownian diffu-

sivity Dpre ¼ 0.08 mm2/s, linear dimension of the

confinement Lpre ¼ 100 nm, probability of penetra-

tionP¼ 0.01, and speed of directed diffusionVpre¼
2 mm/s. The track duration is 35 s, and the trajectory

is equally divided into seven 5-s-long regions in

which the tracked particle exhibits four types of

motional modes in the following sequence: CD/
BD/CD/DD/CD/BD/IM. The red arrow-

head marks the starting point of the trajectory. The

green arrows mark the regions exhibiting confined

diffusion and the black arrow marks the immobili-

zation region. (B) Time traces of the three classifi-

cation parameters (a, Df, L) and instantaneous

velocity (Vi) of the representative trajectory shown

in (A). (C) The ensemble-averaged MSD curves

from the classified regions were fitted with the

proper models to recover the dynamic parameters

(DBrn, L, and V). The R-squared values were em-

ployed to evaluate the goodness-of-fit. Ribbons

represent the standard deviations. (D) Normalized

histograms of experimentally derived dynamic

parameters logV (red), logDBrn (blue), and logL

(green) are provided. The means and standard

deviations were from curve fitting with a Gaussian

mixture model. The total number of trajectories

analyzed is 16 in (C) and (D). To see this figure

in color, go online.

Segmentation of 3D Trajectories
trajectory clearly showed these two motional modes on the
cell membrane, with the fractions of confined time and
free-diffusing time being 85% and 15%, respectively
(Fig. 3). For Brownian diffusion segments (blue), the
measured diffusivity, DBrn, was (3.2 5 0.5) � 10�3 mm2/
s. For confined diffusion, the measured diffusivities, Dmicro

and Dmacro, were (3.3 5 0.6) � 10�3 mm2/s and (0.5 5
0.7) � 10�3 mm2/s, respectively. The linear dimension of
confinement, L, was found to have two distributions:
48.8 5 13.9 nm and 110.5 5 85.8 nm (Fig. 3 D). These
values agree with previous observation of membrane-
bound EGFR dynamics using 2D single-particle tracking
techniques (50,58).
Monitoring EGFR trafficking from membrane to
cytoplasm in live cells

TSUNAMI is one of the few high-spatiotemporal-resolution
3D tracking techniques (8,23,25,79,80) that allow for moni-
toring intracellular processes and generating 3D trajectories
over a large z depth (>30 mm) and a long period of time
(~10 min). One representative 442-s-long trajectory clearly
exhibited features of EGFR trafficking from membrane to
cytoplasm (Fig. 4 A). After the trajectory was segmented,
classified, and color-coded, four different phases could be
clearly identified: confined diffusion on the cell membrane
(phase I), onset of the internalization process (phase II),
active intracellular transport (phase III), and confined
diffusion in a vesicle (phase IV). The durations of these
four phases were 177, 124, 10, and 131 s, respectively
(Fig. 4 B).

Phase I was featured by high confinement indices
(average L ¼ 45.6 5 22.8) and very small displacements
within 20 ms (average absolute displacement ¼ 13.3 5
6.5 nm per 20 ms), indicating confined diffusion on
the cell membrane. As the cell membrane was stained
with CellMask, we confirmed that the phase I tra-
jectory was indeed on the cell membrane by superimpos-
ing the trajectory over the two-photon scanning image
of the cell. Interestingly, we often observed EGFR
Biophysical Journal 111, 2214–2227, November 15, 2016 2219



FIGURE 3 Interchanging of confined diffusion

and Brownian diffusion on cell membrane. (A) A

representative trajectory of EGFRmembrane diffu-

sion is shown. The green and blue colors represent

confined diffusion and Brownian diffusion, respec-

tively. The zoom-in view (inset) shows the mem-

brane confinements based on visual inspection.

The fractions of free diffusion time and confine-

ment time were 14.7% and 85.3%, respectively.

(B) Time traces of the three motion classification

parameters (a, Df, L) and instantaneous velocity

(Vi) of the representative trajectory shown in (A)

are provided. (C) The ensemble-averaged MSD

curves from the classified segments were fitted

with the proper models to extract DBrn and L.

The R-squared values were employed to evaluate

the goodness-of-fit. Ribbons represent the standard

deviations. (D) Histograms of logDBrn and logL

derived from the classified segments are provided.

These histograms were fitted with a Gaussian

mixture model. To see this figure in color, go

online.
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movement toward one direction on membrane (Fig. 4,
C-I). This type of the ‘‘linear’’ confined diffusion of trans-
membrane proteins has previously been reported by other
groups (81), possibly reflecting diffusion within a linear
confinement.

Phase II was featured by an interchange of Brownian and
directed diffusion, which we believe marked the onset of the
internalization. If internalization of EGFR is carried out by
clathrin- and actin-mediated endocytosis, phase II should
represent the pulling of clathrin-coated pits toward the inte-
rior of the cell by the movement of the growing actin
network (82) and the formation of endosome mediated
by dynamins (83). There was a noticeable peak in the instan-
taneous velocity (Vi) time trace in phase II, from 266 to
275 s (Fig. 4 D, inset a). The average Vi within this 9-s win-
dow was significantly higher than the background level
(0.16 vs. 0.05 mm/s). This increased velocity agreed well
with the clathrin-mediated endocytosis model as the inter-
nalization speed of clathrin-coated pits is found on the order
of 0.1 mm/s (84). Upon a closer examination of the color-
coded phase II trajectory (Fig. 4, C-II), a change point
(marked by a red arrow) from the red-blue-mixing region
to the green-blue-mixing region was clearly noted. We
believe this change point marked the transition from the
actin-cytoskeleton-mediated movement (red-blue-mixing)
to the confined diffusion in an early endosome (green-
blue-mixing).

A sudden increase of instantaneous velocity at 302 s
marked the beginning of phase III, which was featured
2220 Biophysical Journal 111, 2214–2227, November 15, 2016
by a large linear displacement (8.17 mm in Fig. 4,
C-III) within a short period of time (10 s). Phase
III was believed to be the active transportation of endo-
some on microtubules (i.e., directed diffusion) (34,60).
Both the average instantaneous velocity of 1.20 5
1.06 mm/s (Vi) and the active transport speed of 1.39 5
0.99 mm/s (V, from Eq. 5) derived from phase III
matched well with the typical motor protein-medi-
ated transport speed of 0.5 to 2 mm/s (59–62). The
two separate populations of Vi in phase III might
represent the two classes of runs (the short-slow run
and the long-fast run) observed in active transport
(85,86) (Fig. 4 F). The short-slow run represents
motors engaged in a tug-of-war between oppositely
directed molecular motors attached to the same cargo
(87,88). The long-fast run (~4 mm displacement and
~3 s duration, such as the movement within 305 to
308 s in phase III, Fig. 4 D, inset b) indicates that
dynein motors become dominate in the intracellular trans-
portation. The length and duration of active transport of
EGFRs (derived from the 95 EGF-stimulated EGFR tra-
jectories) were 3.89 5 1.69 mm and 5.05 5 4.50 s,
respectively.

The instantaneous velocity suddenly decreased to
the background level at 311 s (~0.05 mm/s), which
marked the end of active transportation and the begin-
ning of phase IV. Featured by a mixture of confined
and Brownian diffusion (Fig. 4 C-IV), phase IV was
believed to be a diffusion confined within a vesicle (late



FIGURE 4 Trafficking from membrane to cyto-

plasm. (A) A representative trajectory of EGFR

trafficking from cell membrane to cytoplasm is

shown. The green, blue, and red colors represent

confined, Brownian, and directed diffusion, respec-

tively. The dark red arrow marks the starting point

of the trajectory. The fractions of free diffusion

time, confinement time, and active transport time

were 24.4%, 73.4%, and 2.2%, respectively. The

trajectory can be divided into four phases by visual

inspection. (B) Time traces of the three motion

classification parameters (a, Df, L) is shown.

Corresponding periods of the four phases are

color-coded in these time traces. (C) Zoom-in

views of the four phases, which clearly show the

differences in the receptor motion in these phases.

In this case, EGFR complex traveled 8.17 mm into

the cytoplasm at phase III. (D) Time trace of

instantaneous velocity (Vi) is shown. A small

peak was noted around 273 s in phase II (inset a)

and a large peak took place around 307 s in phase

III (inset b), which mark the onset of internaliza-

tion and the motor-mediated transport, respec-

tively. (E) Histograms of logD0 in phases I–III

are provided. (F) Histograms of logVi in phases

I–III are provided. The values shown in (E) and

(F) represent the means and standard deviations

from Gaussian mixture model fitting. The logD0

and logVi of phase III clearly show two distribu-

tions. These two distributions are indicated

with dotted line and dashed line, respectively. To

see this figure in color, go online.
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endosome) that itself diffused (69) (called cage diffusion
in Fig. S8).

The histograms of logDo were clearly distinguishable for
phases I, II, and III (Fig. 4 E). The logDo histogram of phase
IV was similar to that of phase I and was thus not shown
(Fig. S14). Similarly, the histograms of logVi were also
distinguishable for phases I, II, and III. Whereas logD0

and logVi of phases I and II had a normal distribution, those
of phase III clearly had a much broader distribution. The
average DBrn, L, Dmicro, Dmacro, Vi, and V values for each
phase are summarized in Table 1. For the entire trajec-
tory (442 s long), the fractions of free diffusion time,
confinement time, and active transport time were 24.4%,
73.4%, and 2.2%, respectively.
Distributions of the dynamic parameters of EGFR

Based on the classification results, the 95 EGF-
stimulated EGFR trajectories were divided into three
groups—group 1: stalled EGFRs (n ¼ 23, 24.2%), group
2: membrane diffusing EGFRs (n ¼ 49, 51.6%), and
group 3: membrane to cytoplasm trafficking EGFRs
(n ¼ 23, 24.2%) (Fig. 5 A showing a representative
trajectory in each group). Group 1 trajectories were
characterized by either immobilization (L R LIm) or
confined diffusion within a region of linear size of
500 nm or smaller. The low D0 feature (centered around
(1.9 5 0.5) � 10�4 mm2/s) might indicate trapping
of EGFRs in plasma membrane compartments, such as
Biophysical Journal 111, 2214–2227, November 15, 2016 2221



TABLE 1 Comparison of Dynamic Parameters in Different Phases of EGFR Trafficking

Dynamic Parameters DBrn (mm
2/s) L (nm) Dmicro (mm

2/s) Dmacro (mm
2/s) V i (mm/s) V (mm/s)

Phase I – 88.0 5 71.6 (0.9 5 0.2) � 10�3 (1.7 5 2.5) � 10�3 0.04 5 0.02 –

Phase II (1.3 5 0.03) � 10�3 96.3 5 61.8 (1.2 5 0.2) � 10�3 (5.7 5 16.2) � 10�3 0.06 5 0.04 0.24 5 0.08

Phase III – – – – 1.20 5 1.06 1.39 5 0.99

Phase IV (1.1 5 0.02) � 10�3 102.8 5 65.3 (1.0 5 0.2) � 10�3 (1.7 5 3.2) � 10�3 0.05 5 0.03 –

Liu et al.
clathrin-coated pits (89), or formation of EGFR clus-
ters (90). In addition, EGFRs can associate with integ-
rins in a signal transduction system (91). Group 2
trajectories, on the other hand, showed an interchange of
Brownian diffusion and confined diffusion, but without
any active transport component. Group 3 trajectories
exhibited directed diffusion that lasted for at least 0.5 s
or longer. Instead of further dividing each trajectory into
distinct phases and computing their dynamic parameters
separately (as Table 1), here we treated each trajec-
tory as a whole and built histograms of D0 based
on the entire trajectories. The D0 histograms not only
discriminated EGF-stimulated trajectories from no-
EGF trajectories, but they also differentiated among
EGF-stimulated groups 1, 2, and 3 trajectories them-
selves (Fig. 5 B). Clearly without EGF stimulation,
EGFRs were more mobile on the membrane. Dimeriza-
tion of EGFRs was believed to the cause of reduced
mobility for EGF-stimulated EGFRs (50,63), which
also induced endocytosis (64). Although untreated
EGFRs were more mobile, their time proportions in
Brownian and confined diffusion were similar to those
of EGF-stimulated EGFRs (Fig. 5 C). In addition, no
2222 Biophysical Journal 111, 2214–2227, November 15, 2016
significant differences between trajectories collected
from monolayer cells and those from spheroids were
noticed.
DISCUSSION

Rationale behind the thresholds used for
trajectory classification

How reliably our rolling-average algorithm can identify the
motional mode associated with each trajectory segment de-
pends on the thresholds that we select for the classification
parameters (scaling exponent a, directional persistence Df,
and confinement index L) and the length that we choose for
the rolling window (w). Other than the misclassification
issue around the change points, 100% classification accu-
racy cannot be achieved as pure random walks can also tran-
siently exhibit movement similar to confined or directed
diffusion (Fig. 2 B). Here we use prescribed trajectories
embedded with physiologically relevant receptor dynamics
(Dpre, Lpre, and Vpre) to train the algorithm and obtain a
set of thresholds that minimizes the chance of segment
misclassification. For example, movement of an internalized
FIGURE 5 Dividing EGFR trajectories into

three groups. (A) 95 EGF-stimulated EGFR trajec-

tories were categorized into three groups that

represent stalled EGFRs (group 1, n ¼ 23), mem-

brane-diffusing EGFRs (group 2, n ¼ 49), and

membrane-to-cytoplasm-trafficking EGFRs

(group 3, n ¼ 23). The inset shows a zoom-in

view of the representative trajectories from groups

1 and 2. The trajectories are color-coded to indi-

cate different motional modes within each

segment. The dark red arrow marks the starting

point of the trajectory of the group 3 representative

trajectory. (B) Histograms of logD0 derived from

EGF-stimulated EGFR trajectories (groups 1–3)

and the ones without EGF stimulation (No-EGF,

n ¼ 15) are provided. These histograms were fitted

with a Gaussian mixture model. The detection

limit (Dmin) is estimated by tracking of fixed beads.

(C) Percentages of the four motional modes within

the trajectories of the three EGF-stimulated groups

and the no-EGF group are provided. To see this

figure in color, go online.
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early endosome is mostly assisted by molecular motors on
microtubules, which exhibits a characteristic transport speed
of ~1 mm/s (60,92) with lateral diffusivity (Dlateral) around
3 � 10�3 mm2/s (53). By analyzing the prescribed trajec-
tories built on these practical dynamic parameters, we
confirm that the thresholds of 1.4 for a and 0.1 for Df

work well in distinguishing active transport from passive
transport (Fig. S4). These results also indicate that the
length of the rolling window has to be sufficiently long,
on the order of 1.6 s, to accurately identify the directed
diffusion. Since motor protein-assisted active transport
typically lasts for 1–2 s or longer (34,57), the 1.6 s rolling
window (w) with 0.1 s sliding time step (Ds) is appropriate
to resolve motor protein-assisted directed diffusion.

As for the confinement index L, the upper-bound and the
lower-bound thresholds for L are chosen such that there is a
less than 5% probability for Brownian diffusion or immobi-
lization being misidentified as confined diffusion (Fig. S5).
Since reliable differentiation of confined diffusion from
Brownian diffusion is the most critical classification step
in our analysis, we define the ‘‘power of confinement detec-
tion’’ to be the successful rate to capture each confined
diffusion. We further test these L thresholds with different
lengths of rolling window and find that the rolling window
has to be longer than 1.6 s for the power of confinement
detection being greater than 90% (Fig. S5). We emphasize
that the thresholds used in our trajectory segmentation and
classification method are calibrated computationally (via
Monte Carlo simulation, Fig. S5) and validated experimen-
tally (via SME, Figs. 2, S4, and S7). Although here we only
demonstrate the analysis of EGFR trajectories, our method
should be applicable to many other trajectories acquired
from biological samples with minor modifications. The
detailed information of threshold optimization and the
calculation of these three classification parameters were
summarized in Supporting Material (Table S1; Fig. S3).
Challenges in molecular trajectory analysis

Analysis of complex trajectories faces three major chal-
lenges: 1) observing transient behaviors in motion patterns
that span the spatiotemporal scale from nanometer to
micron and from millisecond to second, 2) discriminating
mechanisms that give similar subdiffusive MSD curves,
and 3) identifying the physical scenarios behind the
observed molecular trajectories. In this study we have
tackled the first challenge, and future work will focus on
the final two. Other than the mechanisms in confined geom-
etries that lead to subdiffusive behaviors (corralled, hop, and
cage diffusion, as discussed in Fig. S8), mechanisms in ‘‘un-
confined’’ geometries, such as continuous time random walk
(93–95), fractional Brownian motion (96,97), and random
walk on a fractal structure (98), can also give subdiffusive
MSD curves (11,41,99). A sophisticated differentiation
decision tree, such as the one proposed by Meroz’s group
(41), should be established and rigorously tested. Such a de-
cision tree can be used in conjunction with ours in Fig. 1 B
for identifying the mechanisms behind the subdiffusive be-
haviors in both confined and unconfined geometries.

Whereas different confinement models and simulations
have been carried out by other groups (34,37,39,100) and
us (Fig. S8), it is currently difficult to rule out one model
(e.g., cage diffusion (69)) from other models (e.g., hop
diffusion (100)) when explaining the mechanisms behind
the observed confined diffusion. Since MSD fits alone do
not fully distinguish between different models for the diffu-
sion, additional information is often needed. For instance,
Kusumi’s group determined that phospholipids undergo
hop diffusion in cell membrane based on the control exper-
iments that modified or depleted membrane skeleton (100).
On the other hand, Salome’s group believed that a G-pro-
tein-coupled receptor follows cage diffusion based on their
visual inspection of the trajectories—only few hops from
one domain to another were observed (69). With a close ex-
amination, our results resemble the hop diffusion described
by Kusumi based on 40 nm gold particle tracking (Fig. 3 A)
(101). Although the conventional 2D-SPT results suggested
that all phospholipid and transmembrane proteins exhibit
short-term confined diffusion within a compartment and
long-term hop movement from one domain to another (so-
called the skeleton fence model) (101), more-advanced
techniques, such as the scanning STED-FCS that provides
even higher spatiotemporal resolution in molecular motion
analysis, showed no evidence of nanodomains but rather
suggested transient interactions with immobile or slowly
moving entities, possibly proteins (102). Since particle
size effect on the tracking experiment has not been
completely elucidated, hop diffusion as a general molecule
diffusion phenomenon on membrane is still under debate
(49). Anyhow, it becomes clear that to derive biological
meaning from single-particle trajectories, one cannot simply
rely on a single analysis tool or a single parameter such as
MSD. Proper controls are also critically important.
Trade-offs in temporal resolution and probe size

Although our TSUNAMI microscope is capable of
performing 3D tracking at 50 ms temporal resolution
(20 kHz) when the tag is very bright (30), in the current
experiments the feedback loop was set to be 20 ms so
more photons could be collected for a better position es-
timate. The trade-off of this adjustment is the reduced ca-
pacity in resolving transient confinement of EGFRs on
plasma membrane. Lagerholm’s group has shown that
EGFRs are transiently confined in compartments with
linear dimension of 100–150 nm and a mean confinement
duration of 50–100 ms, using the 2D-SPT method with
1.75kHz frame rate (49). We have observed a similar
confinement size in our 3D-SPT experiments (Table 1)
but a longer confinement duration. Although high
Biophysical Journal 111, 2214–2227, November 15, 2016 2223
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temporal resolution will certainly improve the estimate
of transient confinement duration, significantly larger
nanoparticle tag is often needed. Recently Yang’s group
demonstrated 3D-SPT at 10 ms temporal resolution
using a giant polystyrene bead and quantum dot assem-
bly (~100 nm) (79). Although larger (also brighter and
more photostable) nanoparticle tags have provided us
with excellent localization accuracy and temporal reso-
lution in single-particle tracking, there is generally a
doubt that how much these large particles may influence
the mobility of molecules under investigation (e.g.,
by inducing cross-linking with other biomolecules or
by blocking molecule’s interactions with environment)
(11,103). It has been reported that transmembrane pro-
teins tagged with a 40 nm gold nanoparticle could diffuse
three to seven times slower than the same proteins tagged
with an Alexa 594 dye due to steric hindrance and cross-
linking effect (104). EGFRs tagged with a 40 nm gold
particle exhibit a diffusivity (~3 � 10�3 mm2/s) lower
than that of EGFRs tagged with a commercial quantum
dot (~0.04 mm2/s) (50) or fused with an EGFP (~0.2
mm2/s) (106). Although large nanoparticle labels have
also been used for high-resolution tracking of a wide
range of membrane proteins (such as glycine receptors
(107), GPI anchor proteins (17), a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid and N-methyl-D-aspar-
tate receptors (108), integrins (109), and cystic fibrosis
transmembrane conductance regulator channel proteins
(110,111)), smaller particle labels (diameter < 10 nm)
are recently developed and tested for SPT in a confined
space (such as synaptic receptors in synaptic cleft (27)),
providing less steric hindrance and reduced cross-linking.
To completely eliminate cross-linking, we are currently
developing monovalent EGFR labeling techniques based
on site-specific biotinylation of membrane receptors
(113), monovalent streptavidin (114,115), and monovalent
nanoparticles (116).
Outlook of high-resolution 3D tracking of EGFR

The combination of the TSUNAMI microscope and the
classification algorithm is capable of revealing the dy-
namics of complex EGFR trajectories from the plasma
membrane into deep cytoplasm at 20 ms temporal resolu-
tion and 16/43 nm (xy/z) spatial resolution, with track dura-
tion ranging from 2 to 10 min and vertical tracking depth
up to tens of microns. We can monitor the onset of
EGFR internalization process (phase II in Fig. 4 A) and
directly observe the change points of motional modes along
the trajectory (Fig. 4 C). Since the 2D-SPT techniques
can only probe the diffusion process on membrane (phase
I) (49,50,58), very few results have been published
about the endocytosis and intracellular transport dynamics
of membrane receptors (34,60). In this study we report
the physical parameters associated with these processes
2224 Biophysical Journal 111, 2214–2227, November 15, 2016
(Table 1) and show the statistics of our 3D trajectory clas-
sifications (Fig. 5). Interestingly, our results suggest that
there are three populations of EGFRs that respond differ-
ently (immobilization, membrane diffusion, and active
transportation) upon ligand stimulation. It will be worth-
while to further investigate the molecular mechanisms
causing the difference.

Defective endocytosis of EGFR can be caused by
altered ubiquitination (117,118), altered cytoskeletal inter-
actions (119), and derailed endocytosis. All of these
causes of EGFR dysfunction can be associated with onco-
genic alterations (120). Therefore, the outlined 3D-SPT
method and trajectory classification would be a highly
desirable tool for monitoring EGFR intracellular traf-
ficking dynamics at distinct phenotypic transition stages
in cancer development. Additionally, our study may also
provide a unique means to identify how the therapeutic
drugs (such as monoclonal antibodies and tyrosine kinase
inhibitors) affect receptor dynamics (anywhere from actin
network reorganization (121) to derailed endocytosis
(119)), which could have significant impact in the treat-
ment of cancer.
SUPPORTING MATERIAL

Supporting Materials and Methods, eighteen figures, and one table

are available at http://www.biophysj.org/biophysj/supplemental/S0006-

3495(16)30875-X.
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Monte Carlo simulations of EGFR movement in live cells 

We performed five different sets of Monte Carlo simulations to generate 3D trajectories in 

silico that mimicked (i) Brownian diffusion; (ii) corralled diffusion in confinements with 

impermeable boundaries; (iii) hop diffusion in confinements with permeable boundaries; (iv) cage 

diffusion in vesicles that themselves can diffuse; and (v) directed motion along linear tracks with 

lateral diffusivity. Brownian diffusion simulations were performed by generating a set of random 

displacements (∆𝑥, ∆𝑦, ∆𝑧) at each time step. These displacements followed a normal distribution 

with the following standard deviation:  

𝜎𝑥,𝑦,𝑧 = (2𝐷𝐵𝑟𝑛 ∆𝑡)1/2 

where DBrn is the given diffusion coefficient and Δt is the time step used in simulation. In our 

simulation, DBrn ranged from 0.01 to 0.16 µm/s2, which were close to the reported EGFR 

diffusivities (tagged with a nanoparticle and diffusing on the plasma membrane) (1-3). Corralled 

diffusion simulations were performed by having a particle freely diffuse in cubes (Dmicro) with 

impermeable boundaries and linear sizes (L) of 25, 50, 100 and 200 nm. If particles attempt to 

penetrate the boundaries of any dimension, the random displacement in the specific dimension(s) 

will be zero at this time step. Hop diffusion simulations were performed by having a particle freely 

diffuse in cubes (Dmicro) with the same linear sizes, but now cubes had permeable boundaries 

(probability of penetration per attempt P = 0.01). The selected cube sizes were close to the 40 to 

300 nm linear compartment sizes reported by other groups (2, 4, 5). Cage diffusion simulations 

were performed by having a particle freely diffuse within vesicles with impermeable boundaries 

and diameters (⌀) of 25, 50, 100 and 200 nm. Vesicles themselves were also diffusing (Dvesicle). 

These simulations were performed with Dmicro = 0.5 µm2/s and Dvesicle = 0.01 µm2/s. Corralled, hop 

and cage diffusion are all considered as “confined diffusion”. Directed diffusion simulations were 

performed along linear tracks with active transport speeds (V) and lateral diffusivities (Dlateral). 

The movement of an internalized early endosome is mostly assisted by molecular motors on 

microtubules, therefore showing a characteristic transport speed (V) about 1 µm/s  (6, 7) with 

lateral diffusivity (Dlateral) around 0.003 m2/s (8). The directed diffusion simulations were 

performed with V = 0.5 and 1 µm/s, and Dlateral = 0.0025, 0.005, 0.01 and 0.02 m2/s. All 

simulations were performed with the time step (Δt) of 2.5 ms. 

Simulation and experiment statements 

For Figures S5 and S8, the Monte Carlo simulations were performed for 10 s per run and 100 

runs per case. White Gaussian noise type of tracking error (error = 0 and error = 15 nm) was added 

to the Monte Carlo simulation generated trajectories before being analyzed by the developed 

algorithm. The rolling window of 1.6 s (w) and the sliding time step of 0.1 s (Δs) were used to 

analyze the stimulated trajectories (time step Δt = 2.5 ms). 

For Figures S4, S9, S10-13, the simulated movement experiments (SME) were performed for 

30 s per run and 10 runs per case. ⌀200 nm fluorescent beads (F-8810, Thermo Fisher Scientific) 

were embedded in 1.3% agarose within chambered coverglass at 20 pM. Monte-Carlo-simulation-

generated trajectories (without the white noise error) were used to command the movement of the 

xyz piezo stage every 2.5 ms. Although there were finite differences between the Monte-Carlo-

simulation-generated trajectory and the actual trajectory that the stage performed (output from the 

capacitance sensors in the xyz piezo stage), we conveniently called both these two trajectories the 

prescribed trajectories. The xyz piezo stage moved once every 2.5 ms and the capacitance sensor 

recorded the piezo stage voltages every 1 ms, while the integration period of TSUNAMI 
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microscope was 5 ms. The rolling window of 1.6 s (w) and the sliding time step of 0.1 s (Δs) were 

used to analyze the experimental trajectories (time step Δt = 5 ms). 

Data processing 

All data processing was performed in MATLAB (Mathworks). Saved in a binary format, the 

trajectory raw data contained photon counts and voltage outputs from the actuators (i.e. the xy 

scanning galvo mirrors (6125H, Cambridge Technology) and the objective z-piezo stage (P-726 

PIFOC, PI)) at each time point. Conversion of voltage outputs to particle xyz positions was carried 

out by multiplying a gain factor for each axis. Trajectories were plotted by simply connecting 

particle positions of consecutive time points. The particle-trajectory-derived diffusivities of 

membrane proteins were previously shown to have a broad distribution (9, 10) due to membrane 

heterogeneity (9). Rather than normal distribution, lognormal distribution was often used to 

describe the broad distribution of particle-trajectory-derived diffusivity (9, 10). We also observed 

this trend of lognormal distribution for our particle-trajectory-derived DBrn, Dmicro, Dmacro, D0, V, 

Vi and L values. The histograms of logD, logV and logL were fitted with a Gaussian mixture model 

(MATLAB, MathWorks). The fitted arithmetic means (μ) and standard deviations (σ) of logD, 

LogV, and logL were converted to arithmetic means and standard deviations in a linear scale (11). 

Optimization of thresholds used for classification 

The calculations of these three classification parameters, the scaling component (α) of MSD 

curves, the directional persistence (Δ𝜙), and the confinement index (Λ) were shown in Figure S3. 

The schematic in Figure S3 also demonstrate the difference of classification parameters in various 

motional modes.  

Table S1 summarized the threshold optimization for the segmentation and classification 

algorithm. To find out the optimal rolling window length for our segmentation analysis, we 

calculated scaling exponents α and directional persistence Δ𝜙 of directed diffusion SME 

trajectories (Figure S4). The scaling exponent and directional persistence are functions of width 

of rolling window (w), lateral diffusion coefficient (DLat), and speed of active transport (V). To set 

the thresholds to differentiate directed diffusion from passive motion, SME with a set of various 

w, DLat , and V were tested and evaluated to determine the optimal w and the thresholds of α and 

Δ𝜙 (Figure S4). The simulation parameters (DLat and V) were referred to values observed in live 

cells. The DLat of an endosome conducting active transport in live cell is usually less than 0.01 

µm2/s (12, 13), and the V ranges from 0.3 to 2 µm/s (8, 13, 14).  

The confinement levels were calibrated with Monte Carlo simulations of Brownian diffusion, 

confined diffusion, and immobilization (Figure S5). The ΛBrn would be a constant under the 

assumption that Dmax equals to DBrn (15). To analyze tracking trajectories, the Dmax need to be 

derived from experimental trajectories. The ΛIm is determined by the detection limit of tracking 

system (tracking error (σerror), Figure S6) (16). The confinement levels of these three motional 

modes were defined by ΛBrn and ΛIm. The test of differentiating confined diffusion from Brownian 

diffusion were conduct in SME (Figure S7).  
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Flow chart for threshold optimiaztion 

  

 

Table S1 | Threshold optimization  

Classification 

parameters 

Calibration models 

(Monte Carlo 

Simulation) 

Threshold values Note 

α = f1 (w, DLat, V) 

Δ𝜙 = f2 (w, DLat, V) 

Directed diffusion (DD) 

DLat = 0.0025-0.02 µm2/s  

V = 0.5, 1 µm/s 

w = 0.06-1.6 s 

σerror= 15 nm 

 Directed diffuison 

{
α > 1.4 

Δϕ < 0.1 
 

 Passive motion 

{
α < 1.4 

Δϕ > 0.1 
 

 w = 1.6 s 

1.1 The thresholds of w, α, and Δ𝜙 were 

determined by the SME results (Figure S4).  

1.2 If the DLat of directed diffusion is greater 

than 0.02 µm2/s or V is slower than 0.5 µm/s, 

the w  might need to be increased to identify 

directed diffusion. 

Λ = f3 (w, D, Dmax, L) Brownian diffusion (BD) 

D = 0.08 µm2/s  

Confined diffusion (CD) 

D = 0.08 µm2/s  

L = 25-1000 nm 

Immobilization (IM) 

σerror= 15 nm 

 BD: Λ ≤ ΛBrn 

 CD: ΛBrn < Λ < ΛIm 

 IM: Λ ≥ ΛIm  

 

 ΛBrn = 14.32   

 ΛIm = 677.59  

 w = 1.6 s 

2.1 Dmax is the cutoff of top 5% of diffusion 

coefficients derived from all trajectories, and 

Dmax is assumed to be the DBrn in live cells. The 

Λ of Brownian  diffusion would be 

independent of w.  

2.2 The ΛBrn is defined as the cutoff of  top 5% 

of Λ derived from Brownian diffusion. The 

ΛBrn will be a constant if Dmax equals to DBrn. 

2.3 The ΛIm  is determined by tracking error 

and defined as the cutoff of  bottom 5% of Λ 

derived from immobilization trajectories. 
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Figure S1 | TSUNAMI microscope setup (including the independent xyz piezo stage for SME) 

(A) The schematic and photograph of the Schematics of TSUNAMI (Tracking of Single particles Using 

Nonlinear And Multiplexed Illumination) 3D tracking microscope (17). The pulsed laser (76 MHz from a 

Ti-sapphire laser) is separated into four beams, which are delayed by 3.3 ns each and focused through a 

high-N.A. objective, generating four barely overlapped two-photon excitation volumes (colored oval balls 

in (B)). Using time-correlated-single-photon counting (TCSPC) detection, each detected photon attributed 

from an individual excitation volume is assigned to a specific time gated fluorescence decay histogram. An 

offset of the particle from the tetrahedron center can be estimated from the normalized photon count 

differences in the four time gates. As described in the paper, an independent xyz piezo stage (P-733K130, 

PI) is added to the system for SME, which allows us to quantify the tracking error of TSUNAMI microscope. 

Lz: lens set for z-offset control; BS: beam splitter; /2: half-wave plate; PBS: polarizing beam splitter; DM: 

dichroic mirror; BD: beam dump; GM: galvo mirrors; M: steering mirrors; PMT: photomultiplier tube. (C) 

When the particle (the golden sphere) sits right at the center of the illumination tetrahedron, photon counts 

are about equal in the four histograms. (D) The photon counts in the four histograms fluctuate according to 

the position of particle in the illumination tetrahedron.  
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Figure S2 | TSUNAMI feed-back control schematic (including scheme for SME) 

A Control Schematic demonstrating system level interaction, feedback control loop, and prescribed motion 

driven by an xyz piezo stage. The 835 nm excitation ray generated by a Ti:Al2O3 laser (Mira 900, Coherent) 

at 76 MHz repetition rate passes through the beam multiplexer and creates an illumination tetrahedron onto 

the sample. The sample is driven by an independent xyz piezo stage with a prescribed trajectory 

( 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) ). The piezo controller can simultaneously generate defined motion and record the 

corresponding motion profile which is then converted to a stage trajectory (�̃�(𝑡), �̃�(𝑡), �̃�(𝑡)). Fluorescence 

is detected by a cooled low dark count PMT (H7422PA-40, Hamamatsu Corp.) and amplified with a 2 GHz 

cutoff bandwidth preamplifier (HFAC-26, Becker and Hickl GmbH). The amplified signal is then measured 

and correlated to the reference clock of the Ti:Al2O3 laser with a TCSPC board (SPC-150, Becker and Hickl 

GmbH). Every 1-20 ms a photon histogram is sampled from the TCSPC module and processed in the 

software loop run in LabVIEW (National Instruments). The tracking algorithm employs a proportional 

control to convert the error signals to new stage positions. Furthermore, Liu and coworkers have 

demonstrated that the z-tracking accuracy can be significantly increased using maximum likelihood 

estimations (MLE) (18). New voltages are sent out through a DAQ (PCIe-6353, National Instruments) to 

their respective actuators, galvo mirrors for X and Y, piezo objective stage for Z. The saved voltages are 

converted to a 3D tracking trajectory (𝑥(𝑡), �̂�(𝑡), �̂�(𝑡)).  
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Figure S3 | Parameters for trajectory classification and segmentation 

(A) Schematics show the calculation of a MSD curve and the representative MSD curves of directed 

diffusion, Brownian diffusion, and confined diffusion. (B) Schematics demonstrate the calculation of the 

directional persistence and the comparison of directional angles of directional diffusion and Brownian 

diffusion. (C) Calculation of confinement index and the indices derived from there three types of diffusions. 
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Figure S4 | Selecting threshold of the scaling exponent (α), directional persistence (Δ𝜙) and length 

of the rolling window (w) for directed diffusion detection (SME results) 

Directed motions with various lateral diffusion coefficients (0.0025, 0.005, 0.01, or 0.02 µm2/s) and 

velocities (0.5 or 1 µm/s) were conducted in SME. The track duration for each trajectory is 10 seconds, and 

the time step is 2.5 ms. The α and Δ𝜙 values were derived from the MSD curves of the SME trajectoires. 

(A) The results demonstrate the diffusion would conceal the identification of directed motions, and the 

accuray of the algorithm depends on the window sizeWe set the threshold of identifying directed motion to 

be 1.4, because the active transport along microtubules exhibits α values of range from 1.4 to 2 in the cytosol 

(8).   The time window was chosen as 1.6 s to achieve sufficient discrimination of active transport states. 

(B) Considering the time window of 1.6 s chosen to calculate α values, we set the threshold of ∆𝜙 values 

to be 0.1. Error bars (represented by color ribbons) show standard deviations of 10 runs. 
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Figure S5 | Selecting thresholds of the confinement index 𝛬 for confinement detection (Monte 

Carlo simulation results) 

(A) The confinement index of Brownian motion is independent of the rolling window length (w) 

(15), but the confined index () of confined diffusion is a function of the rolling window length. 

(B) Histograms of confinement indices of freely diffusing particles (DBrn = 0.08 µm2/s, blue lines), particles 

diffusing within confinements of different sizes (Dmicro,pre = 0.08 µm2/s and Lpre = 25, 50, 100, 200, and 

1000 nm, green lines) and immobilized particles (D = Dmin = 4×10-4 µm2/s, black lines). In this simulation, 

we created diffusion confinements of various linear dimensions (Lpre = 25, 50, 100, 200, and 1000 nm) and 

penetrable boundary conditions (which mimic actin-cytoskeleton associated barriers and anchors). The 

particle can freely diffuse within the confinement (Dmicro,pre = 0.08 µm2/s), with a probability of penetration 

P = 0.01 at the boundaries. We found the 𝛬 threshod value of 14.32 can adequately differentiate confined 

diffusion from Brownian diffusion and the 𝛬 threshod value of 677.59 can adequately differentiate confined 

diffusion from immobilization, repectively. As a result, here we define confinement diffusion to be 14.32 

< Λ ≤ 677.59, where Λ ≤ 14.32 is Brownian diffusion and Λ > 677.59 is immobilization. With this set of 

criteria, only 5% of simulated Brownian diffusion and immobilized trajectories were misclassified as 

confined diffusion. Our simulation results also indicated that the measured confinement index is a function 

of confinement size itself. As shown here, the set of criteria worked relatively well when the linear 

dimension of confinement is about 50-200 nm. The diameters of actin-induced compartments within plasma 

membrane range from 40 to 300 nm (5). (C) This plot shows that the power of distinguishing confined 

diffusion from Brownian diffusion. The 𝛬 threshod value of 14.32  effectively separates confined diffusion 

from Brownian motion within the linear dimension of confinement (Lpre) below 200 nm (Power > 0.98). 

The statistical power is the probability that the test correctly differentiates trajectories of confined diffusion 

from those of Brownian diffusion.  
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Figure S6 | Detection limit of TSUNAMI microscope (experimental tracking result) 

To understand the lowest diffusion coefficient and the shortest linear dimension of confinement that 

TSUNAMI microscope can resolve, we performed tracking of fluorescent beads (⌀40 nm, Cat. No. F8770, 

Thermo Fisher Scientific) fixed in a 1.3% agarose matrix. The laser power was adjusted to achieve a photon 

count rate comparable to that of a real live cell tracking experiment (~400 kHz). (A) Representative 

trajectory of a bead immobilized in argarose matrix. (B) Segmented MSD curves using the rolling window 

of 1.6 s (w). The time step is 20 ms (Δt) and the sliding time step is 0.1 s (Δs). (C) Static tracking errors 

recored for x, y, and z dimesions respectively. The distances between each position (xi, yi, zi) to the mean 

postion (�̅�, �̅�, 𝑧̅) are Δx, Δy, and Δz. The static tracking errors, σx, σy, and σx, are the standard deviations of 

Δx, Δy, and Δz. Considering the “dynamic error” (i.e. tracking error) of the TSUNAMI microscope, the 

“static error” (due to the microscope thermomechanial instability) is estimated to be ~10 nm in x/y and 30 

nm in z for 100-second-long experiments. (D) The finite values extracted from the MSD of immobilized 

bead represent the detection limit of the TSUNAMI system. To understand the how the number of MSD 

points affects the estimation of diffusion coefficients, the D0 was estimated by fitting a MSD curve with a 

linear regreassion line using the first 3, 5, 16, or 42 MSD points. The number of MSD points were 

determined using a covariance-based estimator (19) with these following parameters: 10 nm tracking error 

in xy, 20 ms time step, 1.6 s tracking duration, 10-2, 10-3, 10-4, or 10-5 µm2/s estimated diffusion coefficients, 

respectively. The D0 converges with more MSD points, however, more MSD points also increase the 

variation of D0. The number of MSD points used to estimate diffusivity of EGFRs is 3-5 points, so the 

lower bound of D0  was defined as D0= (19 ± 4)×10-5 µm2/s using the first 5 MSD points.  
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Figure S7 | Testing of MSD analysis and confinement detection (SME results) 

(A) A Simulated trajectory composed of segments exhibiting Brownian diffusion and confined diffusion 

alternatively. Simulated condition: Dpre = 0.08 µm2/s, the linear dimension of confinements Lpre = 100 nm, 

probability of penetration P = 0.01 at the boundaries. The 64 s long trajectory  is constituted of 8 segmemts 

exhibiting Brownian diffusion and confined diffusion (hop diffusion) by truns. Their motion patterns are 

determined by MSD analysis and confinement detection, and the trajectory are color-coded with either blue 

or green colors indicating Brownian diffusion and confined diffusion, respectively. The red arrow head 

indicates the starting point of the trajectory. (B) Profile of confinement index (𝛬) of the trajectory. (C) MSD 

plots of segments classfied into Brownian diffusion (upper plot) or confined diffusion (lower plot). (D) 

Histograms of recovered diffusion coefficients, lengths of confined regions from Brownian diffusion (blue) 

or confined diffusion trajectories (green). The histograms were then fitted with a Gaussian mixture model. 

The fitted means and standard deviations were shown in the plots. DBrn represents the recovered diffusion 

coefficient of Brownian trajectories. Dmicro represents the recovered short-term diffusion coefficient of 

confined diffusion trajectories and Dmacro is the recovered long-term diffusion coefficient extracted from 

the same trajectories. L is the recovered linear dimension of confinements.  
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Figure S8 | MSD curves of simulation models (Monte Carlo simulation results) 
MSD analysis on three types of confined diffusion models: corralled diffusion, hop diffusion and cage 

diffusion, which represent the possible motion patterns of EGFR trafficking. The stalled EGFRs in plasma 

membrane exhibits corralled diffusion (2). The hop diffusion represents the diffusion of EGFRs between 

membrane compartments (2, 20). The internalized EGFRs may demonstrate cage diffusion within 

endocytotic vesicles (13). We may be able to reveal the motion signatures of these three confined diffusion 

models using the MSD analysis. (A) Simulated corralled diffusion represents 3D isotropic diffusion in a 

meshwork of impenetrable barriers. (B) MSD plot starts linear and then reaches a plateau which identifies 

the confinement area and the corresponding length, L. The diffusion coefficient of this simulated confined 

diffusion is Dmicro,pre = 0.5 µm2/s. (C) Simulated hop diffusion represents 3D isotropic diffusion in a 

meshwork of penetrable barriers. The prescribed length of square confinement area is Lpre and particles 

have a probability (P) of penetrating the barriers in every attempt to across barriers. (D) The slope of the 

MSD curve in long timescale is related to Dmacro, and the meshwork constraints particle diffusion. The Dmicro 

of freely diffusing particle in compartments is Dmicro,pre = 0.5 µm2/s and the penetrating probability, P = 

0.01. (E) Simulated cage diffusion represents freely diffusing particle (Dmicro,pre = 0.5 µm2/s) restricted to a 

limited vesicle that itself can diffuse (the diffusion coefficient of the vesicle is Dvesicle,pre = 0.01 µm2/s and 

its diameter is ∅pre = 25 to 200 nm). (F) The slope of the MSD curve in short timescale is related to Dmicro, 

and the slope in long timescale depends on Dvesicle. Error bars (represented by color ribbons) show standard 

deviations of 100 runs. 
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Figure S9 | Localization uncertainty of the xyz piezo stage and tracking error of TSUNAMI 

microscope are both related to the diffusivity of the particle (SME results) 

(A) The localization uncertainty of the xyz piezo stage is defined as the standard deviation of the difference 

between the Monte-Carlo-simulation-generated trajectory that is used to command the movement of the 

xyz piezo stage and the actual trajectory that the stage performs (output from the capacitance sensors in the 

xyz piezo stage). The stage localization uncertainty increases with increasing diffusion coefficient in the 

SME. (B) The tracking error of TSUNAMI microscope is defined as the standard deviation of the difference 

between the stage trajectory (output from the capacitance sensors in the xyz piezo stage) and the TSUNAMI 

tracking trajectory. The tracking error was less than 20 nm in x and y and ranged from 50.8 nm to 91.4 nm 

in z, depending on the diffusivities used in the SME. Error bars show standard deviations of 10 runs. 
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Figure S10 | TSUNAMI tracking error in 2D confined diffusion (SME results) 
(A) The tracer was driven by an independent xyz piezo stage along the prescribed trajectories mimicking 

various motions, and the stage trajectory and the tracking trajectory were read from the piezo stage and 

TSUNAMI microscope. (B) The one-dimensional trajectories in x, y, z. The red line represents the stage 

trajectories and the blue ones are from tracking trajectories. (C) Comparing these two trajectories, the 

tracking errors in x, y, z directions were evaluated. The prescribed trajectory was simulated from a 2D 

confined diffusion model with diffusion coefficient D = 0.5 µm2/s, probability of penetration P = 0.01 at 

the boundaries, and length of square compartment L = 100 nm. 
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Figure S11 | MSD analysis on Brownian, confined and directed diffusion (SME results) 

These SME results demonstrate that the TSUNAMI microscope is able to follow the trajectories of all three 

types of predefined motions (Brownian, confined, and directed diffusion), and our MSD analysis algorithm 

is capable of recovering the physical parameters (DBrn, L and V) encoded in the prescribed trajectories. (A) 

A representative 3D tracking trajectory of Brownian diffusion with diffusivity DBrn = 0.08 µm2/s. (B) For 

Brownian diffusion, the resulting MSD curves are linear with an increasing slope for larger diffusivity. (C) 

The experimental diffusivities recovered from the MSD analysis (DBrn) match well with the values encoded 

in the prescribed trajectories (Dpre). R-squared values of fitted MSD curves are all above 0.99. goodness-

of-fit of the fitted MSD curves was(D) A representative 3D tracking trajectory of confined diffusion with 

diffusivity D = 0.5 µm2/s in confinements of linear dimension L = 100 nm. The particle has the probability 

of penetration P = 0.01 at the boundaries. (E) For confined diffusion, the resulting MSD curves are linear 

initially (with a slope depends on Dmicro) and then deviates toward a lower slope value (so-called 

subdiffusion). (F) The experimental linear dimensions of confinements recovered from the MSD analysis 

(Lexp) match well with the values encoded in the prescribed trajectories (Lpre). (G) A representative 3D 

tracking trajectory of directed diffusion with active transport speed V = 0.5 µm/s and lateral diffusivity 

Dlateral = 0.0025 µm2/s. (H) For directed diffusion, the resulting MSD curves exhibit increasing slope at 

longer time lag (so-called superdiffusion), with the scaling exponent α = 2 for pure directed transport. 

Increasing lateral diffusivity in directed diffusion reduces the scaling exponent. (I) The experimental 

transport speeds recovered from the MSD analysis (Vexp) match well with the values encoded in the 

prescribed trajectories (Vpre). Error bars and ribbons represent standard deviations from 10 runs for each 

condition. 
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Figure S12 | More MSD analysis on confined diffusion (SME results) 

We further tested our MSD analysis algorithm using the confined diffusion with various Dmicro and L values 

encoded in the simulated trajecotries used for SME. The particle had the probability of penetration P = 0.01 

at the boundaries. This thorough examination further validates the reliablity of our MSD analysis algorithm 

in extracting encoded dynamic parameters (L and Dmicro) and the fidelity of TSUNAMI microscope in 

tracking single particles under physiologically relevant conditions. (A) As expected, the resulting MSD 

curves show the signature of subdiffusion. (B) The experimental linear dimensions of confinements 

recovered from the MSD analysis (Lexp) match well with the values encoded in the predefined trajectories 

(Lpre) at all three diffusivities. (C) The short-term microscopic diffusivity, Dmicro, obtained from the MSD 

analysis is influenced by the confinement size. Here we show that the short-term microscopic diffusivity 

Dmicro estimated from the confined diffusion model (Equations 6 and 7) is a function of confinement size, 

and this finding agrees with the research of Salome’s group. (21). Dmicro is approaching the encoded value 

of 0.08 µm2/s only when the confinement size is sufficiently large. This result is in agreement with other 

research. Eggeling’s group has reported that the cortical actin cytoskeleotn compartmentalised phospholipid 

diffusion and reduced the diffusivity of phospholipid (22). (D) The long-term macroscopic diffusivity, 

Dmacro, obtained from the MSD analysis is also influenced by the confinement size. (E) Tracking error is 

quantified by the standard deviations of the difference between the stage trajectory (output from the 

capacitance sensor in the xyz piezo stage) and the TSUNAMI tracking trajectory. The tracking errors shown 

here are consistent with our previous observation. Error bars and ribbons represent standard deviations from 

10 runs for each condition. (F) The goodness-of-fit of MSD curve fitting with Equation 6 (confined 

diffusion, in main text) was evaluated by R-squared measurment.    
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Figure S13 | More MSD analysis on directed diffusion (SME results) 

We further tested our MSD analysis algorithm using the directed diffusion with various D and V values 

encoded in the simulated trajecotries used for SME. (A) The MSD curves grow with time lag, exhibiting 

the signature of super-diffusion. The scaling exponent α is approaching 2 when the diffusivity D is 

vanishing. However, if D is large, the random motion would mask the directed transport. (B) The Vexp values 

extracted from the MSD analysis match well with the encoded V values. (C) The Dexp values extracted from 

the MSD analysis match well with the encoded D values at all three transport speeds. (D) Tracking error is 

quantified by the standard deviation of the difference between the stage trajectory (output from the 

capacitance sensor in the xyz piezo stage) and TSUNAMI tracking trajectory. The tracking error results 

shown here are consistent with our previous observation. Error bars and ribbons represent standard 

deviations from 10 runs for each condition. (E) The goodness-of-fit of MSD curve fitting with Equation 5 

(directed diffusion, in main text) was evaluated by R-squared measurment.    
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Figure S14 | Dynamic parameters of the EGFR in these four phases 

Histograms of log Do (A) and log Vi (B) in four phases of a 442-second-long trajectory (shown in Figure 5 

of main text). This trajectory was dissected using the algorithm of segmentation and classification. The 

classified and color-coded trajectory provides a reliable guidance to identify the motional patterns of 

EGFRs in various phases, such as diffusion on the cell membrane, endocytosis, and active transport in 

cytoplasm. The dynamic parameters extracted from different phases could be used to characterized the 

motional features of EGFR trafficking. The diffusion coefficients (D0) and the instantaneous velocities (Vi) 

recovered from the segmented trajectories of Phase III significantly differentiate from those parameters of 

the other three phases. As shown in the plots, the increase of instantaneous velocities is also correlated with 

the increase of diffusion coefficients.   
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Figure S15 | Spheroid formation 

Bright field imaging of multicellular cancer spheroids formed in liquid overlay from dissociated, 

exponentially growing A431 skin epidermoid carcinoma cells after a 96-hr initiation interval in agarose-

coated 96-well microliter plates. The seeding density was between 125 and 3000 per well in 200 μl of 

serum-conditioned high glucose standard medium. The concentration to routinely and reproducibly obtain 

spheroids with a diameter of 90-110 μm is 125 cells per well. Scale bar is 100 μm. The preparation of 

multicellular spheroids was based on the method developed by Kunz-Schughart’s group. (23)  
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Figure S16 | Characterization of fluorescent beads for 3D tracking 

(A) FCS Experiments and (B) TSUNAMI tracking trajectory analysis were used to characterize the single 

-bead brightness (SBB) and to estimate the number of beads attached to EGFR molecules during live cell 

experiments. FCS was performed with ⌀40 nm fluorescent microspheres (F8770, Thermo Fisher Scientific) 

in 16 nM concentration with a single excitation beam at 3 mW average power. Laser power and detector 

gain settings were matched to live cell experimental conditions. Raw photon counts were auto-correlated 

in real-time using a digital correlator (7002/USB, ALV). Autocorrelation curves (black dots) were averaged 

from 20 runs of 10 seconds each. Further verification of SBB is done by analyzing 95 individual trajectories’ 

count rates. (B) Histogram of trajectory count rates at early time points in a fixed sample of ⌀40 nm 

fluorescent beads suspended in agarose. The initial count rate was taken to be the first 5 seconds of the 

trajectory after the controller had stably locked onto the particle (~100 ms). The histogram uncovers two 

peaks of brightness surrounded by a wide distribution ranging from 200 kHz to 1.1 MHz. The first peak is 

most likely the single bead brightness of 255 kHz whereas the second peak, at ~500 kHz, is likely a dimer. 

In our experiments, we made sure that we were following a single bead, not a two-bead system.  This 

characterization has been done and published in Nature Communications (17), and more detailed discussion 

please see the supplementary information of the Nature Communications article. 
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Figure S17 | Preparation of samples for EGFR tracking 

A431 cells were expanded in flasks and the dissociated into single-cell suspension with trypsin treatment. 

For EGFR tracking on monolayer cells, the cells from suspension were directly seeded into chambered 

coverglasses and incubated for 24-48 hr. After 24-hr serum starvation, the monolayer cells were stained 

with CellMask™ Deep Red and their EGFRs were recognized by monoclonal anti-EGFR IgG conjugated 

𝜙 40 nm fluorescent nanoparticles. For spheroids, the suspended single cells were seeded into agarose-

coated and incubated for 96 hours to form spheroids. Both monolayer cells and spheroids were treated with 

serum starvation 24 hour before EGFR tracking. The spheroids were then transferred to chambered 

coverglasses for membrane staining and EGFR labeling.  
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Figure S18 | EGF induces internalization of EGFR 

Monolayer A431 cells were exposed to serum-free media overnight, and then their EGFRs were tagged 

with biotin-conjugated anti-EGFR antibodies, and NeutrAvidin® conjugated red FluoSpheres (F8770, 

Thermo Fisher Scientific) bound to biotins to label EGFRs. In control group, we didn’t label EGFR with 

anti-EGFR antibodies. After labeling, cells were treated with EGF (10 ng/ml) for indicated time. The white 

arrows indicate nuclear translocation of EGFR. The boxed areas are shown in detail in the zoom-in. Scale 

bar is 25 μm.  
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