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Lineage mapper: A versatile cell and particle tracker – 

Supplementary Table 1 - Summary of Common Tracking Tools 

Joe Chalfoun1, Michael Majurski1, Alden Dima1, Michael Halter2, Kiran Bhadriraju3, and Mary Brady1 

Table 1- Summary of common tracking tools compared with our Lineage Mapper 

Tracking Techniques Lever 

[1] 

CMU 

Tracker 

[2] 

Imaris 

[3] 

BioImageXD 

[4] 

ImageJ 

(Mtrack2) 

[5] 

Lineage 

Mapper 

Total separation 

from segmentation 
N N N N Y Y 

Mitosis detection Y Y Y Y N Y 

Automatic detection 

of cell-cell contact 
N Y N N N Y 

Tracking confidence 

index 
N N N N N Y 

 

Total separation from segmentation means that connecting segmentation results to the tracker does not 

require any change in the pipeline or any special input. 
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Joe Chalfoun2, Michael Majurski1, Alden Dima1, Michael Halter2, Kiran Bhadriraju3, and Mary Brady1 

Table2: The critical characteristics of Lineage Mapper that allow it to be a generally applicable 

solution for cell tracking 

Accuracy and 

robustness 

An accuracy between 94.2 % and 100 % is achieved on 2 manually tracked 

datasets. Robustness against the choice of parameters was also shown on 

these 2 reference datasets. No training set is needed. 

Functional 

modularity 

Decoupled segmentation and tracking steps. Executes on labeled 

segmented images only. Simple communication to any type of 

segmentation. 

Scalability 

Can be applied to Big Data (TB sized) image sets with low memory 

footprint. For example, tracking a set of 22 000 x 22 000 pixel images 

through 161 time points in 1 h on a regular machine with less than 8GB of 

memory. 

Mitosis 

detection 

Overlap-based mitosis detection that uses the mother and daughter 

information such as roundness and size of mother cell, and aspect ratio and 

size similarity of daughter cells. 

Cell collision 

detection 

Detection of cell collision/fusion based on cell overlap. Separation of 

multi-cell area into multiple single cell segments. A fusion lineage plot can 

be produced if cell or colony merging is allowed. 

Number of 

input 

parameters 

Small number of biologically driven parameters. 

Versatility 
Successfully applied to a wide variety of applications with high accuracy 

achieved in each case. 

Execution 

speed 

Real-time tracking during acquisition is possible. It can be used in a batch 

mode and called from an ImageJ script. Tracking consecutive images of 

size 520 x 696 pixels takes 0.0125 s per frame on a regular 2.2 GHz intel i5 

machine with 8GB of memory. 

Availability 
MATLAB source code and executable, and an ImageJ plugin with online 

help are available for downloading from https://isg.nist.gov. 
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Supplementary Note 1 – Mitosis and Fusion 
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1 Introduction 

In this document we will describe in detail the mitosis detection and the fusion/collision handling cases of 

the Lineage Mapper. We will also describe the two kinds of lineage plotting (fusion and division) and the 

computation of the tracking confidence index. 
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METHOD 1
Authors: Ivo F. Sbalzarini, 

Yuanhao Gong, Janick Cardinale
Email: ivos@mpi-cbg.de Software: http://mosaic.mpi-cbg.de/?q=downloads

Form: ImageJ 

plugin

METHOD 2
Authors: Craig Carthel and Stefano 

Coraluppi
Email: stefano.coraluppi@compunetix.comSoftware: Contact the authors

Form: Windows 

executable

METHOD 3
Authors: Nicolas Chenouard, 

Fabrice de Chaumont, Jean-
Email: jcolivo@pasteur.fr Software: Contact the authors Form: Icy plugin

METHOD 4
Authors: Mark Winter and Andrew 

R. Cohen
Email: acohen@coe.drexel.edu Software: Contact the authors

Form: Matlab 

script

METHOD 5
Authors: William J. Godinez and 

Karl Rohr
Email: k.rohr@dkfz-heidelberg.de Software: Contact the authors

Form: Java 

module

METHOD 6 Author: Yannis Kalaidzidis Email: kalaidzi@mpi-cbg.de Software: http://motiontracking.mpi-cbg.de/
Form: Windows 

executable

METHOD 7
Authors: Liang Liang, James 

Duncan, Hongying Shen, Yingke 
Email: liang.liang@yale.edu Software: Contact the authors

Form: Matlab 

script

METHOD 8
Authors: Klas E. G. Magnusson, 

Joakim Jaldén, Helen M. Blau
Email: klasma@kth.se Software: Contact the authors

Form: Matlab 

script

METHOD 9 Author: Perrine Paul-Gilloteaux Email: perrine.paul-gilloteaux@curie.fr Software: Contact the author
Form: ImageJ 

plugin

METHOD 10
Authors: Philippe Roudot, Charles 

Kervrann, François Waharte
Email: philippe.roudot@inria.fr Software: Contact the authors Form: C++ code

METHOD 11
Authors: Ihor Smal and Erik 

Meijering
Email: i.smal@erasmusmc.nl Software: Contact the authors

Form: Java 

module

METHOD 12
Author: Jean-Yves Tinevez and 

Spencer L. Shorte
Email: tinevez@pasteur.fr Software: http://fiji.sc/TrackMate

Form: ImageJ/Fiji 

plugin

METHOD 13

Authors: Joost Willemse, 

Katherine Celler, Gilles P. van 

Wezel

Email: jwillemse@biology.leidenuniv.nl Software: Contact the authors

Form: ImageJ 

plugin and Matlab 

script

METHOD 14
Authors: Han-Wei Dan and Yuh-

Show Tsai
Email: dnadann@gmail.com Software: Contact the authors

Form: ImageJ 

plugin

This table is extracted from the following publication: Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–9 (2014)

SUMMARY OF PARTICLE TRACKING TOOLS
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2 Overlap-based mitosis detection 

Cells eventually divide into two daughter cells by the process of mitosis. During this process, the mother 

cell rounds, then undergoes mitosis and cytokinesis. Figure 1 illustrates an example of a mother cell that 

goes into mitosis at frame t and divides into two daughter cells at frame t+1. The two images 

superimposed (Figure 2) reveal that the mother cell has a significant overlapping area with both daughter 

cells. This is due to the fact that before dividing into two daughter cells the motility of the mother cell is 

minimal. 

 

 

Figure 1- Example of a mitotic cell in two consecutive segmented frames overlaid on top of the original 

grayscale images for visualization purposes. 

 

Figure 2- Superimposing image 1 (red) and image 2 (blue) and focusing on the dividing cell 

The Lineage Mapper uses this cell overlap information to detect mitotic cells between two consecutive 

images. In general, when mitosis happens, one mother cell 𝑐𝑚
𝑡  from image 𝐼𝑡 overlaps its two daughter 

cells 𝑐𝑖
𝑡+1 and 𝑐𝑗

𝑡+1 from image 𝐼𝑡+1. Mitosis is detected by searching the cost matrix for pairs of daughter 

cells at time t+1 that are tracked to the same mother cell at time t. Once these pairs of mother-daughter 

cells are found, the amount of overlapping between each potential daughter cell and the corresponding 

potential mother cell is compared against a user-defined mitosis-overlap threshold. The cell tracker will 
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record the mitosis event only if the amount of overlapping area of both daughter cells is above the 

threshold based upon their respective areas: 

𝑖𝑓 [(
𝑂(𝑀,𝐷1)

𝐴𝑟𝑒𝑎𝐷1
) < 𝑇]  𝑜𝑟 [(

𝑂(𝑀,𝐷2)

𝐴𝑟𝑒𝑎𝐷2
) < 𝑇]  𝑡ℎ𝑒𝑛 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑒𝑣𝑒𝑛𝑡  (1) 

Where 𝑂(𝑀,𝐷1) is the overlapping pixel area between mother cell and daughter cell 1, 𝑇 is the user defined 

threshold for mitosis-overlap and 𝐴𝑟𝑒𝑎𝐷1 is the size in pixels of daughter 1. 

Figure 3 presents an example that illustrates the utility of the overlap-mitotic threshold for detecting 

mitosis. In that example the red outlines are cells at time t and the blue outlines are cells at time t+1. 

Figure 3A is a real mitotic event where each daughter cell has an overlap higher than 20% of its 

respective area. Figure 3B is an example of a false mitosis that can be discarded by checking the overlap 

of the daughter cells where clearly only one blue cell has sufficient overlap with the red cell. If cells are 

more mobile than usual or if the acquisition rate is low, setting this threshold to a very low value (<10 % 

for example) will allow Figure 3B to be considered for a potential mitosis case. 

 

Figure 3- An example illustrating the usefulness of the overlap-mitotic threshold. In both images A and B, the 

red outlines are cells at time t and the blue outline are cells at time t+1. Figure A is a real mitotic event where 

each daughter cell has an overlap higher than 20% of its respective area. Figure B is an example of a false 

mitosis that can be discarded by checking the overlap of the daughter cells where clearly only one blue cell 

overlaps sufficiently with the red cell and the other does not. 

For the potential mitoses that are not discarded by the overlap threshold, three conditions need to be 

satisfied before declaring these events a real mitosis: 

(1) Cell roundness of all potential mother cells is checked n frames before the mitosis event, 

where n is a user defined value. The roundness is measured by the following formula: 𝑅 =

4𝜋 × 𝑎/(𝑝)2 where a is the area and p the perimeter. This metric is equal to 1 for a perfect 

circle and decreases in value until reaching 0 for a shape similar to a line. If a potential 

mother cell does not meet the roundness threshold, the corresponding mitosis is discarded. 

To disable this ability simply select a roundness threshold of 0. 

(2)  Size similarity between the two daughter cells is checked against a user defined threshold 

and the potential mitosis is discarded if similarity is below the user-defined threshold. The 

similarity metric is computed by following equation 2 below where s is the similarity 

metric that ranges from 1 (perfect size similarity) to 0 (worse case) and 𝑠𝐷1 is the size of 

daughter 1. 

A B
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𝑠 = 1 − |
𝑠𝐷1 − 𝑠𝐷2
𝑠𝐷1 + 𝑠𝐷2

| (2) 

(3) Aspect ratios of the two daughter cells are compared, and the potential mitosis is discarded 

if similarity is below the user-defined threshold. The similarity metric is computed by 

following equation 3 below where s is the similarity metric that ranges from 1 (perfect size 

similarity) to 0 (worse case) and 𝑎𝑟𝐷1 is the aspect ratio of daughter 1. 

𝑠 = 1 − |
𝑎𝑟𝐷1 − 𝑎𝑟𝐷2
𝑎𝑟𝐷1 + 𝑎𝑟𝐷2

| (3) 

3 Overlap-based cell collision/Fusion management 

Cell collision is a term used to describe a group of cells that are correctly detected as individual cells at 

time t, but when they migrate at time t+1 they become so adjacent to each other that segmentation 

techniques mistakenly consider them as one single cell. Even for extremely accurate segmentation 

techniques, adjacent groups of cells can still be mistakenly considered as one single cell. In order to 

correctly segment these cells and track their motion, a feedback loop from tracking to the segmentation is 

created to separate the initially segmented combined cell cluster into more accurately segmented single 

cells. To illustrate the feedback loop, we will consider the example illustrated in Figure 4, where seven 

cells exist in the field of view of the phase contrast image. The corresponding segmented image reveals 

only three distinct cell clusters. 

Cell collision can be identified between two consecutive frames, t and t+1, based on the information the 

cell tracker gathered from frame t. In general a collision case is when multiple cells at time t, 𝑐𝑖
𝑡 , 𝑖 =

1. .𝑚, 𝑚 is the number of colliding cells from image 𝐼𝑡, are tracked to the same cell 𝑐𝑗
𝑡+1 in image 𝐼𝑡+1 

(Figure 4). Just like the mitotic detection case, a user defined minimum cell overlap threshold is set to 

filter out the bad collision cases. 

  

Figure 4- Tracking collision between consecutive frames t (left) and t+1 (right) 

In Figure 4, Cell 𝑐1
𝑡 is tracked to cell 𝑐1

𝑡+1. Cells 𝑐2
𝑡 , 𝑐3

𝑡 , 𝑐4
𝑡 , 𝑐5

𝑡 and 𝑐6
𝑡 are tracked to cell 𝑐2

2 and cell 𝑐7
𝑡 is 

tracked to cell 𝑐3
𝑡+1. The potential colliding region 𝑐2

𝑡+1 and the colliding cells 𝑐2
𝑡 , 𝑐3

𝑡 , 𝑐4
𝑡 , 𝑐5

𝑡 and 𝑐6
𝑡 are 

identified. If the identified cells do not meet the collision-threshold they are eliminated from the potential 

collision cell list. In this example, all the colliding cells meet the threshold because they all have high 

overlapping area with cell 𝑐2
𝑡+1. To separate the single cell cluster into several smaller cells, the 

segmented masks will be modified and a new corrected segmented image is formed as shown in Figure 5. 

This image will be used as new input to the cell tracking algorithm and the cost matrix will also be 

updated accordingly. The assignment of pixels from the common cell area 𝑐2
𝑡+1 is made so that pixels that 
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overlap across frames are assigned to the individual cell from frame t, and the remaining non-overlapping 

pixels are assigned to the closest cell neighbor. 

It is very important to note that this feedback loop operates only on segmented masks and thus the 

separation of the group of cells into single cells may generate some cell edges that do not follow the real 

curvature of the cell. 

 

Figure 5- new input to the cell tracker at time t+1 after correcting the previously segmented mask. The cell 

area 𝒄𝟐
𝒕+𝟏 is cut into 5 single cell segments. 

4 Tracking assignments and output 

After handling mitosis and cell collision/fusion, a track will be assigned between the remaining cells at 

time t and the remaining cells at time t+1, when possible. Tracks are assigned such that a cell A at time t 

can share a track with only one cell B at time t+1 and vice versa. The unassigned cells at time t are 

considered dead (i.e. cells leaving the image through the borders, mitotic mother cells, or cells that fused 

together if fusion is allowed) and the unassigned cells at time t+1 are considered newborn cells (i.e. cells 

entering the image from the borders, cells originating from mitosis, or cells that are born from fusion if it 

is allowed). In order to achieve such a solution, the Hungarian algorithm is applied on the cost matrix [1]. 

By using this algorithm we are able to find an optimal solution that minimizes the sum of the above-

defined tracking costs over all possible tracking assignments after handling mitosis and collision/fusion. 

Once the individual cell mappings between consecutive frames have been computed, the frame-to-frame 

mappings are combined to produce a complete life cycle track of all cells in the time-lapse image set. The 

sequential cell numbers that were assigned by segmentation for each frame are replaced by unique track 

numbers that identify the movement of each cell over time across the entire image set. Therefore a unique 

label or track number 𝐿𝑘 will be associated with each uniquely identified cell, 𝑘 =  1, 2, … , 𝑛 where n 

represents the total number of unique cells found in the image set. The pixels in the images are relabeled 

to reflect the new track numbers such that when a given cell is assigned with a tracking number, 𝐿𝑘, the 

pixels from all images that belong to this cell will all have the same value 𝐿𝑘. This is formally stated as 

follows. 

𝑖𝑓 𝑐𝑖
𝑡
    𝐿𝑘    
↔   𝑐𝑗

𝑡+1⟹ 𝑐𝑖
𝑡 = 𝐿𝑘 = 𝑐𝑗

𝑡+1 

⟹ ∀(𝑥, 𝑦) / 𝑝(𝑥, 𝑦) ∈ (𝑐𝑖
𝑡  ∨  𝑐𝑗

𝑡+1), 𝑝(𝑥, 𝑦) = 𝐿𝑘  (4)  

5 Lineage Plotting 

Lineage Mapper has the ability to plot 2 kinds of lineage trees (Figure 6): 
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(1) The first type of plot is the regular lineage tree that shows the mitosis events and the cell 

cycles. 

(2) The second type plots cell or colony fusion or merging. When the user checks the enable 

fusion checkbox, a cell fusion lineage tree is built by the Lineage Mapper that shows the 

fusion tree as the reverse of the division lineage tree, displaying multiple cells or colonies 

that fused together at a time t and created a new group of cells or colonies at time t+1. 

    

Figure 6- Lineage Plots: (left) regular lineage tree that shows mitosis and cell cycle, (right) fusion lineage that 

shows cell or colony fusion or merging 

6 Confidence Index 

The Lineage Mapper outputs a confidence index for each tracked object in the time-lapse sequence. The 

confidence index is an indicator of how well we trust the track of a given cell during its entire cell cycle. 

The computation of this index is based on user input, reflecting choices based on individual experiments. 

The confidence index is based on points. Each component in the equation contributes points which are 

added to the index. At the beginning all cells start with a confidence index of 1. Three components can 

affect the computation of the confidence index; each one can be disabled if needed:  

CI𝑐 = Lc + Bc + Dc +  1      (5) 

Where 

- CI𝑐𝑒𝑙𝑙 is the Confidence Index for a cell  

- Lc is a binary component based on a user-defined minimum cell life cycle threshold, 𝑚𝑐, 

measured in number of frames. A cell cycle is the difference in frames between the time 

when the cell last appeared in the field of view (𝑑𝑒𝑎𝑡ℎ(𝑐𝑒𝑙𝑙)) and the time when it first 

appeared (𝑏𝑖𝑟𝑡ℎ(𝑐𝑒𝑙𝑙)). This component is computed as follows: 

cell_cycle(cell) =  {
0, 𝑖𝑓 [𝑑𝑒𝑎𝑡ℎ(𝑐𝑒𝑙𝑙) −  𝑏𝑖𝑟𝑡ℎ(𝑐𝑒𝑙𝑙)] < 𝑚𝑐

1, 𝑖𝑓 [𝑑𝑒𝑎𝑡ℎ(𝑐𝑒𝑙𝑙) −  𝑏𝑖𝑟𝑡ℎ(𝑐𝑒𝑙𝑙)] ≥ 𝑚𝑐
 

- Bc, border cell is a binary component where a cell that is not touching the border during its 

entire life time will gain a point in the confidence index computation. 

- Dc, cell density is the measure of how many neighboring cells the current cell touched in 

its entire life time. This component is inversely proportional to the number of cells the 
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current one touches. The confidence index decreases when the number of touching cells 

increases. It is computed as follows: 

Dc = 
1

(∑Tc + 1)
 

Where ∑Tc is the sum of the number of cells that the current cell touched during its entire 

life time. 
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In this document we present the Lineage Mapper as applied to several biological problems that 

demonstrate different tracking challenges.  

1- LM tracked a sheet of cells that are connected together and move with the sheet, a situation 

that is commonly encountered with epithelial cells and is of great interest for understanding 

mechanisms of sheet-like cell migration observed during development and in the migration 

of some cancer cells [1]. 

2- LM tracked the movement of NIH3T3 cells, a fibroblast-like cell line where there is 

predominantly single cell migration with frequent shape changes and collisions between 

moving cells. 

3- LM tracked colonies of pluripotent stem cells, in which colonies move, grow and fuse 

(merge) with other colonies. 

The tracking challenges and our corresponding solutions are presented in the following sub-sections. 
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1 MCF10A Breast Epithelial Sheets 

Many cell lines that are currently being studied for medical purposes, such as cancer cell lines, grow in 

confluent sheets.  These cell sheets typically exhibit cell line specific biological properties such as the 

morphology of the sheet, protein expression, proliferation rate, and invasive/metastatic potential.  

However, cell sheets are comprised of cells of different phenotypes.  For example, individual cells in a 

sheet can have diverse migration patterns, cell shapes, can express different proteins, or differentiate 

differently.  Identifying phenotypes of individual cells is highly desirable, as it will contribute to our 

understanding of biological phenomena of tumor metastasis, stem cell differentiation, or cell plasticity.  

Time-lapse microscopy now enables the observation of cell cultures over extended time periods and at 

high spatiotemporal resolution.  Furthermore, it is now possible not only to label cells with fluorescent 

markers, but also to express fluorescently labeled protein, enabling spatiotemporal analysis of protein 

distribution in a cell sheet at a cellular level.  For more information about this project please refer to the 

following two publications [2][3]. 

To assess properties of individual cells within the observed sheet, however, it is necessary to accurately 

track these cells in a fully automated fashion. Segmentation of MCF10A breast epithelial sheet cells was 

done using the custom built segmentation FogBank [4]. 

The challenges of this dataset for cell tracking are: (1) high cell density, (2) continuous contact between 

cells, and (3) tracking mitosis (cell-division) within a contiguous cell sheet. The automated results are 

compared to a manually derived tracking done by an expert using only the labeled images. Accuracy of 

100 % tracking was achieved including the mitotic detection of cells within the sheet. 

2 NIH 3T3 Cells 

Despite numerous studies, the regulation of the extracellular matrix protein tenascin-C (TN-C) remains 

difficult to understand. By using live cell phase contrast and fluorescence microscopy, the dynamic 

regulation of TN-C promoter activity is examined in an NIH 3T3 cell line stably transfected with the TN-

C gene ligated to the gene sequence for destabilized Green Fluorescent Protein (GFP). By using the 

Lineage Mapper, we found that individual cells vary substantially in their expression patterns over the cell 

cycle, but that on average TN-C promoter activity increases approximately 60 % through the cell cycle. 

We also found that the increase in promoter activity is proportional to the activity earlier in the cell cycle. 

This work illustrates the application of live cell microscopy and automated image analysis of a promoter-

driven GFP reporter cell line to identify subtle gene regulatory mechanisms that are difficult to uncover 

using population averaged measurements. The fully automated image segmentation and tracking are 

validated by comparison with data derived from manual segmentation and tracking of single cells. More 

detail about this work can be found in [5] and [6]. 

3 Stem Cell Colonies 

Pluripotent stem cells exist in a privileged developmental state with the potential to form any of the cell 

types of the adult body. Hence, there is great interest in understanding the relation between gene 

expression and cell state, in order to potentially engineer cell state for application to regenerative 

medicine. We used a cell line expressing GFP under the control of a critical pluripotency related 

transcription factor, OCT-4, to understand how normal stem cell cultures behave during routine feeding of 

cultures. These cells grow as isolated colonies, each colony comprising tens to thousands of cells as the 

culture progresses. 
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Because individual colony size is larger than the size of a single camera frame, colony tracking can only 

be done from movies of mosaics. In our case, we made a movie of 18 x 22 individual camera frames (total 

mosaic size ≈1GB) with a 10% overlap between frames in both X in Y directions, over 161 time points 

(total movie size ≈ 350 GB). Images were collected through time in the form of contiguous mosaics in 

phase contrast and GFP channels. 

The phase contrast images of the colonies are used to segment colonies and generate colony masks using 

the Empirical Gradient Threshold (EGT) technique [7]. A gradient image is formed from the original 

image, and the foreground and background distributions of gradient magnitude values are separated based 

on their overlap (Figure 7). The masks are then overlaid on the GFP image to compute GFP intensity per 

colony. 

 

Figure 7- Segmentation of stem cell colonies overlaid on original mask. 

This dataset presents additional challenges to the cell tracker: (1) scalability challenges (memory 

management, execution speed and accuracy in the measurement of very large data sets) that the cell 

tracker needs to handle properly. (2) Tracking colony identity is the inverse of tracking single cells as 

colonies change their identity through time not by division but rather by merging (fusion), producing a 

reversed lineage tree. 

Maintenance of pluripotent state requires daily feeding of the cells.  However, it is not known if the 24 h 

bolus feeding of the cells affects colony behavior.  In order to observe how daily feeding affects 

pluripotent stem cell colonies, we tracked the colonies over a period of 5 days. We normalized the 

average GFP intensity of each colony by the value of the average GFP of its birth time (first appearance 

in the time sequence). For each time point, we compute the average normalized GFP intensity for all the 

colonies whose size is bigger than a user-defined threshold to filter out the noise. Figure 8 shows the plot 

of the average normalized GFP intensity on the left axis. The right axis displays the average area occupied 

by the colonies at a given time point. We observed a smaller, transient increase in colony area over the 

long term growth trend that lasted for 5 hours after each feeding event. This increase was consistent 

across all datasets. Corresponding with the changes in colony areas, we observed a dip in GFP intensity 

which occurred at the time of cell feeding and at a frequency of approximately 24 h, lasting for the same 



12 
 

amount of 5 hours after feeding. We speculate that this response may be related to the bolus addition of 

growth factors which are known to be depleted during culture.  Our cultures were maintained in E8 

media, which has the growth factors basic fibroblast derived growth factor (bFGF), transforming growth 

factor (TGF ), and insulin, all of which can potentially induce signaling that alters actin polymerization 

and alter cell morphology.  While such responses have been studied at great depth in somatic cells such as 

fibroblast, there is little to know information on how sensitive the motile behavior of pluripotent stem cell 

is to growth.  It would be interesting to directly examine in future studies if the feeding related 

morphological dynamics are indeed due to changes in actin cytoskeleton organization, and if one or more 

of the growth factors play a dominant role in this response. 

 

Figure 8- Example of average GFP intensity and size of all colonies with feeding time overlaid. 
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Lineage mapper: A versatile cell and particle tracker – 

Supplementary Note 3 – Performance Evaluation 

Joe Chalfoun5, Michael Majurski1, Alden Dima1, Michael Halter2, Kiran Bhadriraju3, and Mary Brady1 

1 Introduction 

In this document we will present the qualitative and quantitative performance evaluation for Lineage 

Mapper. We will describe in detail the tracking reference data generation. We will also describe the 

robustness of the cell tracker to the user input parameters. The robustness is measured in terms of 

accuracy changes with respect to the choice of the parameters. The last section describes the simulated 

particle tracking problem. 

2 Qualitative accuracy assessment for NIH 3T3 cells 

The quality of the automated segmentation and LM tracking is performed on the similarity of the 

computed biological outputs derived from the automated vs the manually identified cells of interest. 

These cells are a small subset of all cells present in the 36 FOV. These cells of interest are cells that 

remained in the field of view throughout a complete cell cycle, and that were well separated from other 

cells in the field [1]. A new cell began its cell cycle when the two daughter cells originating from a 

division event could be clearly distinguished. The end of the cell cycle was identified when the cell 

rounded and began cytokinesis for division. 257 manually segmented and tracked cells were detected over 

the 36 FOV whereas 344 cells were automatically detected. Figure 9 [1] shows a high similarity between 

the outputs generated from the automated segmentation and tracking and those generated from the manual 

ones. The noticeable differences arise from segmentation and background correction [1]. 

The NIH 3T3 datasets suggests that LM can accurately track division-to-division processes and measure 

cell proliferation times. This qualitative measure includes also segmentation accuracy not only tracking. 

The timing of mitosis differed between the manual and automated approaches because of differences in 

criteria for assessing mitosis. The determination in the manual analysis was based on the initial rounding 
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of the cell, whereas the automated method identified mitosis as the first frame in which two cells were 

clearly distinguished from one another. The manual method resulted in a time for mitosis that was on 

average 22 minutes or 1.46 frames sooner than the time determined by the automated method, which 

corresponds to approximately 3% of the cell cycle duration. 

 

Figure 9: (A) Histogram of cell cycle times derived from manual (solid line) and automated (dashed line) 

segmentation and tracking. (B) Fluorescence intensity from a representative cell derived from manual (solid 

line; 19.25 h cell cycle time) and automated (dashed line; 20.25 h cell cycle time) segmentation and tracking 

versus time after division. (C) GFP intensity versus fraction of cell cycle after averaging over all manually 

(solid line) and automatically (dashed line) segmented and tracked cells. 

3 Quantitative accuracy measurement 

3.1 Reference data generation 

Two datasets were segmented manually, and then manual tracking was performed on the labeled masks. 

Both manual segmentation and tracking data are inspected by a second expert to reduce possible human 

mistakes. The two datasets are: (1) NIH 3T3 cells: 238 frames acquired at 15 minute intervals, and (2) 

MCF10A breast epithelial sheets: 59 frames acquired at 15 minute intervals. These datasets are available 

for download from https://isg.nist.gov/. 

3.1.1 MCF10A breast epithelial cell sheet reference dataset 

Manual segmentation of breast epithelial cell sheet was performed on 59 images. An expert scientist 

segmented these images using ImageJ [2], contouring the cell edges using the pencil tool to set pixel 

values to zero. The expert worked on the raw phase images tracing all cell boundaries, leaving 1 pixel as 

background between cell edges in an 8 connected neighborhood. The results are shown in Figure 10. The 

masks are created by converting the outlines to binary in ImageJ and then filling the holes as shown in 

Figure 11. 

https://isg.nist.gov/
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Figure 10- (Left) Manual cell separation on phase contrast image. (Right) zoomed image to show the manual 

boundaries that have been highlighted with the pencil tool in ImageJ. 

 

Figure 11- Labeled mask generated from the phase image after converting to binary mask, filling the holes 

and applying pixel connectivity algorithm. The colors are random and used only for display purposes. 

3.1.2 Manual tracking 

Expert scientists manually tracked previously segmented cells between consecutive frames on the NIH 

3T3 dataset and the breast epithelial sheet dataset. The manual tracking results are used to generate output 

masks where cells are numbered with their global label from the manual tracks. The following example 

highlights the adopted procedure to perform manual tracking and the results are saved in an Excel 

spreadsheet as shown in Figure 13. 

The number of rows in the Excel table is the global cell number. In Figure 13 there are four rows 

highlighted for this example, where both global cell numbers and local cell numbers from a particular 

frame are shown. For example, the cell with global cell number 6 is locally numbered 9 in the second 

frame, and global cell number 7 has a local number 6 in frame 2. 
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When a mitotic event happens, the mother cell is assigned the number 0 (the cell is dead) and the event is 

stored in a 2D matrix of Nx2 dimensions, where N is the total global number of cells. In the row 

corresponding with the division of a mother cell, the expert inputs the global numbers of its two daughter 

cells. 

 

Figure 12- Two consecutive segmented images where labels are not consistent between two adjacent time 

points. Left is Frame 1 and Right is Frame 2. 

 

Figure 13- Manual tracking spreadsheet 

3.2 Simulated Particle Tracking 

The simulated particle tracking described by Chenouard [3] has four scenarios: Vesicle, Microtubule, 

Receptor and Virus. Each scenario has three particle densities: low, medium and high and consists of 100 

time-lapse images (Figure 14). 
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Figure 14- Simulated dataset of four scenarios (Vesicle, Microtubule, Receptor and Virus) and three densities 

(Low, Medium and High). 

3.2.1 Segmentation 

Our Cell tracker is not linked to a segmentation technique, therefore we created a simple but effective 

segmentation technique called PSS (Particle Simulation Segmentation) for all particle tracking simulated 

scenarios. We change the parameters of that technique between scenarios and densities based on the 

training dataset. 

We separate the foreground pixels from the background ones by thresholding the image intensities with a 

user selected threshold. We apply pixel connectivity analysis and a user selected size threshold to reduce 

the noise in the segmented image leaving mainly the particles to be analyzed in the resulting mask. When 

particles collide with one another, we used a segmentation technique called fog bank [4] to separate them.  

In the case of simulated particles, in contrast with cells, sometimes the colliding particles go on top of 

each other and form one slightly larger particle in size but whose intensity is much brighter than a regular 

particle intensity. We use this information to perform the last step of the segmentation process. We create 

a seed mask to detect particles that fused together by selecting the pixels that belong to the top 1 

percentile in the image and we keep the objects that meet a certain user set size threshold. Those seeds are 

then overlaid on top of the segmented mask and each particle whose size is larger than a user set 

parameter will be cut into pieces equal to the number of seeds found in that particle. At the end a user set 

size filter is used to minimize over-segmentation. In total there are 7 user settable parameters to perform 

this segmentation. Table 2 gives the summary of the parameters and their respective values per scenario 
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and density. The open-source code of this method can be downloaded from the following webpage: 

https://isg.nist.gov/. 

Table 2: Summary of segmentation parameters used per scenario 

Parameter VESICLES MICROTUBULES RECEPTORS VIRUSES 

 Low Med High Low Med High Low Med High Low Med High 

Intensity 

Threshold 
30 41 38 20 20 20 30 30 27 35 40 35 

Minimum 

Cell Size 
8 4 5 12 14 14 4 4 4 4 4 4 

Minimum 

Seed Size 
1 1 1 10 6 6 1 1 1 1 1 1 

Minimum 

Cell Size 

(Fog 

Bank) 

11 10 8 20 30 30 4 4 5 4 4 4 

Brightest 

Pixels 

Seed Size 

3 1 1 2 50 50 1 1 1 1 1 1 

Brightest 

Pixels 

Body Size 

30 25 20 90 120 120 18 15 20 15 18 20 

Brightest 

Pixels Cell 

Size 

8 10 11 25 14 14 5 5 5 6 4 5 

 

3.2.2 Tracking 

Our cell tracker (the Lineage Mapper) is used to track the segmented masks generated by the 

segmentation technique described above. The Lineage Mapper has many parameters to detect mitosis 

events that are disabled for particle tracking. There is a total of 6 parameters that are necessary to adjust 

between scenarios. A detailed explanation of these parameters can be found in the help documentation of 

the tool webpage at: https://isg.nist.gov/. 

We found the best parameters for each scenario by running an automated optimization search over a 

combination of discrete parameters values that maximize the tracking accuracy on the training dataset. 

Table 3 gives a summary of the tracking parameters that changed between scenarios. 

Table 3: Summary of tracking parameters used per scenario 

Parameter VESICLES MICROTUBULES RECEPTORS VIRUSES 

 Low Med High Low Med High Low Med High Low Med High 

Overlap 

Weight 
30 50 100 100 100 100 0 100 100 100 100 100 

Centroids 

Weight 
100 100 60 0 0 0 100 100 100 20 80 100 

Size 

Weight 
30 0 0 0 0 0 10 60 60 10 10 60 

https://isg.nist.gov/
https://isg.nist.gov/
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Maximum 

Centroid 

Distance 

9 11 11 15 10 9 10 9 8 10 8 8 

Fusion 

Overlap 

Threshold 

60 0 0 100 60 70 100 60 60 100 50 50 

Cell Size 

Threshold 
9 7 8 12 14 20 5 5 5 4 4 4 

 

3.2.3 Performance on simulated dataset 

The performance of the tracking result is measured against the challenge dataset using four metrics alpha, 

beta, Jaccard and Jaccard Theta as presented by Chenouard [3]. We followed the same steps as 

highlighted by the paper and the website of the particle tracking competition. Figure 15 shows the 

detailed results of this analysis. There are four tables that correspond to each accuracy metric measure and 

twelve columns that correspond to a combination of scenario and density. Each table has 15 rows that 

correspond to the 15 methods being compared. All the numbers for the first 14 methods are taken from 

the supplementary document of Chenouard’s paper and resumed in Supplementary Table 3. The last 

method (15th) is our Lineage Mapper results. 

Each table is colored with 3 colors (red, green and blue) to highlight the ranking (1,2,3) respectively for 

each scenario and density across all method scores. Additionally, a closer look at the scores reveal only 

up to a second digit difference between the top positions in most cases and for all scores. Sometimes even 

the top 9 positions are very close in scoring like in the case of Alpha score for Vesicles low density. The 

last column measures the number of times a particular method ranked among the top 3 positions. This 

table is indicative of the robustness of a tracking technique across multiple scenarios and scoring metrics. 

Although the Lineage Mapper wasn’t created for particle tracking, it is clear from this table that it 

performed well when compared against other particle tracking methods in the literature. 
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Figure 15: Summary of the accuracy results of the simulated dataset compared to 14 other trackers. The 

accuracy results as measured by each metric are displayed. The colors are the rankings per scenario/density 

among all methods: red is the highest, green is the second and blue the third. The last column measures the 

number of times a particular method ranked among the top 3 positions. 
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4 Robustness to user input 

In order to test the robustness of the cell tracking technique against parametric changes, we performed a 

sensitivity analysis over the NIH 3T3 data, for which manual tracking is available. 

The sensitivity analysis is performed with respect to the 3 weights of the cost function: overlap, centroid 

distance and size weights. Each weight is assigned independently. The goal is to study the performance 

change of the cell tracking as a function of parametric weight. Each weight can take the following percent 

values [20, 40, 60, 80, 100], for a total of 53 = 125 different combinations. We run the automated 

tracking and compute the accuracy of tracking and mitotic detection for each combination. The result is 

plotted in Figure 16 in 4D, where the fourth dimension is the accuracy value given in %. This plot shows 

that the cell tracker performance is very robust against variations of weights. Only 34 combinations out 

125 yielded accuracy less than 90 %. One can notice that the performance is worse when the overlap 

weight is minimal (at 20 %) and the size weight is maximal (=100 %). On the other hand, tracking 

performance peaks when the overlap weight is above 60 %. This is due to the fact that in this example 

overlap is very important. 

 

Figure 16- Overall sensitivity analysis. The (x,y,z) are respectively the weight of cell size, centroid distance 

and the overlap. The accuracy (the fourth dimension) is color-coded: light blue corresponds to the cell 

tracker achieving an accuracy of 55 % with the weight combination of (100,20,20) and dark red corresponds 

to an accuracy higher than 90 % with the maximum equals to 94.42 % with a weight combination of (a,b,100) 

with 𝒂, 𝒃 ∈ [𝟐𝟎, 𝟏𝟎𝟎] 
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