### **Supplementary Material**

Table S1. Physicochemical properties of the ZEBRA CPP truncations

**Table S2.** Physicochemical properties of the ZEBRA CPP truncations conjugated toOVACD8 cargo

**Table S3.** Physicochemical properties of the ZEBRA CPP truncations conjugated to MART1 cargo

**Table S4.** Physicochemical properties of the ZEBRA CPP truncations conjugated to OVACD8CD4 cargo

**Table S5.** Physicochemical properties of the ZEBRA CPP truncations conjugated toOVACD4gp100CD8 cargo

Figure S1. Design of eight variants (Z13 to Z20) based on truncations of ZEBRA CPP Z12

Figure S2. Correlation graphs between CPP variant theoretical pI value and in vitro results

**Figure S3.** CD8 and CD4 T cell immune responses elicited by vaccination with CPP truncations combined to Hiltonol

**Figure S4.** CD8 and CD4 T cell immune responses elicited by vaccination with CPP truncations combined to Pam3CSK4 or MPLA

Figure S5. Effect of Z13Trp2 on control of melanoma lung metastasis growth

## **Supplementary Tables**

| ZEBRA CPP only |          |       |           |                |
|----------------|----------|-------|-----------|----------------|
| СРР            | Residues | pI    | Aliphatic | Hydropathicity |
|                |          |       | index     | (GRAVY)        |
| Z12            | 42       | 11.06 | 81.43     | -1.095         |
| Z13            | 42       | 11.38 | 81.43     | -1.174         |
| Z14            | 30       | 11.5  | 62        | -1.32          |
| Z15            | 17       | 12    | 28.8      | -1.96          |
| Z16            | 15       | 5.45  | 39.3      | -1.493         |
| Z17            | 13       | 8.6   | 105.38    | -0.477         |
| Z18            | 19       | 9.98  | 113.16    | -0.637         |
| Z19            | 8        | 11.1  | 48.75     | -1.95          |
| Z20            | 11       | 12    | 44.75     | -1.64          |

## Table S1. Physicochemical properties of the ZEBRA CPP truncations

Table S2. Physicochemical properties of the ZEBRA CPP truncations conjugated toOVACD8 cargo

| ZEBRA CPP conjugated to OVACD8 cargo |          |       |           |                |
|--------------------------------------|----------|-------|-----------|----------------|
| СРР                                  | Residues | pI    | Aliphatic | Hydropathicity |
|                                      |          |       | index     | (GRAVY)        |
| Z12                                  | 58       | 10.17 | 85.86     | -0.941         |
| Z13                                  | 58       | 10.34 | 85.86     | -0.998         |
| Z14                                  | 46       | 10.28 | 74.35     | -1.046         |
| Z15                                  | 33       | 10.37 | 62.12     | -1.270         |
| Z16                                  | 31       | 4.54  | 69.35     | -1.00          |
| Z17                                  | 29       | 5.02  | 101.03    | -0.510         |
| Z18                                  | 35       | 5.19  | 106       | -0.591         |
| Z19                                  | 24       | 8.43  | 81.25     | -1.008         |
| Z20                                  | 27       | 9.52  | 75.93     | -0.752         |

## Table S3. Physicochemical properties of the ZEBRA CPP truncations conjugated toMART1 cargo

| ZEBRA CPP conjugated to MART1 cargo |          |       |           |                |
|-------------------------------------|----------|-------|-----------|----------------|
| СРР                                 | Residues | pI    | Aliphatic | Hydropathicity |
|                                     |          |       | index     | (GRAVY)        |
| Z13                                 | 60       | 10.75 | 109       | -0.378         |
| Z14                                 | 48       | 10.73 | 103.75    | -0.269         |
| Z15                                 | 35       | 11.10 | 103.14    | -0.191         |
| Z18                                 | 37       | 6.31  | 142.43    | 0.392          |
| Scramble                            | 35       | 4.87  | 134       | 0.649          |

# Table S4. Physicochemical properties of the ZEBRA CPP truncations conjugated to OVACD8CD4 cargo

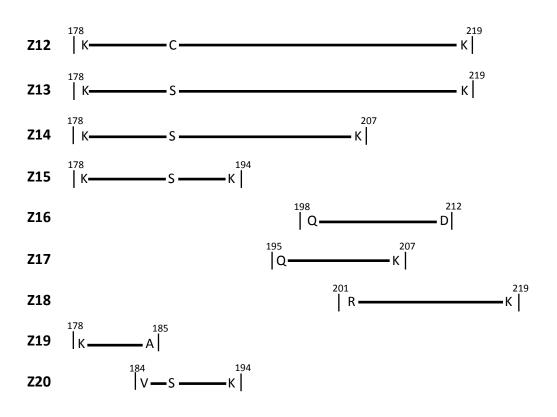
| ZEBRA CPP conjugated to OVACD8CD4 cargo |          |      |           |                |
|-----------------------------------------|----------|------|-----------|----------------|
| СРР                                     | Residues | pI   | Aliphatic | Hydropathicity |
|                                         |          |      | index     | (GRAVY)        |
| Z13                                     | 83       | 9.91 | 90.6      | -0.743         |
| Z14                                     | 71       | 9.82 | 83.94     | -0.731         |
| Z15                                     | 58       | 9.77 | 79.14     | -0.788         |
| Z18                                     | 60       | 5.29 | 104.17    | -0.408         |

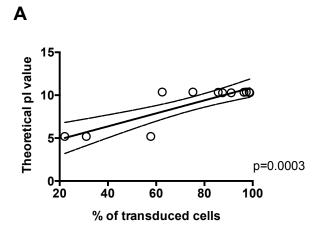
# Table S5. Physicochemical properties of the ZEBRA CPP truncations conjugated to OVACD4gp100CD8 cargo

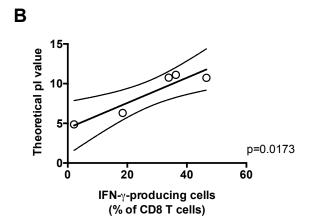
| ZEBRA CPP conjugated to OVACD4gp100CD8 cargo |          |       |           |                |
|----------------------------------------------|----------|-------|-----------|----------------|
| CPP                                          | Residues | pI    | Aliphatic | Hydropathicity |
|                                              |          |       | index     | (GRAVY)        |
| Z13                                          | 84       | 10.78 | 91.79     | -0.707         |
| Z14                                          | 72       | 10.77 | 85.42     | -0.689         |
| Z18                                          | 61       | 9.52  | 105.57    | -0.364         |

#### **Supplementary Figure legends**

**Figure S1. Design of eight variants (Z13 to Z20) based on truncations of ZEBRA CPP Z12.** First and last amino acid is shown (single letter amino acid code) with the corresponding position on complete ZEBRA CPP.


Figure S2. Correlation graphs between CPP variant theoretical pI value and in vitro results. (A) Transduction was assessed in human DCs. Cells were incubated for 4h with the fluorescein-conjugated constructs (Z13OVACD8FAM, Z14OVACD8FAM, Z14OVACD8FAM or Z18OVACD8FAM) then subjected to a 30 sec wash with an acidic buffer to remove membrane bound peptide before FACS analysis. Correlation between CPP variant theoretical pI value and the percentage of transduced cells (n=3 for each CPP variant). Pearson correlation coefficient r=0.8668. Solid line and dashed lines represent regression line and 95% confidence bands, respectively (p=0.0003). (B) Correlation between CPP variant theoretical pI value and the percentage of IFN- $\gamma$ -producing CD8 T cells. Pearson correlation coefficient r=0.9403. Solid line and dashed lines represent regression line and 95% confidence bands, respectively (p=0.0173).


Figure S3. CD8 and CD4 T cell immune responses elicited by vaccination with ZEBRA CPP truncations combined to TLR3 agonist (Hiltonol). Mice were vaccinated three times (wk0, wk2 and wk9) by s.c. injection of 10 nmoles of OVACD8CD4 (the cargo without ZEBRA CPP truncation), Z13OVACD8CD4, Z14OVACD8CD4, Z15OVACD8CD4, Z18OVACD8CD4 and i.m. injection of 50  $\mu$ g of Hiltonol. One week after the last vaccination, mice were bled for assessing OVA<sub>257-264</sub>-specific CD8 T cells by FACS multimer staining (A). Intracellular staining assay was performed on spleen cells for detecting multifunctional CD8 T cells (B) or CD4 T cells (C) after 6h stimulation with OVA<sub>257-264</sub> peptide or OVA<sub>323-339</sub> peptide respectively. Percentage of CD8 or CD4 T cells positive for each cytokine pattern is indicated \*, p<0.05.


**Figure S4. CD8 and CD4 T cell immune responses elicited by vaccination with ZEBRA CPP truncations combined to TLR2 agonist (Pam3CSK4) or TLR4 (MPLA).** Mice were vaccinated three times (wk0, wk2 and wk9) by s.c. injection of 10 nmoles of OVACD8CD4 (the cargo without ZEBRA CPP truncation), Z13OVACD8CD4, Z14OVACD8CD4, Z15OVACD8CD4 or Z18OVACD8CD4 and 20 µg of Pam3CSK4 (A) or 20 µg of MPLA

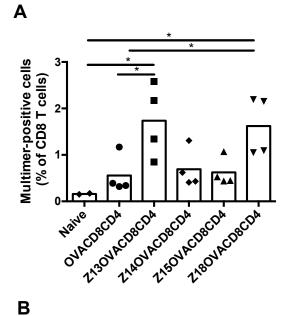
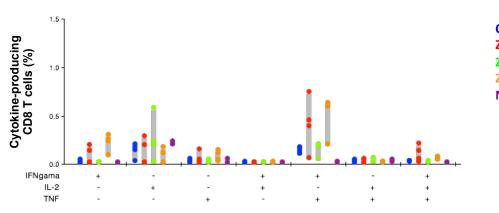
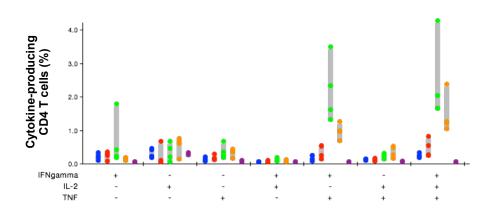

(B). One week after the last vaccination, mice were bled for assessing  $OVA_{257-264}$ -specific CD8 T cells by FACS multimer staining. \*, p<0.05; \*\*, p<0.01.

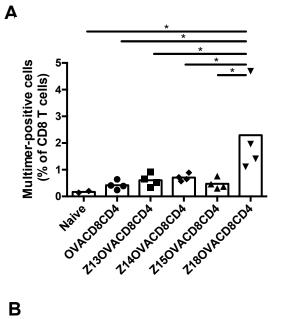
Figure S5. Effect of Z13Trp2 on control of melanoma lung metastasis growth. Mice were implanted i.v. with  $1 \times 10^5$  B16-OVA melanoma tumor cells and vaccinated three times (d-21, d-7 and d7) by subcutaneous injection of 2nmoles of Z13Trp2 mixed with 100 µg of anti-CD40 and by i.m. injection of 50 µg of Hiltonol (right hind leg). Control mice group received anti-CD40 and hiltonol. Mice were euthanized at day 14 and lung recovered. Number of metastasis foci was counted for each lung (5 to 8 mice / group). Two representative lung pictures of each group are shown \*\*, p<0.01 (Mann-Whitney test).



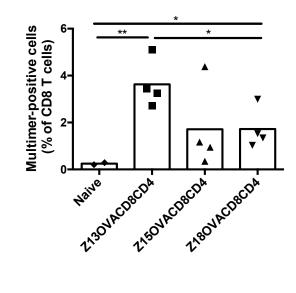



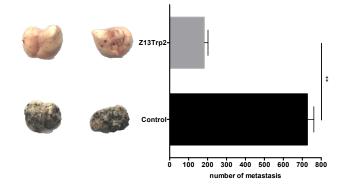






С






OVACD8CD4 Z13OVACD8CD4 Z15OVACD8CD4 Z18OVACD8CD4 Naive







