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1. Model of a two-species, single substrate chemostat.  

We consider two species X1 and X2 in a chemostat, where they are consuming the 

same substrate, S. Species X1 and X2 are assumed to process the substrate through 

different metabolic pathways to produce different products, P1 and P2 respectively. 

The feed-in rates of the species to the chemostat is considered to be zero, while the 

feed-in rate of the substrate is given by S0. The dilution rate (per hour) of the 

chemostat is considered to be λ.  

 

Using these notations, we can construct ordinary differential equations (ODEs) to 

model the dynamics in a chemostat as shown below. In doing so, we consider two 

different cases. 

 

1.1. Case without thermodynamic inhibition. Under this case we assume that 

thermodynamics is not relevant for describing the growth dynamics of each species. 

This is the generally considered case and the equations we describe below are used in 

numerous studies modeling both chemostat and batch systems and microbial 

dynamics in these. We describe microbial growth by the Monod term (Monod, 1949); 

v = vmax ⋅[S]
K + [S]      Eq. S1

 

where K is the so-called half-saturation constant and vmax is the maximum substrate 

uptake rate possible. With the growth rate of each species given by Eq. S1, we write 

the ODEs describing species and metabolite dynamics in the two species – one 

substrate chemostat as follows; 

 

 

d[S]
dt

= [S0 ]− S[ ]( ) ⋅λ − X1[ ]⋅v1 − X2[ ]⋅v2
d[X1]
dt

= Y1 ⋅ X1[ ]⋅v1 − λ ⋅ X1[ ]
d[X2 ]
dt

= Y2 ⋅ X2[ ]⋅v2 − λ ⋅ X2[ ]
d[P1]
dt

= X1[ ]⋅v1 − λ ⋅ P1[ ]
d[P2 ]
dt

= X2[ ]⋅v2 − λ ⋅ P2[ ]

 

Eq. S2 
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, where vi represents the growth rate of species i and is given by the generic form 

shown in Eq. S1. These ODEs describe the temporal dynamics of the species and 

metabolites in the chemostat. Of particular interest is the steady state, where each of 

the differential equations is equal zero, i.e. none of the species and metabolite 

concentrations change. To understand the species concentrations at steady state, we 

can solve Eq. S2. by setting the left side of each of the ODEs equal to zero. In 

particular, we can use the steady state condition for the second and third ODEs to 

derive; 

 
λ ⋅ X1⎡⎣ ⎤⎦ = Y1 ⋅ X1⎡⎣ ⎤⎦ ⋅v1

λ ⋅ X2⎡⎣ ⎤⎦ = Y2 ⋅ X2⎡⎣ ⎤⎦ ⋅v2
              Eq. S3 

 

where the bar notation indicates steady state values. We notice that Eq. S3 can only be 

satisfied if the species concentrations at steady state are zero (i.e. the species is not 

maintained in the chemostat), or when their steady state growth rates times their yield 

factor are equal to the dilution rate, i.e.;  

 

λ = Y1 ⋅v1
λ = Y2 ⋅v2

    Eq. S4 

 

Fulfillment of this condition is only possible for a specific combination of parameter 

values. Outside of these parameters the above treatment leads to the formulation of 

the exclusion principle on a single substrate, whereby only one species dominates in 

the chemostat and the other one is washed out (Hsu et al., 1977) (see also Figure S3).  

 

1.2. Case with thermodynamic inhibition. Under this case we consider the 

thermodynamics of metabolic conversion and utilize a previously described 

thermodynamic model for microbial growth that considers a reversible enzymatic 

reaction as a proxy for the microbial-growth supporting metabolism (Hoh & Cord-

Ruwisch, 1996). The growth rate is given by; 

 

 
v =

vmax ⋅[S]⋅ 1− exp ΔGr( )( )
K + [S]⋅(1+ kr ⋅exp(ΔGr ))  Eq. S5 
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where the constants kr and K are composite parameters representing the ratio of the 

forward and backward reaction rates and substrate turnover rate respectively, and 

 is the thermodynamic energy available in the reversible reaction for a given set 

of substrate ([S]) and product ([P]) concentrations. This energy can be calculated from 

the standard reaction free energy, using; 

 

    Eq. S6 

where the multiplications indexed by i and j are over the products and substrates 

participating in the reaction respectively, ni and mj are the chemical stoichiometric 

coefficients of products and substrates respectively, R and T are the gas constant and 

the absolute temperature in Kelvin respectively, and  is given by the difference 

in the free energies of formation of products and substrates.  

 

For the simple case of two species utilising the same substrate S in a chemostat and 

producing a different waste product, the ODEs describing species and metabolite 

dynamics is as before, given in Eq. S2, and Eq. S4 still holds. Substituting the new 

growth rate into this equation, we get;  

 

 
λ ⋅ X1⎡⎣ ⎤⎦ = Y1 ⋅ X1⎡⎣ ⎤⎦ ⋅

vmax,1 ⋅[S]⋅ 1− exp ΔGrxn,1( )( )
K1 + [S]⋅(1+ kr ,1 ⋅exp(ΔGrxn,1))

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

λ ⋅ X2⎡⎣ ⎤⎦ = Y2 ⋅ X2⎡⎣ ⎤⎦ ⋅
vmax,2 ⋅[S]⋅ 1− exp ΔGrxn,2( )( )
K2 + [S]⋅(1+ kr ,2 ⋅exp(ΔGrxn,2 ))

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 Eq. S7 

 

To simplify equation S7, we can assume that parameters K1 and K2 are much larger 

compared to the second term in the denominator and thus, this term can be ignored.  

This assumption corresponds to either or both the steady state concentration of the 

substrate and the term (1+ kr ⋅exp(ΔG) ) being very small compared to the substrate 

turnover rate. A small value of steady state concentration of the substrate would be 

inline with the high turnover rate, while a small value of kr would mean that the 

ΔGrxn

ΔGrxn = ΔGrxn
0 + R ⋅T ⋅ ln

P[ ]i
ni

i
∏

S[ ] j
m j

j
∏

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ΔGrxn
0
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backward rate is large compared to forward rate in the assumed reversible metabolic 

reaction, i.e. we have considerably backward flux. Under this assumption of high 

substrate turn-over rate, we can re-arrange equation S7 to derive a condition for the 

steady state as; 

Y2 ⋅
vmax,2 ⋅[S]⋅ 1− exp ΔGrxn,2( )( )

K2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= Y1 ⋅

vmax,1 ⋅[S]⋅ 1− exp ΔGrxn,1( )( )
K1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Y2 ⋅K1 ⋅vmax,2
Y1 ⋅K2 ⋅vmax,1

=
1− exp ΔGrxn,1( )
1− exp ΔGrxn,2( )

A ⋅ 1− exp ΔGrxn,2( )( ) = 1− exp ΔGrxn,1( )
A −1= A ⋅exp ΔGrxn,2( )− exp ΔGrxn,1( )

Eq. S8

 

where A is a composite parameter given by Y2 ⋅vmax.2 ⋅K1 /Y1 ⋅vmax.1 ⋅K2 . Thus, steady 

state condition can be satisfied with the two species coexisting, for the correct 

combination of their kinetic parameters and metabolic free energies. Since metabolic 

free energies are a function of substrate and product concentrations, coexistence is 

possible in a larger dynamical regime compared to the kinetics-only model (see also 

Figure S3). To get a sense on how species frequencies at steady state depend on the 

concentrations of their metabolic end-products, we can make the simplifying 

assumption that yield, maximal growth, and uptake parameters of the two species are 

the same, i.e. A=1; leading to exp(ΔGrxn,1) = exp(ΔGrxn,2 ) . Note that from an 

evolutionary perspective, this assumption would be likely to hold right after a 

speciation event. In the case of A=1, and assuming each species only produces one 

product, we can substitute Eq. S6 into the simplified Eq. S8 to derive a relation 

between the end product concentrations at steady state as a function of the standard 

free energy of the metabolic conversions; 
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exp ΔGrxn,1( ) = exp ΔGrxn,2( )

ΔGrxn,1
0 + R ⋅T ⋅ ln

P1⎡⎣ ⎤⎦
S⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟ = ΔGrxn,2

0 + R ⋅T ⋅ ln
P2⎡⎣ ⎤⎦
S⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟

ΔGrxn,2
0 − ΔGrxn,1

0 = R ⋅T ⋅ ln
P1⎡⎣ ⎤⎦
S⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟ − ln

P2⎡⎣ ⎤⎦
S⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ΔGrxn2
0 − ΔGrxn,1

0

R ⋅T
= ln

P1⎡⎣ ⎤⎦
P2⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟

exp
ΔGrxn,2

0 − ΔGrxn,1
0

R ⋅T
⎛
⎝⎜

⎞
⎠⎟
=

P1⎡⎣ ⎤⎦
P2⎡⎣ ⎤⎦

  Eq. S9 

 

Thus, when the two species in the chemostat co-exist at steady state, their metabolic 

byproduct will do so as well. Further, the steady state concentrations of these products 

will show a specific ratio that reflects the difference in the Gibbs free energy of 

formation of the corresponding metabolic pathways leading from the substrate to 

these products.  

 

Using the second and fourth (or third and fifth) ODEs shown in Eq. S2, and utilizing 

the fact that at steady state, growth rate of each species needs to be equal to the other 

one and the dilution rate, we can show that the concentration of the species would 

relate to the concentrations of the metabolic end-products; 

λ ⋅ X1[ ] = Y1 ⋅ X1[ ]⋅v1
Y1 = λ

v1

λ ⋅ P1[ ] = X1[ ]⋅v1
[P1]=

X1[ ]
Y1

    Eq. S10 

 

Thus, the ratio of the species concentrations will also obey the relation given in Eq. 

S9, adjusted by the yield constants for the two species.  

 

The result of this mathematical treatise is that under the consideration of 

thermodynamics, two species consuming the same substrate can co-exist in a 
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chemostat as long as they utilize two different metabolic pathways leading to two 

different metabolic byproducts and thus giving rise to different Gibbs free energy of 

reaction. The relative ratio of the concentrations of the species in the chemostat will 

reflect the difference between these free energies, with the species utilizing the 

reaction with the largest negative value of displaying the highest concentration. 

 

2. The thermodynamic case with a generalized growth reaction that has many 

end-products. 

We can extend the above treatise readily to a general case of just two species, but 

utilizing a generalized overall growth reaction that results in many different end-

products. This would correspond to a case, where a species utilizes mixed 

fermentation as seen for example in Lactobacillus species (or many other fermenting 

bacteria). For such multi-product conversions, the above treatise would remain 

unchanged up to, and including Eq. S8. Making the same assumption of A=1, as 

before, the further simplification of this equation would still lead to 

exp ΔGrxn,1( ) = exp ΔGrxn,2( ) , but now these thermodynamic terms would be defined in 

a general form, with many end-products. Thus, Eq. S9 would become; 

 

exp ΔGrxn,1( ) = exp ΔGrxn,2( )

ΔGrxn,1
0 + R ⋅T ⋅ ln

[Pi ]( )α i

i
∏

S⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= ΔGrxn,2

0 + R ⋅T ⋅ ln
[Pj ]( )β j

j
∏

S⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 Eq. S11 

where the indices i and j are over the end-products and the exponents α i  and β j  are 

the stoichiometric factors for these products, respectively for species 1 and 2. We can 

solve this equation to get a similar result as before; 

 

ΔGrxn
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ΔGrxn,1
0 + R ⋅T ⋅ ln

[Pi ]( )α i

i
∏

S⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= ΔGrxn,2

0 + R ⋅T ⋅ ln
[Pj ]( )β j

j
∏

S⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ΔGrxn,2
0 − ΔGrxn,1

0 = R ⋅T ⋅ ln
[Pi ]( )α i

i
∏

S⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
− R ⋅T ⋅ ln

[Pj ]( )β j

j
∏

S⎡⎣ ⎤⎦

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ΔGrxn,2
0 − ΔGrxn,1

0

R ⋅T
= ln

[Pi ]( )α i

i
∏

[Pj ]( )β j

j
∏

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

exp
ΔGrxn,2

0 − ΔGrxn,1
0

R ⋅T
⎛
⎝⎜

⎞
⎠⎟
=

[Pi ]( )α i

i
∏

[Pj ]( )β j

j
∏

 Eq. S12 

 

This equation relating reaction Gibbs free energies to steady state end-product 

concentrations can again be related to species concentrations. In this generalized case, 

we have similar ODEs as shown in Eq. S2, but there would be a larger number of 

equations describing the rate of change for each of the end-products; 

 

 

d[P1,1]
dt

=α1 ⋅ X1[ ]⋅v1 − λ ⋅ P1,1⎡⎣ ⎤⎦,……,
d[P1,i ]
dt

=α i ⋅ X1[ ]⋅v1 − λ ⋅ P1,i⎡⎣ ⎤⎦

d[P2,1]
dt

= β1 ⋅ X2[ ]⋅v2 − λ ⋅ P2,1⎡⎣ ⎤⎦,……,
d[P2, j ]
dt

= β j ⋅ X2[ ]⋅v2 − λ ⋅ P2, j⎡⎣ ⎤⎦  Eq. S13

 

   

Thus, the relation previously given in Eq. S10 would become; 

 

 

[P1,1]=α1 ⋅ X1[ ] /Y1,……[P1,i ]=α i ⋅ X1[ ] /Y1

[P2,1]= β1 ⋅ X2[ ] /Y2,……[P2, j ]= β j ⋅ X2[ ] /Y2     Eq. S14 
 

Putting this relation back into Eq. S12, we get; 
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exp
ΔGrxn,2

0 − ΔGrxn,1
0

R ⋅T
⎛
⎝⎜

⎞
⎠⎟
=

[Pi ]( )α i

i
∏

[Pj ]( )β j

j
∏

exp
ΔGrxn,2

0 − ΔGrxn,1
0

R ⋅T
⎛
⎝⎜

⎞
⎠⎟
=

α i ⋅ X1⎡⎣ ⎤⎦ /Y1( )α i

i
∏

β j ⋅ X2⎡⎣ ⎤⎦ /Y2( )β j

j
∏

 Eq. S15 

In the simplest case, when Y1 = Y2 and α i  = β j  = 1 (i.e. only one moles of each 

different product produced per one mol of substrate), and the only difference is the 

number of different products that are produced by species X1 and X2, Eq. S15 

simplifies to: 

exp
ΔGrxn,2

0 − ΔGrxn,1
0

R ⋅T
⎛
⎝⎜

⎞
⎠⎟
=

X1⎡⎣ ⎤⎦( )i
X2⎡⎣ ⎤⎦( ) j

   Eq. S16 

This shows that the relation between steady state concentrations of the two species 

still relates to the difference in their reaction Gibbs free energies, but also to the 

number of their end products. Using i = 1 and j = 2 as an illustrative case, we can see 

that the relation between the steady state species concentrations turns into a power 

function. This means that only if the steady state concentration of the second species 

is one, there is no effect of the increased number of metabolic end-products it forms. 

If the steady state concentration of this species is above this value, having a higher 

number of end-products would be detrimental to its steady state frequency. Below that 

concentration an increased number of end-products would be beneficial. This makes 

intuitive sense, since the concentration of species is linked here to the concentrations 

of the end-products it produces. Figure S1 illustrates this relation further, where we 

use Eq. S16 to plot the steady state concentration of one species, given the other one.  

 

To conclude, the generalized case of multiple metabolic end-products still results in 

the steady state ratio of the species concentrations relating to the difference in the 

Gibbs free energy of their overall growth reactions. However, in this case the steady 

state frequencies of the species becomes a complex function of the number of their 

metabolic end-products. For example, it is possible for an energetically disfavored 

species to attain a higher steady state frequency, if the energetically favored species 

utilized multiple pathways leading to multiple end-products (e.g. assuming Y1=Y2, and 
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setting the free Gibbs energies so that reaction 1 is more energetically favorable, the 

same energy difference would lead to a lower [X1]/ [X2] as the i / j is increased). Note 

that this result is based on the assumption that by increasing its number of metabolic 

end-products, a species does not improve its overall reaction energetics. Here is an 

example: Assuming that the left side of Eq. S14 was 100, we would get [X1] = 100 

and [X2 ] = 1 with i = j =1, but [X1] = 10 and [X2 ] =1 with i  = 2, and j = 1. For the 

latter case to maintain the original species concentrations of [X1] = 100 and [X2] = 1, 

the left side of the equation would have to increase from 100 to 10000, i.e. the energy 

difference would have to increase by approximately 2-fold.  

 

3. The thermodynamic case with alternative thermodynamic growth 

formulations. 

The efforts to provide a microbial growth model based on thermodynamic 

considerations can be grouped into distinct general categories.  Particularly, these 

models are either based on a phenomological model of microbial metabolism, that 

considers connection between the energetics of catabolic and anabolic metabolism 

(Kleerebezem & Stams, 2000; Rodríguez et al., 2008), or are derived from 

considering microbial growth as a single or series of reversible reactions (Hoh & 

Cord-Ruwisch, 1996; Jin & Bethke, 2003; Curtis, 2003; Liu et al., 2001) and utilizing 

results from equilibrium dynamics of such reactions (Boudart, 1976). From a 

mathematical perspective, these two classes of models have a highly similar structure 

and result in the adjustment of the kinetic rate (based on substrate uptake) with a 

thermodynamic factor (Jin & Bethke, 2007). The differences in the models arise in the 

calculation of the free energy associated with this thermodynamic factor, with some 

models considering the full extent of the free energy available from the catabolic 

reaction to be invested in driving the growth rate (Curtis, 2003; Liu et al., 2001; Hoh 

& Cord-Ruwisch, 1996), and others considering fractions of it invested in ATP 

production (i.e. anaobolic metabolism) and cell maintenance (Jin & Bethke, 2003; 

Kleerebezem & Stams, 2000; Rodríguez et al., 2008). 

 

The analysis in sections 1 and 2 considered a model from the former group of models, 

considering full energetic investment from the growth-supporting reaction into growth 

rate. From the mathematical treatise given above it is clear that our general 

conclusions with regards to co-existence depending on reaction Gibbs free energies 
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will not change with the alternative growth models that consider some of these 

energies invested in anabolic reactions. To make this point more tractable, we 

consider here the thermodynamic growth model developed by Kleerebezem and 

colleagues (Kleerebezem & Stams, 2000; Rodríguez et al., 2008). The few other 

models in this category, in particular the one by Qusheng and Bethke (Jin & Bethke, 

2003, 2007) would give similar results as those derived below.  

 

The particular thermodynamic growth model considered by Kleerebezem and 

colleagues (Rodríguez et al., 2008) gives the growth rate as a function of anabolic and 

catabolic reaction energetics; 

 

 v = 1
−ΔGanab

⋅ qs ⋅(1− fdis ) ⋅ ΔGcatab −mG[ ]        Eq. S17 

where ΔGanab  and ΔGcatab express the Gibbs free energies assumed to be invested in 

anabolic and catabolic metabolism respectively, qs is the substrate uptake rate, fdis is 

the fraction of the catabolic Gibbs energy that is assumed to be dissipated to establish 

a flux through the catabolic enzyme system, and mG is the Gibbs energy dissipation 

rate for growth-independent maintenance purposes (Rodríguez et al., 2008). In the 

application of this growth model, ΔGanab , fdis, and mG are assumed to be fixed 

(determined empirically for a given species), ΔGcatab is calculated as described in Eq. 

S6, and qs is calculated using;   

 qs = qs
max ⋅ 1− exp fdis ⋅ ΔGcatab( )⎡⎣ ⎤⎦        Eq. S18 

where qs
max  is the maximal substrate uptake rate, analogous to vmax from section 1. 

Putting this term into Eq. S17 and re-arranging, we can write the overall 

thermodynamic growth rate model as; 

 

 v = qs
max ⋅ ΔGcatab

−ΔGanab

⋅ 1− (1− fdis ) ⋅exp fdis ⋅ ΔGcatab( )− fdis⎡⎣ ⎤⎦ +
mG

ΔGanab

       Eq. S19 

 

We can analyse the original chemostat model presented in section 1 using this 

alternative model. We note that the analysis of steady state condition up to the 

derivation of Eq. S4 would remain unaltered. The resulting condition given in Eq. S7 
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and Eq. S8 would need to be re-written using the growth rate given in Eq. S19, 

resulting in; 

 

Y1 ⋅ qs,1
max ⋅

ΔGcatab,1

−ΔGanab,1

⋅ 1− (1− fdis,1) ⋅exp fdis,1 ⋅ ΔGcatab,1( )− fdis,1⎡⎣ ⎤⎦ +
mG ,1

ΔGanab,1

⎡

⎣
⎢

⎤

⎦
⎥ =

Y2 ⋅ qs,2
max ⋅

ΔGcatab,2

−ΔGanab,2

⋅ 1− (1− fdis,2 ) ⋅exp fdis,2 ⋅ ΔGcatab,2( )− fdis,2⎡⎣ ⎤⎦ +
mG ,2

ΔGanab,2

⎡

⎣
⎢

⎤

⎦
⎥

      Eq. S20 

This equality can be simplified by assuming all empirically determined parameters for 

the two species to be the same (i.e. qs,1
max = qs,2

max , Y1 = Y2, mG,1 = mG,2, 

ΔGanab,1 = ΔGanab,2 , and fdis,1 = fdis,2 = fdis). In this case, we have; 

 

 
ΔGcatab,1 ⋅ 1− (1− fdis ) ⋅exp fdis ⋅ ΔGcatab,1( )− fdis⎡⎣ ⎤⎦ =

ΔGcatab,2 ⋅ 1− (1− fdis ) ⋅exp fdis ⋅ ΔGcatab,2( )− fdis⎡⎣ ⎤⎦
      Eq. 21 

 

which further simplifies to;  

	
   	
   	
  

ΔGcatab,1

ΔGcatab,2

=
(1− exp fdis ⋅ ΔGcatab,2( ))
(1− exp fdis ⋅ ΔGcatab,1( )) 	
  	
   Eq. 22

 

 

While this equation is not readily solvable to obtain a functional form relating the 

Gibbs free energies associated with the catabolic reactions of each species to the 

steady state metabolic end-product and species concentrations, we show through 

numerical simulation that it results in the same relation as given by Eq. S9 and Eq. 

S10 and shown in Figure 2 (see Figure S2). We find that the relation deviates from 

that given by Eq. S9 and Eq. S10, when the fraction of the catabolic Gibbs energy that 

each species invest into metabolic flux (i.e. fdis,1  and fdis,2) are different from each 

other. We conclude that the main effect on co-existence by considering this 

alternative model arises from the consideration of energy investment in anabolic 

reactions.   

 

4. The effects of model parameters on species co-existence 

Here, we first demonstrate with numerical simulations, how inclusion of 

thermodynamics leads to co-existence under a larger parameter regime. Particularly, 
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we consider the range of co-existence against the key chemostat parameters – the 

dilution and substrate feeding rates - and under the “kinetic-only” and thermodynamic 

models. This analysis shows that co-existence is possible in the kinetic-only model 

only for a specific combination of kinetic parameters (as shown previously (Hsu et 

al., 1977)), resulting in a single line of co-existence in this plot (Figure S3C and 

S3D). We find that this line expands to a large region under the thermodynamic 

model (Figure S3A and S3B), as expected from the presented mathematical results.  

Next, we analyse how the co-existence range in the thermodynamic model is 

affected by the different parameters of the model. To this end, we vary all parameters 

of the thermodynamic model against each other, to assess which of the parameters 

have the strongest effect on the co-existence (Figure S4). While most parameter 

combinations still lead to co-existence, we find that the reaction Gibbs free energy 

change has the most significant effect on co-existence. 

 

5. Supplementary Figures 

 
Figure S1. Effect of multiple metabolic end-products on species coexistence. The 

steady state concentration of one species was calculated given the other one and using 

Eq. S16. The other parameters used are; dG°rxn1 = -100, dG°rxn2 = -80 and the 

parameters i and j as shown on the graph legend. 
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Figure S2. Effect of increasing difference in Gibbs free energy change on species 

frequencies, using the alternative thermodynamic model given in Eq. S19. The y-axis 

shows the steady state concentration ratio between the two species, while the x-axis 

shows the energy difference between their reaction Gibbs free energy change (ddG). 

The model was simulated considering dG°rxn1 = dG°rxn2 + ddG, and using the 

parameters; dG°rxn2 = -25, 1/ΔGanab = 0.033 (based on (Heijnen & Van Dijken, 1992), 

mG = 0.08 (based on (Rodríguez et al., 2008)), qmax = 20e-3, and K = 1e-6 for substrate 

uptake function (given by a classical saturation function; qmax*[S]/(K+[S])). The 

dilution and substrate feed parameters for the chemostat were set to d = 0.01 and S0 = 

0.25. The curves shown in red, green, and blue result from simulations using fdis,1 = 

fdis,2 = 0.35, fdis,1 = 0.35, fdis,2 = 0.5, and fdis,1 = 0.5, fdis,2 = 0.35, respectively. The black 

line shows the results from Eq. S9 as shown in Figure 2. The green, red, and blue 

curves are given only up to a certain value of ddG due to instabilities in the numerical 

simulations (i.e. numerical integration failing to reach a stable steady state).  
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Figure S3. The fraction of steady state species concentrations in the chemostat (as 

shown in color legend) for different combinations of dilution rate (D, called λ  in the 

equations) and feed substrate concentration (S0). Panels A and C show the fractional 

biomass of species X1, while panels B and D show the concentration of species X2. 

The other model parameters used are: Vmax,1 = 1, K1 = 1e-4, dG1 = -20, Vmax,2 = 1.2, K2 

= 2e-4, dG2 = -25, Y1 = Y2 = 1. Note the co-existence is possible in a wide for the 

thermodynamic model (A, B), whereas it is possible only at a specific dilution rate for 

the classical model (C,D) and under the parameter condition 

		

K1

Y1 ⋅
Vmax1
λ

−1⎛

⎝⎜
⎞

⎠⎟

= K2

Y2 ⋅
Vmax2
λ

−1⎛

⎝⎜
⎞

⎠⎟

 (Hsu et al., 1977). 
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Figure S4. Analysis of steady state species concentrations resulting from the 

thermodynamic model (Eq. S2, Eq. S5) when considering all possible combinations of 

three different values (low, medium, high) for each of the parameters Vmax1, K1, Y1, 

dG1, Vmax2, K2, Y2, dG2, S0 and λ .Each small square in the figure shows the fraction 

of cases that result in co-existence at steady state (i.e. two species present at steady 

state with >= 1 µgDW/L) of all feasible solutions for the two-dimensional parameter 

combination for that square. Parameter values within a 3 x 3 square increase from left 

to right and from top to bottom. Utilized values are: Vmax,1, Vmax,2: [0.01,0.1,1] 

(mol/(gDW * h)); K1, K2: [1e-6,1e-5,1e-4] (mol/L); Y1, Y2: [1,10,100] (gDW/mol); 

dG1, dG2: [-1,-10,-100] (KJ/mol); D (is called λ  in the equations): [0.01,0.1,1] (1/h) 

and S0: [0.001,0.01,0.1] (mol/L) 
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