Observation selection bias in contact prediction and its implications for structural bioinformatics

G. Orlando^{1,2,3,†}, D. Raimondi^{1,2,3,†}, W.F. Vranken^{1,2,3,*}

Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, Triomflaan
 Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2
 Structural Biology Research Center, VIB,1050 Brussels, Belgium
 + Contributed equally

^{*}Corresponding Author: wvranken@vub.ac.be

Figure 1: Boxplots showing the difference in the number of homologs and NEFF between the NOSTRUCT and CASP11 datasets.

Figure 2: Scatter plot showing the correlation between the contact density within each protein chain and the number of available homologs. Pearson correlation is r = 0.06.

Figure 3: Scatter plot showing the correlation between the number of retrieved homologs and the length of the protein. Pearson correlation is r = 0.16.

Figure 4: Relationship between the number of homologs retrieved with a single iteration of JackHMMer and the ones retrieved with 5 iterations. From this plot it is possible to see that in the nearly all the cases increasing the number of iterations leads to more retrieved homologs.

Figure 5: Scatter plot showing the correlation between the fraction of disordered residues within each protein chain of the STRUCT dataset as predicted by IUPRED. Pearson correlation is r = -0.035.

Figure 6: Scatter plot showing the correlation between the fraction of disordered residues within each protein chain of the NOSTRUCT dataset as predicted by IUPRED. Pearson correlation is r = -0.06.

Figure 7: Boxplots showing the number of homologs retrieved for the STRUCT and NOSTRUCT datasets stratified by organism using the taxonomic domain, the highest taxonomic rank.

Figure 8: Pie charts showing the organism composition, in terms of taxonomic domain, of the STRUCT and NOS-TRUCT datasets. Half of the proteins in STRUCT are from Bacteria and 38% are from Eukarya. These percentages are very different in NOSTRUCT, which is highly enriched in Eukarya (97%). These pie charts are representative of the organism distributions observed in PDB and SwissProt respectively.

Figure 9: Distributions of available homologs for the NOSTRUCT and NOUMENON datasets. The two tailed Wilcoxon ranksum p-value is 0.56 and thus the null hypothesis that the two sets of measurements are drawn from the same distribution can not be rejected.

Figure 10: Precision curves for the PSICOV and CCMpred predictors obtained on the PSICOV and NOUMENON datasets by varying the fraction of contacts considered with respect to the protein length L.

	NOUMENON best L PPV		PSICOV best L PPV	
Iter	PSICOV	CCMpred	PSICOV	CCMpred
1	0.13	0.18	0.34	0.44
2	0.19	0.26	0.44	0.54
3	0.22	0.29	0.46	0.59

Table 1: Precision (PPV) scores for the best L predictions on the NOUMENON and PSICOV datasets, computed with PSICOV and CCMpred methods, by varying the number of iterations of Jackhmmer MSAs (E-value=0.0001).