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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. | Projected band structures for different coupling strengths. (a) The 

non-dispersive quasi-energy diagrams and (b) projected band structures for constant coupling 

strengths of =0.1, 0.25, and 0.4, respectively. The number of unit cells in the transverse (y) 

direction is fixed as N=20. Here, the condition of =0.1 (<0.25) corresponds to the weak 

coupling regime, where the ring lattice is a trivial insulator (no gapless edge states). The condition 

of =0.4 (>0.25) corresponds to the strong coupling regime, where that the ring lattice is a 

topological insulator (a pair of gapless edge states at upper and lower boundaries of the lattice, 

marked by the red and blue curves). =0.25 denotes the transition point between the weak and 

strong coupling regimes. The numerical calculations of different non-dispersive cases are in 

excellent agreements with the results in Ref. 11 and 30. 
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Supplementary Figure 2. | Projected band structures for different frequency steps. The 

projected band structures for different frequency steps, viz., f=1Hz, 0.1Hz, and 0.025Hz, where 

the frequency is scanned from 7.1kHz to 7.7kHz. The number of unit cells in the transverse (y) 

direction is fixed at N=20. 
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Supplementary Figure 3. | The Chalker-Coddington network model. The left hand side shows 

one unit cell of the Chalker-Coddington network model of the coupled ring lattice, while the right 

hand side is the scattering matrix model of one unit cell for a fixed Bloch vector k. 
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Supplementary Figure 4. | Acoustic topological insulator with a distorted lattice. (a) and (b) 

The simulated acoustic amplitude distributions when pseudo-spin-up and pseudo-spin-down 

acoustic one-way edge states are selectively excited. Here, the 2D lattice is arbitrarily distorted but 

couplings between the adjacent rings remain unitary. Our simulation clearly shows that the 

pseudo-spin-dependent acoustic one-way edge state behaves more like a conventional waveguide 

mode, where the scatterings from boundary abrupt variations or lattice dislocations are barely 

observed. 
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Supplementary Figure 5. | Illustration of the experimental measurement setup. The acoustic 

Floquet topological insulator, viz. 2D coupled metamaterial ring lattice, is sealed in rigid 

rectangular pipes to eliminate radiation losses. A condenser microphone is inserted into perforated 

holes on the pipe wall to measure the pressure amplitude in the metamaterial rings. 
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Supplementary Figure 6. | Zoom-in photograph of a lab-made sound source. In the experi- 

ment, the lab-made sound source driven by a multifunctional signal generator (SRS MODEL 

DS345) and a lab-made power amplifier was placed in front of the tapered end of the metamaterial 

waveguide to generate stable waveguide modes. 
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Supplementary Figure 7. | Zoom-in photograph of the metamaterial ring. During the 

measurement, the condenser microphone is inserted into a hole to extract the pressure amplitude 

inside, while the unscanned holes are bolted to prevent sound leakage. 
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Supplementary Figure 8. | Projected band diagrams for different lattices. Projected band 

diagrams for different semi-infinite strip lattices with unit cells of N=3, 5, 10, 20, 50, and 100 in 

the transverse (y) direction. 
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Supplementary Figure 9. | Acoustic one-way interface state. After introducing a lattice 

dislocation by half a lattice constant, we obtain a novel acoustic one-way interface state in (a), 

propagating from left to right for the pseudo-spin-up component, and conversely for the 

pseudo-spin-down component. If we excite the wrong pseudo-spin component at the left input port, 

we will obtain a bulk state with the pressure amplitude distribution interestingly being 

complementary to that of the interface state, as shown in (b).  
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Supplementary Figure 10. | Positions for energy spectra measurement. The circles show the 

positions where we measured the sound energy spectra (I1 and I2). Each circle covers two 

sub-sections that correspond to two holes perforated on the waveguide ring. The sound energy 

spectra I1 and I2 are obtained from the average of the sound energy data extracted from the two 

holes. 
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Supplementary Figure 11. | Simulated results for pass band and band gap states. (a) 

Projected band structure of the semi-infinite ring lattice (N=20) for pseudo-spin-up Bloch modes. 

The red and blue bands denote nontrivial edge states at upper and lower boundaries of the lattice. 

The purple arrows mark the frequencies of 7.526kHz and 7.247kHz. (b) and (c) The simulated 

pressure amplitude distributions in the pass band (7.526kHz) and the band gap (7.247kHz), 

respectively. 
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Supplementary Figure 12. | Experimental results for edge states. (a) and (b) The measured 

sound energy distributions of the edge states located at 7.46kHz and 7.58kHz, respectively. 
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Supplementary Figure 13. | Illustration of gradient metamaterials. To efficiently suppress the 

unwanted back-reflections at input (or output) facets, we use gradient metamaterials with acoustic 

impedance fairly matched to air in broadband. 
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Supplementary Figure 14. | A periodic chain of coupled ring resonators. In the schematic 

diagram, the clockwise and anti-clockwise propagating field components are labeled for 

theoretical analysis in Supplementary Note 1. 
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SUPPLEMENTARY NOTES 

Supplementary Note 1. The model of a periodic 1D chain of coupled ring resonators. To 

analyze the model of a periodic 1D chain of coupled ring resonators, we at first define a vector 

with the field components labeled in Supplementary Figure 14, viz. pn=[an bn cn dn]'. The scattering 

process at each coupling connection can be described by 
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In Supplementary Equation (2), R is the ring radius and β=neffω/cair is the wave number without 

considering the loss. For the periodic chain of coupled ring resonators (lattice constant Λ), we can 

apply the Bloch's theorem2 

1 exp( ) ,n np iK p                                                            (3) 

where K is the Block mode wave number. Comparing Supplementary Equation (3) with 

Supplementary Equation (1), we obtain that Bloch modes of the periodic 1D chain of coupled ring 

resonators can be described by the eigenvectors of 
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At the frequency ω, the eigenvalue En and eigenvector Vn are  
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1 1exp( )E iK   and 1 1 2 1 2[ 1 1]V        , 

2 1exp( )E iK    and 2 1 2 1 2[ 1 1]V          ,  

3 2exp( )E iK   and 3 1 2 1 2[ 1 1]V        , 

4 2exp( )E iK    and 4 1 2 1 2[ 1 1]V          ,                          (5) 
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where Ω is the resonant frequency of each ring resonator and m is the order of whispering gallery 

mode (m=ΩneffR/cair). On condition of strong coupling |κ|→1, we will have ω≈Ω, t<<1, λ1+λ2≈2/t, 

and λ1–λ2≈0. The eigenvectors in Supplementary Equation (5) are further simplified into  

1 [2 / 1 2 / 1]V t t  , 2 [ 2 / 1 2 / 1]V t t    , 

3 [0 1 0 1]V  , 4 [0 1 0 1]V   .                                        (6) 

From Supplementary Equation (6), we find out that two field components are much more stronger 

than the other ones, which reveals that the wave will zigzag through the periodic chain of coupled 

ring resonators by making only half of a round trip in each ring. In this case, the rings no longer 

act like resonators but more close to the conventional waveguides.  
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Supplementary Note 2. None-zero ν1 invariant 

For the periodic lattice in Supplementary Figure 3 (the left hand side), the Bloch modes propagate 

in the x direction, carrying a wave vector k. By assuming the coupling strength to be nondispersive, 

the projected band diagram turns into a Floquet one, denoted by (k) as shown in Refs. 11 and 30. 

Here, the factor  is referred to as “quasi-energy”, which represents the phase delay in each 

quarter ring. As shown in Supplementary Figure 3 (the right hand side),  is the eigenvalue of the 

unitary scattering matrix S(k), satisfying the eigen-equation S(k)|bk=ei|bk, where the mode 

amplitudes in the nth unit cell and the corresponding Fourier components are expressed into 

|bn=(bn1, bn2, bn3, bn4)
T and |bn=|bkexp(ikxn), respectively. The factor  is periodic, satisfying 

+2. The periodic network with a Floquet band structure can be characterized by the ν1 

invariant, which is defined by 
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Here, k is integrated over the first Brillouin zone. According to Refs. 11 and 30, the v1 invariant is 

non-zero, which can be employed to describe the nontrivial topological properties of time-reversal 

invariant systems, e.g., anomalous Floquet topological insulator. 
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Supplementary Note 3. Tips in the experimental measurements 

To efficiently suppress the unwanted back-reflections at the input (or output) facets, we adopt the 

gradient metamaterials with the acoustic impedance fairly matched to air in broadband. According 

to the Equation (1) in the manuscript, the effective refractive index neff of the waveguide 

metamaterials is closely related to the waveguide width w. The gradient metamaterial structure is 

simply realized by adiabatically changing the waveguide width w as shown in Supplementary 

Figure 12. 

In the experiment, the fabricated metamaterial waveguides were completely sealed in rigid 

rectangular pipes to prevent unwanted radiation losses during the propagation and isolate ambient 

noises (Supplementary Figure 5). To measure the pressure amplitude distribution at the 

metamaterial ring, we have drilled holes on the pipe walls. During the measurement, a 1/8 inch 

diameter Brüel&Kjær Type-LAN-XI-3160 condenser microphone was inserted into a hole to 

extract the pressure amplitude inside, while the unscanned holes were bolted to prevent sound 

leakage, as shown in the Supplementary Figure 7. To generate stable waveguide modes, we have 

designed and fabricated a rectangular sound source which was placed in front of the tapered end of 

U shape metamaterial waveguide, as shown in the Supplementary Figure 6. 
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