
Rescue therapy with Tanshinone IIA hinders transition of acute kidney injury to chronic kidney disease via targeting $GSK3\beta$

Chunming Jiang^{1, 4}, Wei Zhu¹, Xiang Yan², Qiuyuan Shao¹, Biao Xu³, Miao Zhang¹, Rujun Gong⁴

¹Department of Nephrology, ²Department of Urology and ³Department of Cardiology, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China; ⁴Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA.

Supplementary Figure S1

Supplementary Figure S1. The superior therapeutic efficacy of early *versus* late Tanshinone IIA treatment is unlikely attributable to the difference in treatment duration. a, Representative micrographs showing Masson trichrome staining of kidney specimens procured on day 23 after either early or late Tanshinone IIA administration; Scale bar = 200 μ m. b, Kidney fibrosis score assessed based on evaluation of Masson trichrome staining. $^{\diamond}P$ =0.026 vs FA+TS(E). c, Representative immunoblots of collagen I and fibronectin in cortical kidney lysates. d and e, Relative abundance of collagen I (d) and fibronectin (e) in immunoblots expressed as densitometric ratios of collagen I/GAPDH or fibronectin/GAPDH. $^{\star}P$ =0.033 vs FA+TS(E); $^{\star}P$ =0.017 vs FA+TS(E); $^{\star}P$ =0.019.