
Supplementary Method  

Mathematically comparison between the codon-based de Bruijn graph and the 

traditional de Bruijn graph 

The codon-based de Bruijn graph is fundamentally different with the traditional de Bruijn 

graph and has much lower level of complexity and memory usage. In this part, we 

mathematically prove these advantages of the codon-based de Bruijn graph. First, the 

inputted reads are split into kmers, and for each graph, the number of kmers are:  

𝑁𝑉(𝑔) =
𝑛 𝑙 − 𝑘 + 1 ,			𝑖𝑓	𝑔 = 𝐺(𝑉, 𝐸)	
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Where n is the total number of reads, l is the read length, k is the kmer length, G(V, E) is the 

traditional de Bruijn graph and CG(V, E) is the codon-based de Bruijn graph. Considering the 

repeated kmers, the number of kmers in reality should be less than NV(g). Let 𝐴 to be a set of 

kmers and the number of kmers in 𝐴 is 𝑎7. When a new kmer is added to 𝐴,	the probability of 

this kmer is already contained by 𝐴 is 89	
:;

. Therefore, for each graph, the expected kmer 

number is: 
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It is apparent that the codon-based de Bruijn graph contains fewer nodes than the traditional 
de Bruijn graph.  

    The fraction of branch nodes with out-degree larger than two in the graph largely reflects 

its complexity. We use 𝐸 represents the edges which are formed by these branch nodes. For a 

directed edge, 

(i) both head and tail are derived from the same read [13] 

For a read, a branch edge appears once with the phenomenon of a repeat node (kmer) in the 

same read. For 𝑛 reads, integrating these with the above mentioned 1 , (2), 
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 (ii) head and tail are derived from different reads  

As we know, the probability of forming an edge is A	
:;FG

 when two kmers in 𝐺(𝑣, 𝑒),  A	
:;FJ

 in  

𝐶𝐺(𝑣, 𝑒). Theoretically, for a kmer in a read, the (𝑛 − 1) 𝑙 − 𝑘 + 1  kmers, which are cut by 

the other 𝑛 − 1 reads, can link this kmer to a directed edge ignoring the repeat kmers in 



𝐺(𝑣, 𝑒), (7?A) >?=@A
B

	in 𝐶𝐺(𝑣, 𝑒). Because a directed edge is only calculated once when a 

kmer is linked to the same repeat kmers, we get the 𝐺(𝑒)	only by computing the number of 

all kmers cut by the other 𝑛 − 1 reads considering the repeat kmers. By integrating these with 

the above equation 2 , for one read,  
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for 𝑛 reads, 
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Typically ln	(1 − S:	
:;
) ≈ 0, ln	(1 − A	

:;
) ≈ 0, and thus, 
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In practice, 𝑛 < 10X, 𝑙 ∈ [50,150],  

Meanwhile, the k value is set to larger than 20 universally.  So, 4[?B > n − 1 l − k + 1  

So, 
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Therefore, we conclude that the edge number of the codon-based de Bruijn graph is much 

fewer than that of the traditional de Bruijn graph. Owing to its small number of nodes and 

edges, the codon-based de Bruijn graph saves traversing time and memory usage.  

 

Figure S1. Efficiency of SVM on removing false positive ORFs.  (A) The ROC curve of 

simulated RNA-seq datasets from chr3 of the human genome (hg19) after SVM filtration. (B) 

The ROC curve of simulated RNA-seq datasets from chr19 of the human genome (hg19) 

after SVM filtration. (C) The ROC curve of simulated RNA-seq datasets from chr20 of the 

human genome (hg19) after SVM filtration. (D) The ratio of positive and negative kmers in 

the simplified graph after tips trimming and bubbles merging on simulated RNA-seq datasets 

from chr3 of the human genome (hg19). (E) The ratio of positive and negative kmers in the 

simplified graph after tips trimming and bubbles merging on simulated RNA-seq datasets 

from chr19 of the human genome (hg19). (F) The rate of positive and negative kmers in the 

simplified graph after tips trimming and bubbles merging on simulated RNA-seq datasets 

from chr20 of the human genome (hg19). 

 

Figure S2. Influence of SVM filtration on the assembled CDSs. inGAP-CDG predicted 

CDSs from a real RNA-seq dataset (SRR1045067) with or without SVM filtration in the 

algorithm. (A) The length distribution of predicted CDSs. (B) The mean, N50 and N90 length 

of predicted CDSs. (C) Comparison on the redundancy of predicted CDSs. (D) Comparison 

on the ROC curve. (E) Comparison on the gene fragmentation between the two approaches.  



 

Figure S3. Performance of inGAP-CDG on assembled transcripts. The RNA-seq dataset 

(SRR1045067) was first assembled using Trinity, and the assembled long transcripts were 

then used for gene prediction by inGAP-CDG and TransDecoder, respectively. (A) The 

length distribution of the two methods. (B) The mean, N50 and N90 length of the two 

methods. (C) Comparison on the redundancy of predicted CDSs. (D) Comparison on the 

ROC curve. (E) Comparison on the gene fragmentation between the two methods. 

 

Figure S4. Robustness of inGAP-CDG over different sequencing read errors. inGAP-

CDG and eleven other pipelines predicted CDSs from three simulated RNA-seq dataset with 

different sequencing read errors read (0.5%, 1% and 2%), respectively. (A) Comparison on 

the redundancy of predicted CDSs. (B) Comparison on the sensitivity CDS prediction. (C) 

Comparison on the mean length of predicted CDSs. (D) Comparison on the error rate of 

predicted CDSs. 

 

Figure S5. Robustness of inGAP-CDG over different read length. inGAP-CDG and 

eleven other pipelines predicted CDSs from three real RNA-seq datasets (ERR188040, 

ERR1161592, and SRR1045067) with different read length (75, 100 and 150 bp), 

respectively. (A) Comparison on the mean length of predicted CDSs. (B) Comparison on the 

sensitivity and specificity of true CDS prediction. (C) Comparison on the gene fragmentation 

among the nine methods. (D) Comparison on the redundancy of predicted CDSs. 

 

 

Figure S6. Four examples of constructed genes by inGAP-CDG and eight other 

pipelines. Four human genes downloaded from NCBI were used as the reference genes, the 

predicted CDSs by inGAP-CDG and eight other pipelines were aligned to their reference 

genes, respectively. Black lines indicate the aligned fragments in the predicted CDSs. Green 

lines represent the unaligned fragments in the predicted CDSs. Notably, the pipelines using 

Trinity or Velvet as transcriptome assembler yielded a large number of fragmented and 

redundant CDS predictions. (A) XM_011533632. (B) NM_004168. (C) NM_013379. (D) 

NM_000018. 

 

Figure S7. Assessment of inGAP-CDG with three real RNA-seq data sets of Drosophila 

melanogaster. inGAP-CDG and eleven other pipelines predicted CDSs from three real RNA-



seq data sets (SRR3331274, ERR3331275 and SRR3331276), respectively. Four metrics 

(mean length, sensitivity, redundancy and chimera rate) were used to assess the performance 

of inGAP-CDG and eleven other pipelines. 

 

Figure S8. A detailed pipeline of inGAP-CDG.   

 

Figure S9. The workflow of six-frame translation. The translated ORFs are sorted by 

length. Predicted ORFs were filtered following two different criteria (loose and strict).  

 

Figure S10. Traversing the codon-based de Bruijn graph.  (A, B) Tips in the codon-based 

de Bruijn graph. Tips are trimmed iteratively if their length <= 2*kmer. (C, D) Bubbles in the 

codon-base de Bruijn graph. The paths in a bubble are compared and their pairwise identity is 

calculated. If the identity reaches a cutoff of 95%, the longest path is reserved and all other 

paths are discarded. (E) rORFs can be served as landmarks for graph traversal. (F) A full-

length CDS will be outputted if the CDS path is supported by the rORFs. 
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Table S1. Comparison of the node and edge numbers between traditional de Bruijn 
graph and codon-based de Bruijn graph. 
 
 Data Node number Edge number 

size(M) number k-1 k-3 k-1 k-3 
human ccds 48 28,708 31,310,227 10,448,659 31,324,270 10,474,630 
mouse ccds 37 23,089 31,489,646 10,493,453 31,503,979 10,518,294 
fruit fly ccds 66 29,375 22,264,470 7,425,159 22,263,472 7,433,273 
ERR188040_1.clean.fastq 3,200 24,025,738 181,805,822 94,908,406 182,169,581 96,359,260 
ERR1161592_1.clean.fastq 3,500 20,996,217 201,359,022 96,633,034 202,425,673 99,713,421 
SRR1045067_1.clean.fastq 2,900 16,267,330 286,703,917 150,956,431 289,682,788 158,070,462 
 
 
 
Table S2. Datasets used in this study.  
 
Species Sequence number Description 
Homo sapiens  28,708 CDS 
Homo sapiens (chr3) 1,629 CDS 
Homo sapiens (chr3) 1,685,395 100bp, single-end reads 
Homo sapiens (chr3) 1,477,272 300bp, single-end reads 
Homo sapiens (chr3) 1,277,811 500bp, single-end reads 
Homo sapiens (chr3) 1,012,378 800bp, single-end reads 

Homo sapiens (chr3) 2*1,500,000 2*200bp, simulated paired-end 
reads, 0.5% sequenced error  

Homo sapiens (chr3) 2*1,500,000 2*200bp, simulated paired-end 
reads, 1% sequenced error  

Homo sapiens (chr3) 2*1,500,000 2*200bp, simulated paired-end 
reads, 2% sequenced error  

Homo sapiens (chr19) 1,936 CDS 
Homo sapiens (chr20) 787 CDS 
Homo sapiens (ERR188040) 2*27,256,165 2*  75bp, paired-end reads 
Homo sapiens (ERR1161592) 2*24,418,242 2*100bp, paired-end reads 
Homo sapiens (SRR1045067) 2*19,169,171 2*150bp, paired-end reads 
Homo sapiens (SRR3151756) 2*45,497,333 2*100bp, paired-end reads 
Homo sapiens (SRR2922678) 2*45,199,432 2*100bp, paired-end reads 
Drosophila melanogaster 
(SRR3332174) 2*28,858,597 2*100bp, paired-end reads 

Drosophila melanogaster 
(SRR3332175) 2*43,304,279 2*100bp, paired-end reads 

Drosophila melanogaster 
(SRR3332176) 2*102,788,015 2*100bp, paired-end reads 

 
 
 
 
 


