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Osier's injunction to 'diagnose, diagnose, diagnose' can 
only be justified if we make the correct diagnosis. Quite 
often we are not sure. We need to be sure enough that 
the evidence indicates that this is the most likely of the 
diagnoses considered. We are often denied complete 
certainty by the constraints of time, expense, difficulty 
or even danger in collecting all the information we 
would tike. We take into account whether the sus- 

pected disease is common or not, and whether the 

findings tend to support or discount this hypothesis. 
Such intuitive procedures may be, and often are, ser- 
iously biased1. It would be preferable to employ an 
open system where all the assumptions about diagnostic 
reasoning, and the way in which they are combined, are 
made quite explicit. Bayes theorem2 provides such a 
model. An understanding of how Bayes theorem is 

derived, its strengths and its weaknesses, greatly 
enhances both the validity of our own daily practice3 
and our appreciation of the working of diagnostic 
machines. 

Bayesian thinking in Diagnosis 
A diagnosis is favoured if the disease (D) is common 
and the symptoms (S) are characteristic. The basic 

question is: given S, how likely is D? Under consider- 
ation there are usually many symptoms?S{, S2,. . . Sj, 
and many diseases?D,, D2, . . . D,. So a particular 
example might be: how likely is D3 given S2? S may 
consist of a group of symptoms, say S, and S3 and S7 
The term symptom will be taken to mean any finding? 
(symptom, sign, test result, etc. 

How common is the disease? 
In the calculations which follow the prevalence or 
frequency of a condition is taken as equivalent to its 
probability. If a population contains N individuals, and 
there are n(D) people with the disease D, then 

n(D) 
p(?)=^r 

where P(D) is the probability of the disease D. 

Probability is expressed as a fraction of 1, rather than as 
a percentage. The idea of probability includes expec- 
tation as well as frequency. Thus we expect a large 
number of tosses of a coin to produce about half heads 
and half tails. 

Likelihood and expectation can also be represented 
by the odds ratio. Although a familiar term from 

betting in horses, it is not an easy concept. The odds of 
an event occurring is the ratio of the probability of the 

event occurring to the probability of the event not 
occurring. For example, the probability of throwing a 
six at dice is 1/6, and of not throwing a six is 5/6. Then 

1/6 
the odds of throwing a six are 1-5. The odds of 

having the disease D are P(D)/P(D) where D means 
the absence of D. Since it is certain (P=l) that a 

person either has the disease or does not, then 

P(D). 
P(D) = 1 P(D) and odds D = 

l-P(D) 

How characteristic are the symptoms? 
For a symptom to be useful in diagnosis it must be 

more common in those with the disease in those than 
without it. The symptom frequency, denoted P(S/D) is 
the ratio of the number of people with the symptom 
and the disease, n(S&D), to the number of people with 
the disease, n(D). 

n(S&D) 
p(S/D= 

n(D) 
ls same as ^e 

sensitivity of a test or 

true positive rate. 

Likewise, the symptom frequency in those without the 
disease is 

n(S&D) 
p(S/D) = ?/Tr. This is the same as the 
rv 

n(D) r , 

false positive rate. 

The specificity of a symptom in a disease is the ratio of 
the number of people without the symptom and with- 
out the disease to the number of people who do not 
have the disease. 

n(S&D) 
n(D) 

and as all people without the disease either have the 
symptom or do not 

n(S&D) + n(S&D) = n(D) 

Dividing both sides by n(D) 

n(S&D) n(S&D) 
n(D) n(D) 

Therefore 

n(S&D) n(S&D) 

n(D) ~1_"n(D) 

False positive rate= 1 specificity. 
When a symptom is common in a disease and rare in 

the rest of the population, its diagnostic value is high. 
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This diagnostic value can be expressed as a likelihood 
ratio (L.R.). 

True positive rate 
L.R. = 

F 
.. 

= P(S/D):P(S/D) raise positive rate 

or 

sensitivity 
1 specificity 

Example: it was found in a particular study that 80% of 
patients with a pulmonary infarct had pleuritic pain 
p(S/D) = 0.8, whereas only 5% of the other patients 

0.8 
had it p(S/D) = 0.05. Then L.R. = =16:1 

Put another way, patients with a pulmonary infarct 
were 16 times more likely than other patients to have 
pleuritic pain. 

Predictive value of a Symptom 
It is often thought that the sensitivity and the specificity 
of a test, as combined in the LR, are all that is 

necessary to interpret a positive finding and apply it to 
the patient. This is incorrect: the prevalence of the 
suspected disease must be taken into account. 
We want to know the probability of the disease given 

the symptom?let us call this P(D/S). 
This will be 

n(S&D) 

n(S&D) + n(S&D) 

or 

number of true positives 
number of true positives + number of false positives 

This is the predictive value of a test. 
Example: Suppose the frequency of rheumatoid arthri- 
tis in a population is 5% P(D) = 0.05, P(D) = 0.95. 
The sensitivity of the RA flocculation test is 90%. 

P(S/D) = 0.9 and the specificity is 90% 

(P(S/D) = 1?specificity = 1?0.9 = 0.1). Then in a 

sample of 100 people. 

n(S&D) = 5 X 0.9 = 4.5 or TRUE POSITIVES 

n(S&D) = 95 x 0.1 = 9.5 or FALSE POSITIVES. 

There are 14 (9.5 + 4.5) people with a positive RA 
test, and of these only 4.5 have the disease. The 

predictive value of a positive test is therefore only 

4.5 
= 0.32 (see pie charts) 

Compare this with the sensitivity 

p(S/D) = 0.9 and L.R. 9:1 

Both are much greater than the predictive value of a 
positive finding because they omit consideration of the 
low incidence of the disease in the population. 

Bayes theorem itself takes the general form of the 
predictive value ie. 

TP 
(this is in absolute numbers, not rates) TP + FP 

We seldom know the exact number of true positive 
and false negative findings in a population: these have 
to be estimated from samples. 
By deriving a formula (see appendix A) one can 

utilise true and false positive rates together with the 
prevalence of the disease to calculate the probability of 
disease given the symptom i.e. 

p(S/D) x p(D) 
P(D/S) 

p(S/D) x p(D) + p(S/D) x p(D) 
TP rate x prevalence 

TP rate x prev.+ FP rate x (1 prev.) 

The Bayes calculation shows how the prior probability 
of a disease p(D) is altered to a posterior probability 
p(D/S) given a new piece of evidence S. 
Example: In the previous example suppose we know 
that the prevalence of pulmonary infarcts in our popu- 
lation is 20%. A patient comes in with pleuritic pain. 
What is the chance that this patient now has a pulmon- 
ary infarct? 

True positive rate = 0.8 
False positive rate = 0.05. 
Prevalence = 0.2 

107 

Prevalence 5% 

Prevalence 1% 

Test+, Disease- 
90 

Test+, Disease+ 
46 

7 Test+, Disease- 
99 

Test+, Disease+ 
9 
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0.8x0.2 
p(D/S) = 0.8x0.2 + 0.05x0.8 

0.16 
= 

-Q_y 
= 0.8 i.e. there is now a 80% 

chance that this patient has a 
pulmonary infarct. 

The effect of changing the probabilities may be easier 
to demonstrate using the "odds" version of Bayes 
theorem. 

Derivation of Odds Version of Bayes theorem. 

Prob. of event occurring 
Prob. of event not occurring. 

P(D/S) 

~P(D/S) 

Classical Bayes is of the form 

P(D/S) = ?^? and P(D/S)= 
P: 

P1 + P2 P1 + P2 

where p, = P(S/D)xP(D) 
and p2 = P(S/D) x P(D) 

Pi P1 + P2 
Therefore odds ratio = ?-?x 

Pi + P2 P2 

= pi/p2 
P(S/D) x P(D) 

= 

P(S/D)xP(D) 

P(S/D) 
Now 

and 

P(S/D) 

P(D) 

= LR 

P(D) 
= prior odds of disease. 

Therefore Posterior odds = prior odds x LR. 

Example: We found that, in the previous example, the 
LR for pleuritic pain in pulmonary infarction was 16:1. 
Suppose we know that the prevalence of pulmonary 
infarction was 20% in the study (prior odds 1:4). Given 
the finding of pleuritic pain, the posterior odds 

1 16 4 
= 

4xT=T 

Note that these odds are the same as the 80% prob- 
ability calculated in the classical way. 

Incorporation of additional evidence 
Suppose a further test e.g. V/Q scanning with an LR of 
4:14 was performed and found to be positive. The 

posterior odds calculated previously have now become 
the prior odds and the new result is 

Posterior odds = 4:1x4:1 

= 16:1 

Logarithmic form of odds ratio 

Every additional test involves a further multiplication 
by the appropriate LR. 

Post, odds = prior odds X LR, x LR2 X LR3. . . LRn 

Taking logarithms, 

Log. post, odds = Log. prior odds + log. LR,+ 
log. LR2. . . LRn 

In the example, using logs, to base 2: 

Log2 post, odds = ?2 + 4 + 2 
= 4 

Posterior odds = 24 = 16:1 

The usual form of log. transformation is to use log10 and 
multiply by 10 to give a whole number score. 

Probability may be obtained from the odds by the 
formula P = odds/1 + odds. 

The problem of interdependence 
Sometimes different tests are measuring the same 

thing, so simply applying LR's in succession may exag- 
gerate the final odds. As an extreme example suppose it 
was the same individual patients who had positive 
results in two tests. (For this to be so, the tests would 
have to have the same P(S/D)). Clearly the second test 
has provided no new information, yet the odds will 

have increased. Although test results are seldom corre- 
lated completely like this, one expects some degree of 
concomitant variation because they are chosen to 

detect the same thing, namely, the hidden disease. 
Some shrinkage factor may need to be applied to 

correct the overestimate of posterior odds (e.g. by 
logistic regression, ridge regression or principal compo- 
nents analysis), though when the number of tests is 

small this is not usually necessary. 

Negative results 
These may be dismissed as non-contributory, but such 
results can be used in the same way as positive results. 
Thus the LR for a negative test would be 

LR( ?) = P(S/D)/P(S/D) 
P(S/D) is the false negative rate. 

P(S/D) is the true negative rate. 

Tests seldom confirm or refute a diagnosis completely, 
but they may support or discount it, i.e. they increase 
or decrease the prior odds. 

Using Posterior Odds 
The relative probability of only two mutually exclusive 
and comprehensive outcomes can be calculated by an 
application of Bayes formula. Where there are several 
possibilities, each can be compared with the rest, in the 
light of the evidence obtained, and the disease with the 
highest posterior probability chosen. The reliance one 
would place on a result naturally would depend on the 
confidence limits of the original data, e.g. were the 

prior odds obtained from one's own population? Were 
the numbers large enough? Were the observers or test 
methods different from the original example? 
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When a defined figure for probability of a diagnosis is 
available, it is immediately obvious when a previously 
determined threshold level of probability for action has 
been exceeded. The threshold level of probability for 
action (i.e. the levels where the pros and cons of 
treatment or investigation are equally balanced) can be 
shown to be 

1 

(B/C) +1 

when B = benefit and C = cost. 

Thus, suppose the relative benefit to cost of anticoa- 

gulation is 3:1 in pulmonary infarction, then the treat- 
1 

ment threshold of probability would be 
+ 

=0.25. 

It would be unnecessary to demand more tests if the 
initial Bayesian calculation showed the P(D) exceeded 
0.25 (other things being equal). 
Another advantage of having a number for diagnos- 

tic probability, rather than an adjective, is that one can 
choose the best line of action to pursue. Sometimes it is 
difficult to decide whether to select a diagnosis of low 
probability because the condition is easily treatable, 
rather than a more probable diagnosis where the treat- 
ment may be less effective or dangerous. The "best 
diagnostic value" will come from the sum of the pro- 
ducts of the diagnostic probabilities and utilities of each 
outcome. This is what we do intuitively and often 

incorrectly1. A precise value for one of the variables 
(probability) does provide a more plausible and assured 
indication of what best to do. 

Often too much credence is paid to test results, 
especially when an arbitrary line is drawn between 

normal and abnormal results. "Reference ranges" are 

usually provided only for "normal" values, and give no 
idea of the possible overlap with the reference ranges 
for diseased groups. Altering the cut-off points will 
alter the TP/FP ratios and hence the likelihood ratios. 

Mis-classification may lead to missed diagnoses or 

unnecessary treatment?and the lesser of two evils may 
be selected by appropriate choice of the cut-off points. 

Diagnostic machines often rely explicitly or implicitly 
on a Bayesian model. An understanding of Bayesian 
principles allows a better appreciation of the strengths 
and weaknesses of these aids. 

Derivation of Bayes theorem 
We need to find P(D/S) 

n(S&D) 

p(D/s)=^r-1 
n(S&D) 

We know P(S/D) = ... 2 

From 1, n(S&D) = P(D/S) x n(S) . . . 3 

From 2, n(S&D) = P(S/D) x n(D) ... 4 

P(D/S) x n(S) = P(S/D) x n(D) 

P(d,s,.E52 
n(S) 

Now n(S) = n(S&D) + n(S&D) 

P(D/S = 
P(S/D)Xn(D) 

1 
n(S&D) + n(S&D) 

Now n(S&D) = P(S/D) x n(D)... 4 
Likewise n(S&D) = P(S/D) x n(D) 
Therefore 

P(S/D) x n(D) 
P(S/D) = 

P(S/D) x n(D) + P(S/D) x n(D) 

Let N be the number of individuals in the population. 
Then n(D)/N = the prevalence of the disease. 
Divide top and bottom by N. 

P(S/D) x n(D)/N 
PfS/D^ = v ' 

P(S/D) x n(D)/N + P(S/D) x n(D)/N 

P(S/D) x P(D) 

P(S/D x P(D) + P(S/D) x P(D) 

or as stated previously 

True pos. rate x prevalence 
True pos. rate x prevalence 

+ False pos. rate x (1? prevalence) 
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