Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs. 201500176

A Biomineralization Strategy for "Net"-Like Interconnected TiO₂ Nanoparticles Conformably Covering Reduced Graphene Oxide with Reversible Interfacial Lithium Storage

Qiang Zhang, Yong Yan, and Ge Chen*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

Title

Bio-mineralization Strategy toward "Net"-like Interconnected TiO₂ Nanoparticles Conformably Covering Reduced Graphene Oxide with Reversible Interfacial Lithium Storage

Qiang Zhang, Yong Yan[‡] and Ge Chen*

Figure S1. Zeta potentials of GO, GO/b-PEI, and amorphous TiO₂/GO composites.

Figure S2. HRTEM image of amorphous TiO_2/GO composite; the edge of GO marked by the orange arrow indicates the ultrathin nature (3–4 layers), bar 5 nm.

Figure S3. HRTEM image of anatase TiO_2/RGO composite, indicating the "net"-like structure of TiO_2 conformably covering RGO, bar 5 nm.

Figure S4. a) TEM image of anatase $TiO_2/CNTs$, bar 50 nm. b) TEM image of anatase $TiO_2/carbon$ spheres (XC-72), bar 50 nm. c) HRTEM image of anatase $TiO_2/CNTs$, bar 5 nm. d) HRTEM image of anatase $TiO_2/carbon$ spheres (XC-72), bar 5 nm.

Figure S5. Energy-dispersive X-ray spectroscopy (EDS) line scan analysis based on the STEM-HADDF model demonstrating the distribution of C, N, O, and Ti species; while the Ti and O species are dispersed on the particles, the C and N species are dispersed along the line.

Figure S6. EDS elemental mapping of C, N, O, and Ti species for the anatase TiO_2/RGO composite.

Figure S7. Topography image of GO on a mica substrate and the corresponding height-profile analysis along the line.

Figure S8. Topography image of anatase TiO_2/RGO on the HOPG substrate; the black square region is ready for current image collecting.

Figure S9. Topography image of amorphous TiO_2/GO on the HOPG substrate; the black square region is ready for current image collecting.

Figure S10. Raman spectrum of the anatase TiO₂/RGO composite.

Figure S11. TGA analysis of the anatase TiO₂/RGO composite in air.

Figure S12. N₂ adsorption/desorption isotherms of amorphous TiO_2/GO and anatase TiO_2/RGO composites and corresponding pore size distribution results analyzed by the BJH method.

Materials	Discharge density	Capacity (mAh g ⁻¹)	Cycle numbers	Reference
Anatase TiO ₂ /RGO	5C	151	50	Current study
Anatase TiO ₂ -FGS	1C	160	100	[9]
TiO ₂ -RGO	5C	175	30	[11]
TiO ₂ -RGO	5.9C	143	35	[16]
TiO ₂ /GAs	5.9C	130	40	[18]
Graphene-TiO ₂	5C	130	100	[10]
TiO ₂ -RGO	5C	152	100	[71]
TiO ₂ -GNS -CNT	10C	111	100	[72]
Graphene-TiO ₂ -C	0.59C	95	20	[73]

Table S1 Comparison of electrochemical performance of obtained anatase TiO_2/RGO with other relative anodes materials.