Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201500014

A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics

Shi-Yong Liu, Chen-Hao Wu, Chang-Zhi Li, Sheng-Qiang Liu, Kung-Hwa Wei, Hong-Zheng Chen, * and Alex K.-Y. Jen*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

A Tetra Perylene Diimde Based Three-Dimensional Non-Fullerene Acceptor for Efficient Organic Photovoltaics

Shi-Yong Liu, Chen-Hao Wu, Chang-Zhi Li, Sheng-Qiang Liu, Kung-Hwa Wei, Hong-Zheng Chen,* and Alex K.-Y. Jen*

Contents

1. Instruments, Materials and Experiments	S2
2. Figure S1 (Structures of planar PDI monomer to 3D tetramer)	S5
3. Figure S2 (Structural comparison between tetra-Ph-silane and tetra-Ph-methane)	S6
4. Scheme S1 (Synthesis of intermediate 1)	S6
5. Scheme S2 (Synthesis of intermediate 2)	S6
6. Figure S3, S4 (¹ H & ¹³ CNMR signals of N-alkyl chains)	S7
7. Figure S5 (PL decay spetra of Tetra-PDI and Mono-PDI in solutions & films)	S8
8. Figure S6 (Structure of PBDTT-F-TT and frontier energy level chart)	S8
9. Figure S7 (Configuration chart for the OPVs in this study)	S9
10. Figures S8, S9, and Tables S1, S2 (Ratio and additive optimization for OPVs)	S9
11. Figures S10 (Uv-vis and PL of neat & blend films of Mono-PDI and PBDTT-F-TT) S 10
12. Figures S11, S12 and Table S3(OFET and SCLC curves and values)	S 11
13. Figures S13-S20 (¹ H & ¹³ C NMR and MALDI-TOF MS spectra)	S12
14. References	S15

Instruments, Materials and Experiments.

All ¹H and ¹³C NMR spectra were obtained in chloroform-*d*, with Bruker 300, and Bruker Avance DRX-499. ¹³C NMR (126 MHz) spectra were measured with a proton-decoupling pulse program. Chemical shifts for ¹H and ¹³C NMR were referenced to residual signals from CDCl₃ (¹H NMR δ =7.26 ppm and ¹³C NMR δ =77.23 ppm). Matrix-assisted laser desorptionionizationtime of flight mass spectrometry (MALDI-TOF MS) was performed on a Bruker Autoflex II. Samples were prepared by diluting the molecules in CH₂Cl₂ with the matrix. Differential scanning calorimetry (DSC) were measured on a WCT-2 thermal balance. UV-vis spectra were recorded with a Jasco V-670. PL spectra were measured on Fluoroskan Ascent FL. Time-resolved PL spectra were test on FluoTime 100 Fluorescence Lifetime Spectrometer, exicited by laser wavelength of 470 nm. Cyclic voltammetry (CV) was done on a CHI 660C electrochemical workstation with Pt disk, Pt plate, and standard 10 calomel electrode (SCE) as working electrode, counter electrode, and reference electrode, respectively, in a 0.1 mol L^{-1} tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) CH₂Cl₂ solution. Theoretical calculations based on density functional methods have been performed for Tetra-PDI and Mono-PDI with Gaussian09 program. Becke's three-parameter gradient-corrected functional (B3LYP) with 6-31G(d,p) basis was used to optimize the geometry.^[S1] The current-voltage (J-V) curves were measured with Keithley 2400 measurement source units at room temperature in air. The photocurrent was measured under a calibrated solar simulator (Abet 300 W) at 100 mW cm⁻².

CV was tested on a CHI 660C electrochemical workstation with Pt disk, Pt plate, and standard 10 calomel electrode (SCE) as working electrode, counter electrode, and reference electrode, respectively, in a 0.1 mol L^{-1} tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) CH₂Cl₂ solution.

OPV device characterizations: The J-V characteristics of devices under an AM 1.5 G illumination of 100 mW cm⁻² were measured by using a Keithley 2400 source-measure unit in a nitrogen-filled glove box. Devices were measured without any shadow masking. The AM 1.5 G illumination was simulated by using an Oriel 300 W Solar Simulator and calibrated by using a silicon photodiode with a protective KG5 filter calibrated by the National Renewable Energy Laboratory (NREL).

The EQE system uses a lock-in amplifier (Stanford Research Systems SR830) to record the short circuit current under chopped monochromatic light.

AFM images were obtained by a NanoScope IIIa (Digital instrument Inc.) operating in the tapping mode.

PBDTT-F-TT is commercially available from 1-Material, Inc as trade name of PCE-10. Unless otherwise specified, chemicals and solvents were purchased from Aldrich.

OFET Device Fabrication and Testing. Bottom-gate bottom-contact devices were fabricated in a nitrogen glovebox by spin-coating 5 mg/mL DCB semiconductor solutions filtered through 0.45 μm PTFE filters with thermally evaporated silver source/drain electrodes (~120 nm thick) on a benzocyclobutene (BCB) coated silicon substrate (with 300 nm silicon oxide on top). The BCB dielectric layer was spin coated at 4000 rpm and baked at 250 °C for overnight. The active layer was spin coated at 1000 rpm and baked at 110°C for 10 min. Last, the device structure was completed by thermal deposition of the Ag gate electrode. All three PDI-based devices were tested under nitrogen atmosphere.

SCLC Mobility Measurements: Space charge-limited currents were tested in electrononly devices with a configuration of ITO/ZnO/PBDTT-F-TT:PDI acceptors/Ca (20 nm)/Al (130 nm) and hole-only devices with a configuration of ITO/PEDOT:PSS/PBDTT-F-TT:PDI acceptor/MoO₃/Ag. The devices were prepared using the above-mentioned procedure. In hole-only deices, PEDOT:PSS (Clevios_ P VP AI 4083) was spin-coated on ITO substrates at

S3

5000 rpm for 30 sec and then annealed at 140 $^{\circ}$ C for 10 min. The mobilities were determined by fitting the dark current according to the following equation:

$$J(V) = \frac{9V^2}{8L^3} \varepsilon_0 \varepsilon_r \mu_0 e^{\left(0.89\gamma \sqrt{V/L}\right)}$$

Where *J* is the dark current density (mA cm⁻²), μ_0 is the zero-field mobility (cm²/V sec), ε_0 is the permittivity of free space (88.54*10⁻¹² mA sec/V sec), ε_r is the relative permittivity of the material (3), *V* is the effectie voltage (V=V_{Applied}-V_{Built-in}-V_{series resistane}), and *L* is the thickness of the active layer.

Synthesis of Intermediates:

Scheme S1 shows the synthetic route of intermediate compound 1 according to the reported procedure.^[S2-S4] Scheme S2 shows the synthetic route of intermediate compound **2**. Based on the reported procedure with slight modifications,^[S5] detailed procedures are as follows. A solution of 1,4-dibromobenzene (11.8 g, 50 mmol) in anhydrous ether (125 mL) was stirred at -10° C under argon and treated dropwise with a solution of butyllithium (20 mL, 2.5 M in hexane, 50 mmol). The resulting mixture was kept at -10° C for 15 min, and then SiCl₄ (1.43 mL, 12.5 mmol) was added dropwise. The mixture was stirred at -10° C for 30 min and at 25°C for 12 h. Then 1 M aqueous HCl was added, and the resulting mixture was extracted with ether. The combined extracts were washed with H₂O and brine, dried over MgSO₄, and filtered. Volatiles were removed by evaporation under reduced pressure, and the residue was recrystallized twice from ethanol to afford colorless crystal of tetrakis(4-bromophenyl)silane. ¹H NMR (300 MHz, CDCl₃) δ 7.62 –7.51 (d, *J* = 8.4, 8H), 7.42 –7.32 (d, *J* = 8.4, 8H).

A solution of the above obtained tetrakis(4-bromophenyl)silane (1.3 mg, 2.00 mmol) in anhydrous THF (120 mL) was stirred at -78°C under argon and treated dropwise with a solution of butyllithium (6.40 mL, 2.5 M in hexane, 16 mmol). The resulting mixture was kept at -78°C for 30 min, and then 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (32 mmol) was added dropwise. The mixture was stirred overnight while the temperature was allowed to rise to 25°C. Then 100 mL water was added, and the resulting mixture was extracted with ether. The combined extracts were washed brine, dried over MgSO₄, and filtered. Volatiles were removed by evaporation under reduced pressure, and the residue was recrystallized twice from ethyl acetate/ethanol to afford white solid compound **2**. ¹H NMR (300 MHz, CDCl₃) δ 7.80 (dd, *J* = 8.0, 2.8 Hz, 8H), 7.61 –7.52 (d, 8H), 1.36 (s, 48H).

Figure S1. PDI: from planar monomer,^[4] twist dimer,^[5] pseudo-3D trimer to 3D tetramer.^[6]

Figure S2. Tetra-Ph-silane has a much larger volume than tetra-Ph-methane, because of V = $4/3\pi R^3$, V_{tetra-Ph-methane}/V_{tetra-Ph-silane} = $(4.6/4.2)^3 = 1.31$.

Scheme S1. Synthesis of 1.^[S2-S4]

Scheme S2. Synthesis of 2.^[S5]

Figure S3. ¹H NMR signals of N-alkyl chains.

Figure S4. ¹³C NMR signals of N-alkyl chains.

Figure S5. Time-resolved fluorescence spectra of Tetra-PDI and Mono-PDI (a) in CH_2Cl_2 solution and (b) in film, exicited by laser wavelength of 470 nm.

Figure S6. (a) Optimized geometry of Tetra-PDI obtained by DFT shown as cylindrical model; (b) Structure of PBDTT-F-TT; (c) Frontier energy levels of PBDTT-F-TT, Tetra-PDI, Mono-PDI and $PC_{61}BM$.

Figure S7. Configuration of invert device for OPVs in this study.

Figure S8. J-V curves of PBDTT-F-TT:Tetra-PDI with various D:A ratios.

Table S1. Effects of D:A ration on the OP	v performance of PBDTT-F-TT:Tetra-PDI.
---	--

D:A	V _{oc} [V]	J _{SC} [mA cm ⁻²]	FF	PCE [%]
1:1	0.86	7.51	0.48	3.15
1:1.2	0.87	7.66	0.48	3.21
1:1.4	0.86	7.61	0.48	3.14
1:1.6	0.86	7.25	0.45	2.80

Figure S9. J-V curves of PBDTT-F-TT:Tetra-PDI with DIO and CN additives

Table S2. Effects of additives on the OPV performance of PBDTT-F-TT:Tetra-PDI

Additive	V _{oc} [V]	J _{SC} [mA cm ⁻²]	FF	PCE [%]
No	0.87	7.66	0.48	3.21
3% DIO	0.86	4.42	0.44	1.68
1.5% DIO, 1.5% CN	0.88	6.27	0.47	2.58
3% CN	0.86	8.42	0.49	3.54

Figure S10. a) UV-vis spectra of neat films of Mono-PDI and PBDTT-F-TT, and their blend film; b) Steady PL spectra of Mono-PDI (excited at 457 nm), PBDTT-F-TT (excited at 650 nm), and PBDTT-F-TT:Mono-PDI (1:1.2, w/w) (excited at 457 and 650 nm).

Figure S11. FET characteristic of the Tetra-PDI film.

Figure S12. J-V curves for a) hole-only and b) eletron-only devices.

Table S3. Hole and electron mobilities for PBDTT-F-TT:Mono-PDI, PBDTT-F-TT:Tetra-PDI, and PBDTT-F-TT:Tetra-PDI, 3% CN devices

D:A	$\mu_{\rm h} [{\rm cm}^2 {\rm V}^{-1} {\rm S}^{-1}]$	$\mu_{\rm e} [{\rm cm}^2 {\rm V}^{-1} {\rm S}^{-1}]$
PBDTT-F-TT:Mono-PDI	6.86×10^{-4}	-
PBDTT-F-TT:Tetra-PDI	3.47×10 ⁻³	6.02×10^{-5}
PBDTT-F-TT:Tetra-PDI,	1.88×10^{-3}	8.66×10 ⁻⁵
3% CN		

Figure S13.¹H NMR of intermediate 1.

Figure S15.¹H NMR of intermediate 2.

Figure S19.¹³C NMR of Tetra-PDI.

Figure S20. MALDI-TOF MS spectrum of Tetra-PDI.

References

[S1] M. J. Frisch, et al. Gaussian, Inc., Wallingford CT, 2009.

- [S2] J.-H. Fournier, X. Wang, J. D. Wuest, Can. J. Chem., 2003, 81, 376.
- [S3] X. Guo, M. D. Watson, Org. Lett., 2008, 10, 5333.
- [S4] Z. Chen, B. Fimmela, F. Würthner, Org. Biomol. Chem., 2012, 10, 5845.
- [S5] P. Rajasingh, R. Cohen, E. Shirman, L. J. W. Shimon, B. Rybtchinski, J. Org. Chem.,

2007, *72*, 5973.