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Derivation of the elastic solution 

Definition of the symbols:  

1E : the Young’s modulus for the polyimide layer 

2E : the Young’s modulus for the polystyrene layer 

1w : the width of the polyimide layer 

2w : the width of the polystyrene layer 

1h : the height of the polyimide layer 

2h : the height of the polystyrene layer 

y : the position along vertical axis 

  e*: thermal strain of the polystyrene polymer as a function of temperature T 

 

Figure S1 Schematic diagram explains the geometric parameters in the model.   

 



This model treats the assembly of the polyimide film and the top pre-stretched 

polystyrene layer as a composite beam.  The problem can be simplified to a one-

dimensional bending problem assuming the length of the beam is much larger than its 

thickness and width. For simplicity, additionally we assume the system is purely in the 

linear elastic regime and any deformation due to shear across the section is neglected, so 

that the Euler-Bernoulli beam theory can be applied to obtain this analytical solution. 

 

As set up in Figure S1, the coordinate system consists of a vertical y-axis and an x-axis 

perpendicular to the cross section plane. With the geometric parameters illustrated in 

Figure S1,   A1 = h1w1 and   A2 = h2w2  give the cross section areas of the polyimide and the 

polystyrene layers respectively. The centroid for the bottom polyimide layer  h1 is 
  
h1

2
 and 

 h2  for the top polystyrene layer is 
  
h1 +

h2

2
, setting the reference point at the bottom. 

Hence, the elastic centroid of the entire cross section of the composite beam is given by, 

 

  

h =
E1A1h1 + E2 A2h2

E1A1 + E2 A2

=
E1h1w1

h1

2
+ E1h1w1(h1 +

h2

2
)

E1h1w1 + E2h2w2

.

  

                                   (S1) 

The beam’s effective moment of inertia (EIZ)eff is given by 

                                        (EI z )eff = E1(I1 + A1d1
2) + E2 (I2 + A2d2

2) ,                                              

(S2) 

  
where I1 =

w1h1
3

12
; I2 =

w2h2
3

12
; d1 = h1 -h ;  d2 = h2 -h . 

 



The bending of the bilayer system induced by the thermal strain can be understood by the 

superposition of two states. In state I, we can define a term of eigen-strain   e* that is the 

relative reduction in length at a given temperature T when the polystyrene layer is heated 

alone. For simplicity, we assume the thermal expansion of the polyimide layer is zero. 

When we heat the bilayer to temperature T, the pre-stretched polystyrene layer will shrink. 

Imagine at this time, an external tensile force F can be applied at the centroid of the 

polystyrene layer to stretch the polystyrene layer towards its original length before 

heating. A zero-strain state for the whole system can be reached at  
F = E2 e* A2 . The 

introduction of F will result in a non-zero stress in the polystyrene layer   
s xx

(2) = E2 e* . 

Meanwhile, the stress for the polyimide layer   s xx
(1)  should still be 0. 

 

In the actual system, the above-discussed external force F is not really applied, so this 

requires the superposition of state II on state I. In state II, we introduce a compression 

force  -F  acts on the centroid of polystyrene layer in order to reach a force balance. 

Obviously, because this force does not act on the centroid of the composite beam, it 

generates a bending moment   M = F ×d2 . If we set 0 of the y-axis at the centroid as 

shown in Figure S1, the normal strain perpendicular to the cross section plane is simply 

given by, 

 1 1 2 2( )xx
Z eff

M y F
EI E A E A

 ×
= - -

+
.                                              (S3) 

 



The stresses in the polyimide layer and polystyrene layers can be calculated using Hook’s 

law neglecting other strain components: 

  
s xx

(1) = E1 × -
M × y

(EIZ )eff

-
F

E1A1 + E2 A2

æ

è
ç

ö

ø
÷ ,                                         (S4) 

  
s xx

(2) = E2 × -
M × y

(EIZ )eff

-
F

E1 A1 + E2 A2

æ

è
ç

ö

ø
÷ .                                         (S5)  

Applying the superposition principle, the total stress in the polyimide layer is the sum of 

the stresses in state I and II, 

  

for 0-h £ y £ h1 -h

s xx
(1) = E1 × -

M × y
(EIZ )eff

-
F

E1 A1 + E2 A2
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,       (S6)  

while the stress in the polystyrene layer is 

  

for h1 -h £ y £ h1 + h2 -h

s xx
(2) = E2 × e* -

M × y
(EIZ )eff

-
F

E1A1 + E2 A2
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.   (S7)                                    

Finally, the curvature of the beam is given by 

  
K =

M
(EIz )eff

=
E2 e* A2 h2 -h

(EIz )eff

.                                                       (S8) 

 

 

 

 

 

 



Derivation of the plastic solution 

Definition of the symbols:  

 tot : total strain 

e*: thermal strain as a function of temperature 

 el : elastic strain 

 pl : plastic strain 

y : the position along vertical axis 

1h : the height of the polyimide layer 

2h : the height of the polystyrene layer 

K : the bending curvature 

b : the strain at y = 0  

1E : the Young’s modulus for the polyimide layer 

2E : the Young’s modulus for the pre-stretched polystyrene layer 

s Y : yield stress of the pre-stretched polystyrene layer 

 

This model recognizes the bilayer system bending as a one-dimension plastic bending 

problem. We assume the plane sections remain planes during the entire bending process. 

Additionally, we assume the polystyrene to be perfectly plastic once yield occurs. The 

zero point of the vertical y-axis is set to the bottom of the beam in the analysis below. 

Starting with the compatibility condition, at every point in the bilayer system we should 

have 

  tot = e* +  el +  pl = Ky + b  .                                                    (S9) 



We assume the polyimide layer is always in the elastic region and its thermal expansion 

can be neglected, so the elastic strain is equal to the total strain for the polyimide layer.  

        el =  tot   for  y £ h1  .                                                           (S10) 

For the pre-stretched polystyrene layer, the elastic strain is given by 

          
el =  tot - e* -  pl   for  h1 < y £ h1 + h2 .                                            (S11) 

The stress can be related to the elastic strain by multiplying the Young's modulus. 

Explicitly, the stress is given by  

s =
E1(Ky + b)                           y £ h1

E2 (Ky + b)- e* -  pl            h1 < y £ h1 + h2

ì
í
î

 .                           (S12) 

Since there is no external force applying onto the system, the total force and total bending 

moment should be 0, which leads to 

  s dy = 0
0

h1+h2

ò ,                                                                               (S13) 

s × ydy = 0
0

h1+h2

ò .                                                                            (S14) 

Naturally, any increment of stress  should also obey these constraints: 

Ds dy = 0
0

h1+h2

ò ,                                                                                (S15) 

 Ds × ydy = 0
0

h1+h2

ò .                                                                             (S16) 

Notice for the polystyrene layer, once yield occurs, s  is always equal to s Y  since the 

polystyrene is assumed to be perfectly plastic.       

 

An analytical solution for this problem is not attainable; in other words, the problem has 

to be solved numerically. We can discretize the [0, ] interval on the y-axis into n  



pieces so that the total force can be approximated by the sum of s (yi )Dy from i =1 to 

i = n. In this way, a full solution of the system given at a certain temperature should 

include n  stress s (yi )values from y1 to yn , the curvature  and a constant b . If we've 

already known the solution at one temperature T (for example, we can use the elastic 

solution derived in the previous section to find the solution for the temperature where the 

system is at the onset of yielding.), we are able to solve the system at the temperature 

 by solving the following set of equations: 

     Ds (yi )Dy = 0
i=1:n
å ,                                                                        (S17) 

Ds (yi )yiDy = 0
i=1:n
å ,                                                                     (S18) 

D pl (yi ) × s (yi )+ Ds (yi )-s Y( ) = 0, for                              (S19) 

                                               

The above are n+2 equations, from which the n+2 unknowns ( K , b  and 

s (yi ) for i = 1,  2, ..., n ) can be solved. ( D pl is related to Ds (yi ) through Equation (S12), 

so it is not counted as an independent variable.) Equation (S19) indicates if the point 

yi does not reach the yield point, the plastic strain is 0, which automatically balance the 

equation. On the other hand, if the yield occurs at position , the plastic strain is no 

longer 0, which forces s (yi )+ Ds (yi )-sY = 0  to satisfy the equation. Thus, we can 

solve out Ds (yi ) and the corresponding  pl (yi ) using Equation (S12). Following the 

above steps, after the solutions at temperature  are obtained, they can be used to 

solve for the next temperature state . 

 



 

Figur
e S2 Stress distribution in the bilayer structure cross section from our elastic model. Top 
layer is pre-stretched polystyrene and bottom layer is polyimide.  
 

 
Figure S3 Self-wrapped SWNT transistor-based temperature sensor characteristics 
measured under Nitrogen. (a) Change in the resistance of the devices with change in 
temperature. (b) Change in transfer characteristics of the SWNT TFTs with increasing 
temperature (every 10 °C). 



Figure S4 Self-wrapped SWNT transistor-based memory device characteristics. (a) 
Transfer characteristics showing the large hysteresis of the device. (b) Retention 
characteristics of SWNT transistor-based memory devices at programming and erasing 
gate voltages of 10 V and -10 V, respectively.  
 
 
 

Voltage (V)  Current (A)  Power (mW) Temperature (°C)  

10 8.3x10
-3
 69 70 

15 10.7x10
-3
 114 126 

20 12.4x10
-3
 154 184 

Table S1. Temperature reached on different voltages applied to a platinum heater.  

 

 
 

 


