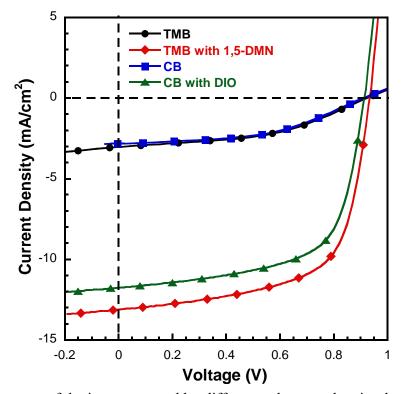
Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201500095


Morphology Evolution in High-Performance Polymer Solar Cells Processed from Nonhalogenated Solvent

Wanzhu Cai, Peng Liu, Yaocheng Jin, Qifan Xue, Feng Liu,* Thomas P. Russell,* Fei Huang,* Hin-Lap Yip,* and Yong Cao Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

Morphology Evolution in High Performance Polymer Solar Cells Processed from Nonhalogenated Solvent

Wanzhu Cai, Peng Liu, Yaocheng Jin, Qifan Xue, Feng Liu,* Thomas P. Russell,* Fei Huang,* Hin-Lap Yip,* and Yong Cao

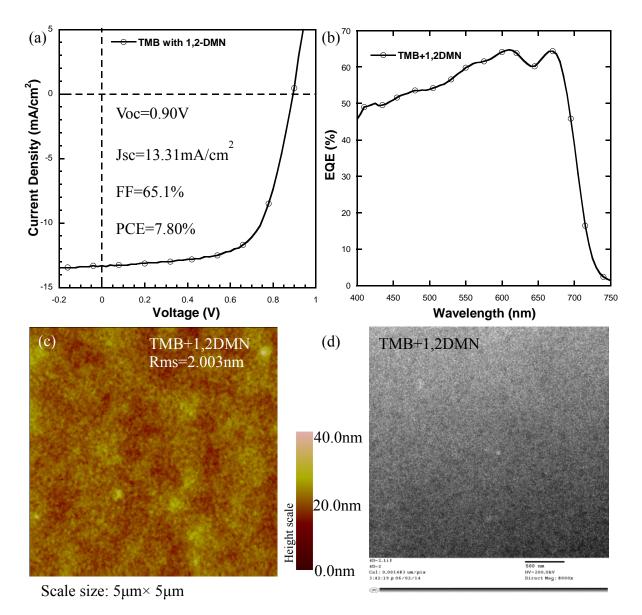
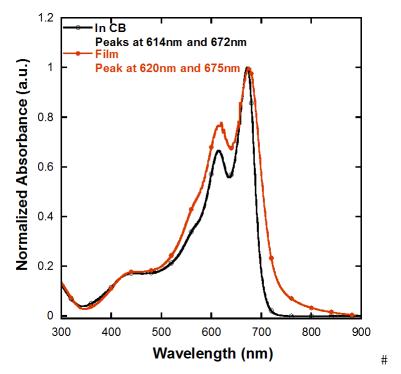


Figure S1. J-V curves of devices processed by different solvent under simulated 100 mW/cm² AM 1.5G illumination, device configuration is ITO/PEDOT:PSS/Active layer/PFN/Al, the active area of the device is 0.16cm².


Table S1. Photovoltaic performance of polymer solar cells based on PDTSTPD: $PC_{71}BM$ processed from different solvent. Device configuration is ITO/PEDOT:PSS/Active layer/PFN/Al, the active area of the device is $0.16cm^2$.

Solvents	V _{oc} (V)	$J_{sc}(mA/cm^2)$	FF(%)	PCE(%)
TMB	0.90±0.01	2.85±0.15	42.1±2.0	1.12±0.10
TMB+1,5-DMN	0.91±0.01	12.89±0.20	62.9±1.2	7.56±0.21
CB	0.89±0.01	2.71±0.10	45.3±1.4	1.11±0.09
CB + DIO	0.91±0.00	11.21±0.38	60.6±2.5	6.71±0.12

We have also studied the solvent additive effect of 1,2-dimethylnaphthalene, the improvement gain from 1,2-DMN is less than 1,5-DMN. And the results showed the phase separation of TMB+1,5DMN film is more pronounced.

Figure S2. (a) J-V curves and (b) EQE spectra of devices processed by TMB with 1,2dimethylnaphthalene under simulated 100 mW/cm² AM 1.5G illumination, device configuration is ITO/PFNOX/Active layer/MoO₃/Al. (c) AFM images and (b) TEM images of the corresponding film.

Figure S3. Normalized UV-Vis absorption spectra of pristine PDTSTPD in solution (black open circle) and films (red filled circle)#

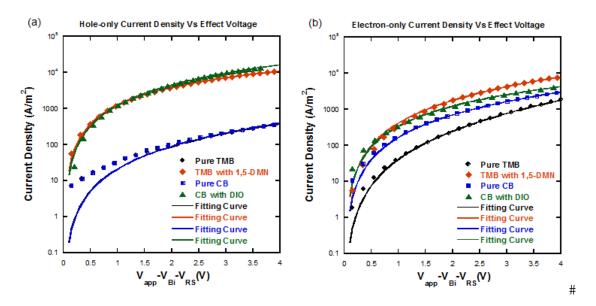


Figure **S4**. J-V characteristics of devices hole-only device ITO/ (a) in MoO₃/PDTSTPD:PC₇₁BM/ PEDOT:PSS /Al and (b) electron-only device ITO/PFNOX/PDTSTPD:PC71BM/PFN/Al, in which the active layer was processed by different solvent. The solid lines represent the fitting curves.

Table S2. Fitting results contained mobility and field activation factor.

	Hole Mobility (cm ² /V/s),	Electron Mobility (
Solvent and Additive	field activation factor $(m^{1/2}$	$cm^2/V/s$), field activation	
	$V^{-1/2}$)	$factor(m^{1/2} V^{-1/2})$	
Pure TMB	4.8×10 ⁻⁶ , 2.921×10 ⁻⁵	3.7×10 ⁻⁶ , 3.39×10 ⁻⁴	
TMB with 1,5-DMN	5.8×10 ⁻⁴ , -2.117×10 ⁻⁴	8.6×10 ⁻⁵ , -5.699×10 ⁻⁵	
Pure CB	4.4×10 ⁻⁶ ,5.32×10 ⁻⁵	3.6×10 ⁻⁵ , 3.933×10 ⁻⁵	
CB with DIO	3.8×10 ⁻⁴ , -7.097×10 ⁻⁵	1.1×10 ⁻⁴ , -8.575×10 ⁻⁵	

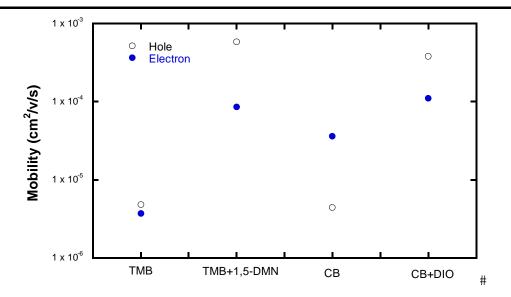


Figure S5. Mobility derived by SCLC model from J-V $_{\rm eff}$ characteristics of hole/electron only device.

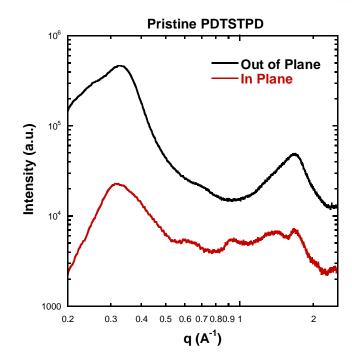
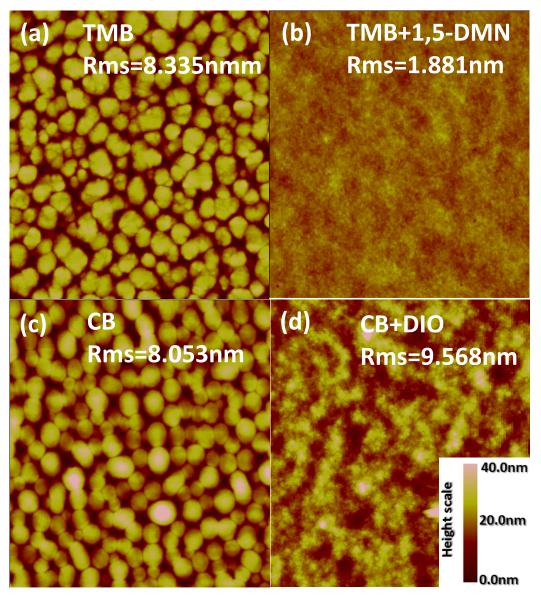



Figure S6. Line-cut profiles of GIXD of Pristine PDTSTPD film.

Figure S6 displays the GIXD profiles along the out-of-plane and in-plane direction of the 2D images for pure PDTSTPD film. In the out-off-plane direction, one strong (100) reflection at 0.31\AA^{-1} along with a weaker (200) reflection at about 0.62\AA^{-1} is observed at low q region, which attributes the interchain packing units with a space distance of 2.0 nm. The next peak at 1.69 Å⁻¹ is from the (010) π - π * stacking plane reflection, corresponding to a space distance of 0.37 nm. In the in-plane direction, clear reflections for (100) reflection and 1.68 Å⁻¹ for (010) reflection are also found, along with (200) and (300) reflection. These results suggest PDTSTPD molecule prefer a random crystalline orientation in pristine film.

Figure S7. AFM images $(5\mu m \times 5\mu m)$ of PDTSTPD: PC₇₁BM (weight ratio:1/2) blends films processed by different solvent. (a) Pure TMB, (b) TMB with 30mg/ml 1,5-DMN,(c) Pure CB, (d) CB with 3vol% DIO.

Solvent and Additive	Measured Jsc(mA/cm2)	Calculated Jsc(mA/cm2)
Pure CB	3.10±0.12	3.3
CB with DIO	12.34±0.49	10.75
Pure TMB TMB with 1,5-DMN	3.42±0.19 13.54±0.27	3.63 11.64