Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201500186

Metal–Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells

Haolin Tang,* Shichang Cai, Shilei Xie, Zhengbang Wang, Yexiang Tong, Mu Pan, and Xihong Lu*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

Metal Organic Framework Derived Dual Metal and Nitrogen doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells

Haolin Tang, ^a* Shichang Cai,^a Shilei Xie,^b Zhengbang Wang,^c Yexiang Tong,^b Mu Pan,^a and Xihong Lu^b*

Figure S1. Raman spectra of the CoNC fand Ni/CoNC catalysts.

Figure S2. LSV curves of (a) CoNC catalyst, (b) CoNC catalyst and (c) Pt/C catalyst in 0.1M KOH solution saturated with O_2 at different rotating speeds.

Figure S3. (a) Koutecky–Levich (K-L) polts of the Pt/C electrode at different potentials. (d) The calculated ORR electron-transfer number for the Pt/C catalyst at different potentials.

	$J_{@-0.6V}(mA$	E _{ocp} (V vs.	E _{1/2} (V vs.	n	ref
	cm^{-2})	Hg/HgO)	Hg/HgO)		
Ni/CoNC	6.24	0.070	-0.049	3.94-4	Our work
20% Pt/C	5.74	-0.033	0.018	3.87-3.99	Our work
nitrogen-doped	6.1	0.12	-0.22	3.8	2
carbon nanofibers	Ag/AgCl)				
Fe/N doped C	~5.1	0.20	0.03		4
	(1500r)				
N doped graphene	0.48	-0.04	-0.35		3
N-Fe/Fe ₃ C@C	6.4	0.21	0.14	3.98	1
N-P codoped	4.9	0.19	-0.11	3.7-3.8	5
porous carbon					
foams					
PEDOT hollow	2.5/1400r	~0.1	-0.27	3.11	8
spheres					
S doped RGO	4.7	~0.16	-0.12	3-3.5	6
Fe-N co-doped	5.44	0.197	-0.17	3.86	7
Carbon					1

Table S1. Summary of ORR parameters of various electrocatalysts in alkaline media

[1] Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, *Adv. Mater*.**2012**, *24*, 1399.

[2] X. Yang, W. Zou, Y. Su, Y. Zhu, H. Jiang, J. Shen, C. Li, *J. Power Sources* 2014, 266, 36.

[3] L. Feng, Y. Chen, L. Chen, ACS Nano 2011, 5, 9611.

[4] L. Birry, P. Mehta, F. Jaouen, J.-P. Dodelet, S. Guiot, B. Tartakovsky, *Electrochim. Acta* **2011**, *56*, 1505.

[5] H. Jiang, Y. Zhu, Q. Feng, Y. Su, X. Yang, C. Li, *Chem. Eur. J.* 2014, 20, 3106.

[6] M. Seredych, J.-C. Idrobo, T. J. Bandosz, J. Mater. Chem. A 2013, 1, 7059.

[7] Y. Su, H. Jiang, Y. Zhu, W. Zou, X. Yang, J. Chen, C. Li, *J. Power Sources* 2014, 265, 246.

[8] Z. Guo, Y. Qiao, H. Liu, C. Ding, Y. Zhu, M. Wan, L. Jiang, *J. Mater. Chem.* 2012, 22, 17153.

	$J_{@-0.6V}$ (mA	E_{ocp} (V vs.	n	ref	c (PBS)
	cm ⁻²)	SCE)			
Ni/CoNC	6.66	0.347	3.92	Our work	0.01
20% Pt/C	5.72	0.282	3.81	Our work	0.01
acidic/basic-N-	7 10	0.19	4.00	0	0.1 M
activated carbon	/.18	0.18	4.09	9	0.1 M
Co-PDAP	~6 (1500 rpm)	0.082	3.96	10	
Fe-C-N	6.1 (2500 rpm)	0.2	3.89	11	
FeCo- melamine-	5.0.(1500		2.07	10	0.014
formaldehyde resin	5.0 (1500 rpm)	0.88 (KHE)	3.96	12	0.2 M

Table S2. Summary of ORR parameters of various electrocatalysts in neutral media

[9] B. Zhang, Z. Wen, S. Ci, S. Mao, J. Chen, Z. He, *ACS Appl. Mater. Interfaces* 2014, 6, 7464.

[10] Y. Zhao, K. Watanabe, K. Hashimoto, J. Am. Chem. Soc. 2012, 134, 19528.

[11] Z.-Y. Yang, Y.-X. Zhang, L. Jing, Y.-F. Zhao, Y.-M. Yan, K.-N. Sun, *J. Mater. Chem. A* 2014, 2, 2623.

[12] Y. Zhao, K. Watanabe, K. Hashimoto, J. Mater. Chem. A 2013, 1, 1450.

Figure S4. tolerance to methanol of the Ni/CoNC and Pt/C electrodes recorded at -0.3 V in O_2 -saturated 10 mM PBS electrolyte with a rotation speed of 1600 rpm.

Figure S5. TEM, HRTEM and EELS element mapping images of the as-prepared Cu/CoNC catalyst.

Figure S6. TEM, HRTEM and EELS element mapping images of the as-prepared Zn/CoNC catalyst.

Figure S7. TEM, HRTEM and EELS element mapping images of the as-prepared Fe/CoNC catalyst.

Figure S8. LSV curves of the Pt/C, Zn/CoNC, Cu/CoNC, Fe/CoNC and Ni/CoNC catalysts collected in O_2 –saturated 0.01 M PBS at 1600 rpm

	$J_{@-0.6V} (mA cm^{-2})$	E_{ocp} (V vs. SCE)	E _{1/2} (V vs. SCE)
Pt/C	5.72	0.282	-0.039
Fe/CoNC	4.70	0.152	-0.088
Zn/CoNC	5.46	0.275	0.034
Cu/CoNC	6.24	0.33	0.088
Ni/CoNC	6.66	0.347	0.108

Table S3. The onset potential and half-wave potential of these catalysts in PBS solution