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Note S1. Derivation for the principle of scattering-pattern shift 

We take 1-bit coding metasurface as example to elaborate the process of calculating the scattered 

electric field pattern (߮,ߠ)ࡱ in the far-field region directly from the near electric field distribution 

 on the coding pattern. As schematically illustrated in Supplementary Figure S1, the yellow (ݕ,ݔ)ܧ

and blue patches represent the coding particles ‘0’ and ‘1’, respectively. For simplicity, we consider 

a case when the tangential electric field on the metasurface has only x-component (ݕ,ݔ)ࡱ =

,ݔ)ܧොݔ (ݕ,ݔ)ࡱ	which can be easily extended to the general case ,(ݕ = (ݕ,ݔ)௫ܧොݔ + ,ݔ)௬ܧොݕ  The .(ݕ

reflection amplitude is assumed to be unity due to the perfect reflection of the coding particle, and 

thus the electric field on the metasurface can be expressed in the Cartesian coordinate system as 

(ᇱݕ,ᇱݔ),ܧ = ݁ఝ(,)                              (S1) 

in which ߮(݉,݊) represents the reflection phase of coding particle (m,n), which is either 0 or π; 

and 	ݔᇱ, ݕᇱ are limited to the size of a coding particle (− 
ଶ

< ᇱݕ,ᇱݔ < 
ଶ
). 

 

Figure S1. A coding metasurface located on the x-y plane in the Cartesian coordinate system. 

For an encoded metasurface board with N×N coding particles, the electric field in upper-half 
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space can be written by double integrals using the angular spectrum of plane waves. Then, the 

electric field in the far-field region can be expressed as follow in the spherical coordinate system by 

making an asymptotic evaluation of the integrals using the stationary phase approximation: 

(߮,ߠ)࢙ࡱ																						 = ݆݇൫ߠ ݏܿ ߮ − ො߮ ݊݅ݏ ߮ ݏܿ ∫൯ߠ ∫ ,ݔ)ܧ ݕ݀ݔ݀బ(௨௫ା௩௬)݁(ݕ
ಿ
మ

ିಿమ

ಿ
మ

ିಿమ
  

= ݆݇൫ߠ ݏܿ ߮ − ො߮ ݊݅ݏ ߮ ݏܿ ,ݑ)൯ܲߠ  (S2)                         (ݒ

in which ܲ(ݑ, ,ݑ) and ,(ݕ,ݔ)is the Fourier transform of E (ݒ  :are the angular coordinates (ݒ

ݑ = ݊݅ݏ ߠ ݏܿ ߮ , ݒ = ݊݅ݏ ߠ ݊݅ݏ ߮. To evaluate the integral in Equation (S2) by each coding particle, 

the relation between coordinates (ݔ,  is defined as (ᇱݕ,ᇱݔ) and (ݕ

ݔ = ᇱݔ + ݉ − (ேିଵ)
ଶ

                                (S3) 

ݕ = ᇱݕ + ݊ − (ேିଵ)
ଶ

                                (S4) 

Substituting Equation (S3) and (S4) into ܲ(ݑ,  the spectral function is rewritten as ,(ݒ

,ݑ)ܲ (ݒ = ܭ ∙ ∑ ∑ ൣ݁బ(௨ା௩)൧ேିଵ
ୀ

ேିଵ
ୀ · ∫ ∫ ᇱݕᇱ݀ݔబ൫௨௫ᇲା௩௬ᇲ൯݀݁(ᇱݕ,ᇱݔ),ܧ


మ
ିమ


మ
ିమ

    (S5) 

where 

ܭ = ݁ି
ೖబ(ಿషభ)(ೠశೡ)

మ                                (S6) 

For both coding particles, the amplitude and phase of the reflected electric field are assumed to be 

uniformly distributed in the square area. Then we may rewrite Equation (S5) by integrating on the 

coding particles 
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,ݑ)ܲ (ݒ = ܭ ∙ ܿ݊݅ݏଶ ቀబ௨
ଶ
ቁ ܿ݊݅ݏ ቀబ௩

ଶ
ቁ∑ ∑ ൣ݁ఝ(,)݁బ(௨ା௩)൧ேିଵ

ୀ
ேିଵ
ୀ          (S7) 

Now the spectral function is simplified to a double summation on the coding metasurface with N×N 

coding particles. Interestingly, the double summation can be easily calculated with the 2D inverse 

discrete Fourier transform 

,ݏ)݂ (ݐ = [(݊,݉)ܨ]2ܶܨܨ = ଵ
ேమ
∑ ∑ ݁(݊,݉)ܨ

మೞഏశమഏ
ಿேିଵ

ୀ
ேିଵ
ୀ              (S8) 

where a finite-sized matrix f(ݏ,  composed of equally spaced samples is converted into a matrix (ݐ

of coefficients with finite combination of complex sinusoids, ordered by their frequencies. Applying 

the above 2D FFT algorithm to the spectral function in Equation (S2), it can be obtained in a 

discrete number of angular coordinates (ݑ,  (ݒ

ݑ = ଶగ
ேబ

ݏ  ݏ = 0,1,2, …ܰ − 1                          (S9) 

ݒ = ଶగ
ேబ

ݐ										ݐ = 0,1,2, …ܰ − 1                         (S10) 

Now, the scattering pattern in the far field is obtained in terms of (ߠ,߮) component by 

calculating the spectral function ܲ(ݑ,  using the 2D FFT (ݒ

ఏܧ = ݆݇ షೕೖೝ

ଶగ
,ݑ)ܲ (ݒ ݏܿ ߮                              (S11) 

ఝܧ = −݆݇ షೕೖೝ

ଶగ
,ݑ)ܲ (ݒ ݏܿ ߠ ݊݅ݏ ߮                        (S12) 

 
 
Note S2. Procedure of calculating the scattering pattern from coding pattern 

We should note that, when applying 2D FFT algorithm, the scattering pattern can be evaluated in a 

number of u×v points, which are equal to the number of coding particles on the coding metasurface 
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(N×N). However, one may calculate the far-field scattering patterns in a larger number of u×v 

points by extending the size of the coding metasurface and setting the amplitude of all coding 

particles outside the designed region as zero.  

By making a shift in the variable (s, t) and (m, n) in Equation (S9) and (S10), (ݑ,  have the (ݒ

upper and lower bounds of − ఒ
ଶ୮

< u, v < ఒ
ଶ୮

. We note that the whole visible range of (ߠ,߮) 

should be mapped from the inner area of the circle ݑଶ + ଶݒ ≤ 1 (marked by the pink circular area 

in Supplementary Figure S2b) in the (ݑ,  region. Therefore, the periodic length p of coding (ݒ

particle will play a significant role in the coordinate transformation from (ݑ,  When .(߮,ߠ) to (ݒ

the length p of the coding particle is equal to or smaller than 2/ߣ, the data inside the circle 

uଶ + vଶ ≤ 1 will be mapped to the (ߠ,߮) region to produce the scattering patterns containing the 

entire range of visible angles. The data outside the circle, in this case, will not be transformed to the 

visible angles in spherical coordinate system. On the contrary, if p >  then not all of the visible ,2/ߣ

angles will be obtained since the side length of the square region (ݑ,  is smaller than the (ݒ

diameter of the circle. For the coding particle in this work,  =  is smaller than the 30/ߣ7

threshold value 2/ߣ, guaranteeing the ability of the scattering to cover the entire upper-half space. 

 

Note S3. Deviation of the anomalous scattering angle 

Now we give the angle derivation of the single-beam scattering by the gradient coding sequence 

from the perspective of Fourier transform. In analogy to the Fourier transform between the electric 

field distribution on the coding metasurface and far-field scattering, we can make the following 

variable substitutions to give the frequency-shift function in Equation (7)  
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Figure S2. The process of obtaining the far-field scattering pattern from the coding pattern using 

the FFT algorithm. a) The coding pattern. b) The FFT result of the coding pattern. c) The 2D 

scattering pattern plotted in the polar coordinate system, in which the elevation and azimuthal 

directions represent the angles θ and φ, respectively. d) The 3D far-field scattering pattern plotted in 

the spherical coordinate system. 

ݐ → ఒݔ = ௫
ఒ
                                      (S13) 

߱ → ݊݅ݏ  (S14)                                       ߠ

Since ω is equal to 1/t, then we have sinߠ =  For a metasurface encoded with an infinite-long .ݔ/ߣ

gradient coding sequence with periodicity Γ, the corresponding Dirac function, representing the 

frequency of the coding sequence (or phase) grading along the metasurface, will appear at ߣ/Γ. 
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Therefore, the electric field in the far region will strictly pointing to the direction ߠ = sinିଵ(ߣ/Γ), 

which is the anomalous scattering angle defined in Equation (9). However, for real applications 

where the periodicity of gradient coding sequence is finite, the ideal Dirac function will be 

degenerated as a sharp peak function with finite width and amplitude, producing the single-beam 

scattering with a certain lobe width.  

As for where the item √2 comes from in Equation (11), we note that the chessboard 

distribution shown in Figure 3c(i) can be seen as the modulus of two orthogonal coding sequences 

‘0 1 0 1…’. Since such two coding sequences are identical and orthogonal to each other, the new 

scattering angle (ߠ,߮) of the modulus pattern (i.e., the chess-board distribution) can be calculated 

by substituting ߠଵ =  :ଶ into Equation (13)ߠ

൜ߠ = ଵߠ2√
߮ = 45°

                                      (S15) 

It is obvious that the elevation angle in this case is √2 times larger than that with single gradient 

coding sequence. 

Note S4. Numerical simulation results from CST 

To confirm the performance of the proposed principle using full-wave numerical simulations, the 

commercial software CST Microwave Studio was employed to design the structure of the coding 

particle and simulate the model of encoded metasurface. Frequency domain solver with a unit-cell 

boundary condition was used to calculate the reflection amplitude and phase of each coding particle, 

which are shown in Figures 2c,d, respectively. Note that both amplitudes and phases of reflection 

are extracted on the top surface of the structure.  
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Open boundary condition and plane-wave excitation was set in the simulation of the encoded 

metasurface including 64×64 coding particles. The geometrical models of the coding patterns, 3D 

and 2D scattering patterns are provided in Figures S3 and S4, respectively, which correspond to the 

theoretical results given in Figures 3 and 4. Due to the fact that the intensities of the 3D/2D 

scattering patterns in Figures S3 and S4 may vary from case to case, they have been normalized to 

their own maximum values so that all the scattering patterns are with appropriate color and size for 

readers to observe.  

Figure S4e(i) displays the mixed coding pattern generated by the modulus of two coding 

sequences ‘0 0 1 1 2 2 3 3’ (grading along the x-axis) and ‘0 0 0 1 1 1 2 2 2 3 3 3’ (grading along 

the y-axis). The gradient coding sequence is observed to vary along an oblique direction (33.7°) 

with respect to the y-axis, which can be calculated by Equation (13). The resulting 3D and 2D 

scattering patterns are presented in Figure S4e(ii) and Figure S4e(iii), respectively, in which the 

single scattering beam is observed to appear in the direction of θ=40° and φ=123.7°. We should 

note that the addition of two gradient coding sequences with orthogonal gradient directions is 

equivalent to rotating the matrix of a gradient coding sequence by a certain angle.  

In the main context, we have demonstrated the excellent performance of scattering-pattern 

shift in steering the scattering pattern to arbitrary direction. Now, we will evaluate the efficiency of 

the single-beam scattering quantitatively, which is widely considered by engineers in real 

applications. To compare the efficiencies of the four cases in Supplementary Figures S4a-d, we 

firstly extract the 2D scattering patterns on the x-z cutting-plane and then normalize them to the 

maximum specular reflection by a bare PEC board, which has the same dimension to the above 
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cases and is titled by θ/2 (θ is the reflection angle of the single beam in each case) with respect to 

the z-axis. Now, the maximum amplitude of each pattern in Supplementary Figure S5 represents the 

conversion efficiency from the normally incident plane wave to the anomalously reflected beam. 

The efficiencies for the four cases in Supplementary Figure S4a-d can be read from Supplementary 

Figure S5 as 86.6%, 80.3%, 57.5%, and 75.2%, respectively. We should note that the single-beam 

scattering always has a certain beam width because of the finite size of the coding metasurface. 

Therefore, the efficiencies shown above only consider the amplitude at the maximum radiation 

direction. However, one may also evaluate the conversion efficiency by integrating the energy in a 

certain solid angle of the beam. In this way, the conversion efficiency may vary depending on the 

limit of the integration angle. 

Note S5. Experimental results 

Using the terahertz measurement system shown in Supplementary Figure S6, we obtain the 

reflection spectra for each receiving angle, as illustrated in Supplementary Figure S7, by the 

following procedure. First, a fast Fourier transform (FFT) was conducted to the original discretized 

signal in the time domain, resulting in the original spectra in the frequency domain. Then, all 

spectra were normalized to the reference measured under direct transmission, after which a smooth 

treatment was carried out to eliminate the background noise, which is at about -58 dB for our 

measurement system. Since the amplitude of the THz signal generated by the photoconductive 

antenna decreases with the increasing of frequency, the signal-to-noise (SNR) ratio ranges from 57 

dB to 10 dB in the frequency band of interest (from 0.4 to 1.4 THz) and reaches 27 dB at the 

designed frequency 1 THz. The angular-frequency spectra given in Figure 7 were produced by 
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making a data interpolation to the spectra in Supplementary Figure S7.  

 

Figure S3. Geometries of coding patterns and the corresponding 3D and 2D scattering patterns that 

are numerically simulated by CST to verify the theoretical results in Figure 3. a) The coding pattern 

of the coding matrix M1. b) The coding pattern of the modulus of coding matrix M1 and a gradient 

coding sequence ‘0 1 2 3 0 1 2 3…’ varying along the horizontal direction. c) The coding pattern of 

the coding matrix M2. d) The coding pattern of the modulus of coding matrix M2 and a gradient 

coding sequence ‘0 1 2 3 0 1 2 3…’ varying along the horizontal direction. (i) Coding patterns. (ii) 

3D far-field scattering patterns. (iii) 2D far-field scattering patterns.  



 

12 
 

 

Figure S4. Geometries of coding patterns and the corresponding 3D and 2D scattering patterns that 

are numerically simulated by CST to verify the theoretical results in Figure 4. a) Coding pattern of 

the gradient coding sequence ‘0 0 1 1 2 2 3 3 …’ b) Coding pattern of the gradient coding sequence 

‘0 0 0 1 1 1 2 2 2 3 3 3…’ c) Coding pattern of the modulus of gradient coding sequences in (a) and 

(B). d) Coding pattern of the modulus of gradient coding sequences ‘0 0 1 1 2 2 3 3 …’ and ‘3 3 3 2 

2 2 1 1 1 0 0 0…’ e) Coding pattern of the modulus of gradient coding sequences ‘0 0 1 1 2 2 3 3 …’ 

(along the x-axis) and ‘0 0 0 1 1 1 2 2 2 3 3 3…’ (along the y-axis). (i) Coding patterns. (ii) 3D 
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far-field scattering patterns. (iii) 2D far-field scattering patterns. 

 

Figure S5. The scattering patterns extracted from the x-z cutting-plane in the 3D scattering patterns 

in Figure S4. a-d) Corresponding to Figures S4(a-d), respectively. 

 

 

Figure S6. Photograph of the terahertz experimental configuration. 
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Observing each case in Supplementary Figure S7, we find that the scattering peaks gradually 

shift to lower frequencies as the receiving angle increases. Comparing all the four cases from 

Figures S7a to S7d, all scattering peaks tend to move towards higher frequencies due to the 

increasing of the variation rate of the gradient coding sequence. The center of the scattering beam 

can be read from Figure S7a-d as 41.5°, 50°, 63°, and 72°, which are about 9° larger than the 

theoretically calculated values 32.4°, 42°, 53.5°, and 63.2°, respectively. We need to note that the 

scattering angle at 1.2 THz is close to the theoretical result, which implies that the larger measured 

angle of scattering beam is equivalent to the frequency-shift of spectrum.  



 

15 
 

 

Figure S7. The reflection spectra measured at receiving angles from 20° to 86° of the four 

fabricated samples encoded with four different coding sequences. a-d) The reflection spectra 

corresponding to the coding sequences P1, P2+P8, P2+P4, and P2+P3, respectively. 


