Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201600189

Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO₂ over Nanostructured Pd@Nb₂O₅

Jia Jia, Paul G. O'Brien, Le He, Qiao Qiao, Laura M. Reyes, Timothy E. Burrow, Yuchan Dong, Kristine Liao, Maria Varela, Stephen J. Pennycook, Mohamad Hmadeh, Amr S. Helmy, Nazir P. Kherani, Doug D. Perovic, and Geoffrey A. Ozin* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

DOI: 10.1002/advs.201600189

Title: Visible and Near Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO_2 over Nanostructured $Pd@Nb_2O_5$

Jia Jia,[†] Paul G. O'Brien,[†] Le He, Qiao Qiao, Teng Fei, Laura M. Reyes, Timothy E. Burrow, Yuchan Dong, Kristine Liao, Maria Varela, Stephen J. Pennycook, Mohamad Hmadeh, Amr S. Helmy, Nazir P. Kherani, Doug D. Perovic, and Geoffrey A. Ozin *

Figure S1 (a) HAADF image of the Nb₃O₇(OH) nanorods at low magnification. (b) HAADF image taken from a nanorod in its [001] direction. The preferred growth direction (longitudinal) of the nanorod is [010]. (c) FFT of (b) showing (200), (110) and (020) spots. (d) Atomic model indicated by the red rectangle in (b), where the dotted blue rectangle indicates a Nb₃O₇(OH) unit cell.

Figure S2. Powder X-ray diffraction patterns of Nb₂O₅, Nb₃O₇(OH), 0.5% Pd@Nb₂O₅ (after pre-treatment) and 0.5% Pd@Nb₃O₇(OH) (before pre-treatment).

Figure S3. TEM images of (a) Nb₃O₇(OH) nanorods and (b) Nb₂O₅ nanorods.

Figure S4. High resolution XPS spectra of the (a) Nb3d, (b) O1s and (c, d) Pd3d regions taken on Nb₂O₅, Pd@Nb₂O₅, 0.5% Pd@Nb₂O₅ and 1% Pd@Nb₂O₅, respectively.

Figure S5. Estimation of the electronic band gap of Nb₂O₅. By using a modified Kubelka-Munk function, $(F(R)*hv)^n$ is plotted as a function of photon energy for Nb₂O₅ where $F(R) = (1-R)^2/2R$. Here R is the diffuse reflectance of the films loaded onto the borosilicate sample supports and n was set to 2 for Nb₂O₅. The linear portion of the plot was extrapolated and its intercept with the abscissa is considered to be the band-gap.

Figure S6. XPS Spectra of Nb_2O_5 (a) secondary electron cut-off region. (b) Valence band region (3.3 eV is relative to the work function.)

Figure S7. Mass spectrometry of photo-thermally generated ¹³CO from ¹³CO₂. The 28 AMU mass fragment peak at approximately 1.32 min corresponds to N₂ and the 29 AMU mass fragment peak at approximately 1.345 min corresponds to ¹³CO. The fact that there is no peak in the vicinity of 1.345 min retention time for the 28 AMU curve shows that there is no ¹²CO in the products that could have been generated from sources of adventitious ¹²C.

Figure S8. TEM image of Pd@Nb₂O₅ after gas-phase catalytic testing.

Figure S9. CO production rate from CO_2 in the presence and absence of H_2 over $Pd@Nb_2O_5$.

Figure S10. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis of the fresh catalyst and used catalyst after catalytic reaction tests of 40 h

Figure S11. Dependence of the Raman frequency from 100 cm^{-1} to 1500 cm^{-1} for vNb=O stretching vibrations of a) Pd@Nb₂O₅ and b) Nb₂O₅ nanorods at different power levels.

Figure S12. Selected wavelength Stokes and anti-Stokes Raman spectra between 500 cm⁻¹ and 900 cm⁻¹ with representative deconvolution of the spectra analyzed by LabSpec software for a) Pd@Nb₂O₅ Stokes spectra; b) Pd@Nb₂O₅ anti-Stokes spectra; c) Nb₂O₅ Stokes spectra and d) Nb₂O₅ anti-Stokes spectra.

Figure S13. EPR spectra of Nb_2O_5 before (black) and after (red) being illuminated under a 300 W Xe lamp for 2 hours, recorded at 20 K.

Figure S14. The photoreactor temperature as a function of time over the duration of a photothermal test. The temperature inside the reactor is 49.7 °C at the 3 h point of the test. The temperature of the sample is much greater than that of the reactor due to the photothermal effect.

Sample	k (mmol g ⁻¹ h ⁻¹)	T(K estimated)	T(°C estimated)
A(I)	4.9	470	197
В	3.5	462	190
С	1.8	447	174
D	1.1	436	163
Е	0.78	430	157
F	0.41	417	144
II	3.3	461	189
III	0.95	434	161
IV	0.63	426	153
V	0.56	423	150

Table S1. Estimation of reaction temperatures over $Pd@Nb_2O_5$ under irradiation from the 300 W Xe lamp using different cut-off filters for batch reactions A through F and without any filter at different light intensities for batch reactions I through V.

Power	Pd@Nb ₂ O ₅			Nb ₂ O ₅		
- levels (mW)	Peak	Band shift	Estimated	Peak	Band shift	Estimated
	position	(cm ⁻¹)	T (K)	position	(cm ⁻¹)	T (K)
	(cm ⁻¹)			(cm ⁻¹)		
12	981.5	-10.5	777	985.7	-1.5	368
6	986.9	-5.1	531	986.3	-0.9	341
3	989.3	-2.7	422	986.6	-0.6	327
1.2	990.5	-1.5	368	986.9	-0.3	314
0.12	991.1	-0.9	341	987.2	0	300
0.012	992.0	0	300	987.2	0	300

Table S2. Summary of the Raman band frequency for the vNb=O stretching vibrations of Pd@Nb₂O₅ and Nb₂O₅ at different power levels using a 633 nm laser. Temperature estimation was performed using the slope of the dependence of the Raman band shift on temperature in prior work.^[1]

Table S3. Estimation of the temperature of $Pd@Nb_2O_5$ and Nb_2O_5 under the power level of 24 mW using a laser pump wavelength of 785 nm. The signals of the Raman Stokes and anti-Stokes scattering at around 640 cm⁻¹ are obtained from the deconvolution of the spectra by LabSpec software, as shown in Figure S11. The estimation of temperatures is calculated using the ratio of Stokes signals to anti-Stokes signals and the band position of the Raman modes.

Sample	Stokes signal	anti-Stokes (AS)	S/AS	ω (cm ⁻¹)	T (K)
	(S) area	signal area	Ratio		
Pd@Nb ₂ O ₅	65.96	30.18	2.185	636.44	776
Nb ₂ O ₅	362.91	49.77	7.291	637.42	385

Reference

[1] S. Xie, E. Iglesia, A. T. Bell, J. Phys. Chem. B 2001, 105, 5144.