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1 Spectrum of the THz Pulse
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Figure 1: a. The electric field of our THz pulse recorded in the time domain using electro
optic sampling as described in the main text. The oscillations after the pulse are due to the
presence of water in the air. b. Fourier transform amplitude of our THz pulse with a peak
at ≈ 0.8 THz (marked by arrow), again the dips in amplitude are due to water absorption
resonances.
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2 Optical Image of the Sample

200µm

Figure 2: White light reflection image of the sample area taken with a x20 objective on the
Renishaw inVia system. This shows the graphene tare in the lower right corner, also observed
in our Raman and THz images. Note that the field of view in the reflection measurements
is rather small, and the repeating pattern seen is an artifact caused by stitching of separate
images. This effect has been minimized by overlapping individual images and applying a
background subtraction tool (WIRE software).
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3 Hadamard Image Formation

Since we use single-element detector (our electro optic detection crystal), measurements for

our images are obtained sequentially rather than in parallel. In such single-pixel imaging

schemes optimal signal is achieved via the use of an orthogonal set of binary masking patterns

derived from Hadamard matrices,1,2 which minimizes the mean square intensity noise in each

pixel.1 In our experimental setup, we can either photoexcite the graphene or not, implying

that our masks have values either of 1s or 0s to denote which pixels have been sampled in each

measurement. However, orthogonal Hadamard matrices are composed of +1s and -1s. In

order to achieve this orthogonality in our measurement matrices, as is outlined in,2 one carries

out sequential measurements of a mask immediately followed by its inverse and the record

difference in THz field transmission via a lock-in amplifier. This photo-induced difference in

THz field transmission, ∆E, is related to the photoconductivity through equation 2 in the

main text.

Using such a measurement, we can easily reconstruct a photoconductivity image. The

construction of an N -pixel image Ψ is performed as follows: our ith measurement, φi, is the

dot product of the spatial transmission function of our object and the ith mask configuration,

mathematically expressed as

φi =
N∑
j=1

wijψj, (1)

where wij is the spatial configuration of the ith mask and ψj is the jth image pixel. A

convenient representation uses the matrix equation Φ = WΨ, where the rows of W are

reformatted into the projected 2D masks. If the matrix W is invertible, the image vector

Ψ is obtained via matrix inversion Ψ = W−1Φ. The final image is obtained by reshaping Ψ

into a 2D array. Further, as stated earlier, our masks are derived from Hadamard matrices,

i.e. W is a Hadamard matrix of order N . A Hadamard matrix Hn is defined as an n × n

matrix of +1s and -1s with the property that the scalar product between any two distinct
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rows is 0 (each row is orthogonal to every other one). Thus Hn satisfies:

HnH
T
n = HT

nHn = nIn, (2)

where HT
n is the transpose of Hn. This property means that the Hadamard inverse is

H−1
n = HT

n /n, leading to a straightforward image reconstruction. In order to convert our

spatial images of ∆E into photoconductivity, ∆σ, we apply equation (2) in our paper.
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4 Phase Front Correction

Figure 3 clarifies the experimental arrangement mentioned in the main text, whereby the the

phase front distortion added by the DMD is used in order to allow off axis photo-excitation

without a corresponding time delay.
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Figure 3: Diagram of the optical excitation scheme showing how a flat phase front is achieved
with off axis photoexcitation. By using the phase front distortion introduced by the DMD
mirror angle θ = 13o to correct for the off axis excitation.
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