Supplementary Figure 1. Amino acid sequence alignment of flaviviral NS2B-NS3
proteases. Residues conserved across flaviviruses are highlighted in yellow. eZiPro
residues that were not resolved in the crystal structure are highlighted in gray. Residues at
the crystallographic dimer interface are highlighted in cyan (Refer to Supplementary
Fig. 4).
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JEV SGKATDMWLERAADISWEMDAAITGSSRRLDVKLDDDGDFHLIDDPGVPWKVWVLRMSCIGLAALTPWAIVPAAF
DENV4 SGSSADLSLEKAANVQWDEMADITGSSPIIEVKQDEDGSFSIRDVEETNMITLLVKLALITVSGLYPLAIPVTMT
DENV2  TGRSADLELERAADVKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTLTILIRTGLLVISGLFPVSIPITAA
DENV1  SGSSADLSLEKAAEVSWEEEAEHSGASHNILVEVQDDGTMKIKDEERDDTLTILLKATLLAVSGVYPLSIPATLF
DENV3  TGTSADLTVEKAADVTWEEEAEQTGVSHNLMITVDDDGTMRIKDDETENILTVLLKTALLIVSGIFPYSIPATLL
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JEV GYWLT--LKTTKR-GGVFWDTPSPKPCSKGD-TITGVYRIMARGI-LGTYQAGVGVMYENVFHTLWHTTRGAAIM
DENV4 LWYMW--QVKTQR-SGALWDVPSPAATQKAA-LSEGVYRIMQORGL-FGKTQVGVGIHIEGVFHTMWHVTRGSVIC
DENV2 AWYLW--EVKKQR-AGVLWDVPSPPPMGKAE-LEDGAYRIKQKGI-LGYSQIGAGVYKEGTFHTMWHVTRGAVLM
DENV1 VWYFW--QKKKQR-SGVLWDTPSPPEVERAV-LDDGIYRIMQORGL- LGRSQVGVGVFQDGVFHTMWHVTRGAVLM
DENV3 VWHTIW--QKQTQR-SGVLWDVPSPPETQKAE-LEEGVYRIKQQGI - FGKTQVGVGVQKEGVFHTMWHVTRGAVLT
YFV GWLFH--VRGARRSGDVLWDIPTPKIIEECEHLEDGIYGIFQSTF - LGASQRGVGVAQGGVFHTMWHVTRGAFLV
TBEV LWTLTEMLRSSRRSDLVFSGQGGRERGDRPFEVKDGVYRIFSPGLFHGONQVGVGYGSKGVLHTMWHVTRGAALS

75 129 133
eZiPro  SGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGLSEVQLLAVPPEERAKNIQTLPGIFKTK-DGDIGAVALDYPAG
WNV SGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGHDEVQMIVVEPGKNVKNVQTKPGVFKTP - EGEIGAVTLDYPTG
JEV SGEGKLTPYWGSVKEDRIAYGGPWRFDRKWNGTDDVQVIVVEPGKAAVNIQTKPGVFRTP-FGEVGAVSLDYPRG
DENV4 HETGRLEPSWADVRNDMISYGGGWRLGDEKWDKEEDVQVLATIEPGKNPKHVQTKPGLFKTL-TGEIGAVITLDFKPG
DENV2 HEKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTN-AGTIGAVSLDFSPG
DENV1 YQGKRLEPSWASVEKDLISYGGGWRFQGSWNTGEEVQVIAVEPGKNPKNVQTAPGTFKTP-EGEVGAIALDFKPG
DENV3 HNGKRLEPNWASVEKKDLISYGGGWRLSAQWOKGEEVQVIAVEPGKNPKNFQTMPGIFQTT-TGEIGAIALDFKPG
YFV RNGKKLIPSWASVKEDLVAYGGSWKLEGRWDGEEEVQLIAAVPGKNVVNVQTKPSLFKVRNGGEIGAVALDYPSG
TBEV IDDAVAGPYWADVREDVVCYGGAWSLEEKWKG-ETVQVHAF PPGRAHEVHQCQPGELILDTGRKLGAIPIDLVKG

135 151 161 177
eZiPro TSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQGKREEETPV--E
WNV TSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMEEPAP--AG
JEV TSGSPILDSNGDIIGLYGNGVELGDGSYVSAIVQGDRQEEPVP--EA
DENV4 TSGSPIINRKGKVIGLYGNGVVTKSGDYVSAITQAERIGE-PD--YE
DENV2  TSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIE-DN--PE
DENV1  TSGSPIVNREGKIVGLYGNGVVTTSGTYVSAIAQAKASQEGPL--PE
DENV3 TSGSPIINREGKVVGLYGNGVVTKNGGYVSGIAQTNAEPDGPT--PE
YFV TSGSPIVNRNGEVIGLYGNGILVGDNSFVSAISQTEVKEEGKE--EL
TBEV TSGSPILNAQGVVVGLYGNGLKT-NETYVSSIAQGEAEKSRPNLPQA



Supplementary Figure 2. Recombinant ZIKV protease proteins. (A) Purified gZiPro,
eZiPro and bZiPro are visualized on SDS-PAGE. Molecular weight markers were loaded
for reference. gZiPro migrates at a MW of 25 kDa. eZiPro and bZiPro migrated between
reference MW 20 and 15 kDa representing NS3 protease domain after cleavage of the
NS2B-3 junction d. (B) Gel filtration profiles of gZiPro, eZiPro and bZiPro. All three
proteins showed very similar gel filtration profiles. First two peaks represent aggregated
proteins and gZiPro tends to aggregate more than eZiPro and bZiPro. Purified proteins
were subjected to molecular weight determination using matrix assisted laser desorption
ionization. The results of MW determinations are shown in (C) gZiPro (D) eZiPro and
(E) bZiPro respectively. Peaks corresponding to NS2B cofactor residues, NS3 protease
and uncleaved NS2B-NS3 ZIKV protease are indicated along with the determined
molecular weights and expected molecular weights in parentheses.
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Supplementary Figure 3. Structure comparison of the NS2B-NS3 protease inhibitor
complexes across flaviviruses. NS2B and NS3 of ZIKV are colored magenta and
yellow. NS2B and NS3 of DENV and WNV are colored green and cyan. The inhibitors
are colored in red. Refer to Supplementary Table 1.
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Supplementary Figure 4. Non-crystallographic dimer formed by eZiPro in the
crystal (A) the assymetric unit contains four NS2B-NS3 molecules arranged as two
dimers of NS2B-NS3 heterodimers each bound to one “TGKR” peptide. (B) Close-up
view of one C:D -G:H ZIKYV protease dimer generated by a non-crystallographic 2 fold
symmetry axis. The relative orientation of the protease to the ER membrane is indicated.
Arrows indicate the NS2B membrane association. (C) Close-up view of the dimeric
interface interactions between the two eZiPro molecules, G:H and C:D. The NS3 protease
is colored in orange and yellow, NS2B cofactor is colored in blue and magenta
respectively. “TGKR” peptides are shown as sticks. Hydrogen bonds are represented by
dashed lines. Residues belonging to the NS2B cofactor are underlined. All interacting
pairs are listed in the lower panel. ZIKV specific interaction pairs are highlighted in bold
font and labeled with a “*”. The Surface Area buried at the dimer interface is 1859.2 A?
(calculated using AREAIMOL program®? from the CCP4 suite)®*.

The dimer formation observed in crystal structure might be relevant biologically,
where two NS2B-NS3 proteases come together forming dimers on ER membrane with
hydrophobic residues of NS3 (L30L31) pointing towards ER as well during cis-cleavage
reactions of NS2B-3 and NS2A-NS2B junctions. They can also facilitate efficient trans
cleavage at the other polyprotein junctions.
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Supplementary Figure 5. Electron density map of TGKR peptide interacting with
substrate site. NS2B is colored in magenta and NS3 in yellow. Catalytic triad residues
are in orange. Solvent molecules are shown as red dots. 2mF,-DF.; map is contoured at
1.5c in blue.
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Supplementary Figure 6. Assignment of the 'H-’N-HSQC spectra of ZIKV
proteases. The assignment was obtained using a sample in the NMR buffer that
contained 20 mM HEPES, 150 mM NaCl, and 1 mM DTT. Cross peaks are labeled with
the residue name and sequence number. An asterisk was added to distinguish residues
belonging to the NS2B protein and highlighted in red. The C terminal region of NS2B
including residues 76-86 of NS2B exhibited broadened peaks. Some cross peaks can be
assigned as a second conformation of residues 76-86 of NS2B which are highlighted in
green. These residues exhibited sharper peaks, indicating that the second conformation of
NS2B 76-86 is very flexible. The assignment has been deposited into BMRB with access

number 26873.
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Supplementary Figure 7. Secondary structural analysis of eZiPro at pH7.3 and 37
°C. (A) The secondary structures of eZiPro in solution was obtained based on the
assigned chemical shifts using TALOSN. Residues having helical and strand structures
are shown in purple and black, respectively. Secondary structural elements derived from
X-ray structures are shown in boxes (helix) and arrows (strands), respectively. The
assignments for T127-G128-K129-R130 peptide were not unambiguously assigned,
which may be due to intermediate exchanges and signal overlaps. Residues 73-75 of
NS2B tend to form a 3-strand, consistent with the X-ray structure. Residues 85-87 of
NS2B have a tendency to be a B-strand, but the possibility is low, which may be due to its
dynamics. (B) Residue L74 of NS2B and K117 of NS3 has a close contact. The distance
for the amide protons is 3.2 A. (C) NOE observed between L74 of NS2B and K117 of
NS3. Strip plot of NOESY-TROSY experiment is shown and NOEs between amide
protons of L74 of NS2B and K117 of NS3 was observed, conforming that these two
residues are in close contact and the structure is in the closed conformation.
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Supplementary Figure 8. Thermal shift assay of the three ZIKV protease constructs.
Thermostabilities of the three proteases were analyzed. The Tm value for each construct
was generated from the heat induced melting curves. Protein concentrations: 15 puM;
Dye: 20x; White plate Protein storage and dilution buffer: 20 mM Hepes, pH 7.3, 180
mM NaCl, 1 mM DTT. The assay was conducted using the method descripted
previously®®.
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Supplementary Figure 9. *H-"N-HSQC spectra of the purified proteases. A. *H-"N-
HSQC spectra of eZiPro (left), gZiPro (middle), and bZiPro (right) proteases. The NMR
spectra were collected at 37 °C (310K). The samples were prepared in a buffer containing
20 mM sodium phosphate, pH 6.5, 150 mM NaCl, and 1 mM DTT.
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Supplementary Figure 10. Residues affected by TGKR binding. The residues
exhibited different cross peaks in the NMR spectra (Fig. 2B) were mapped to the
structure. NS3 protease and NS2B are presented as cartoon and ribbon modes,
respectively. Residues exhibited line broadening in the *H-">N-HSQC of bZiPro are
shown as sphere and residues exhibited chemical shift difference between the two
constructs in the *H-"N-HSQC spectra are highlighted in green.
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Supplementary Table 1 List of flaviviral NS2B-NS3 proteases in complex with

inhibitors. Refer to Supplementary Fig. 3.

Virus PDB RMSD (A) | Ligands Reference
ZIKV 5GJ4 0 Thr-Gly-Lys-Arg ;Fhis study
5LCO | 0.466 Cn-716
3U1I 0.599 Bz-Nle-Lys-Arg-Arg-H 8
DENV3
3U1J | 0.462 BPTI
2YOL |0.567 DCPA-Lys-Lys-GCMA | °
WV 3E90 | 0.469 NPAH-Lys-Lys-Arg-H | *°
2FP7 | 0.417 Bz-Nle-Lys-Arg-Arg-H |
21J0 0.451 BPTI 12
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Supplementary Note 1
Protease activity

Bessaud et al. reported the enzymatic activity of recombinant ZIKV protease on Boc-
Gly-Arg-Arg-AMC substrates. The enzymatic activity of ZIKV protease against Boc-
GRR-AMC substrates were found to have a much lower ke (0.075 s™) but a higher Ky,
value of 417 pM®. Li et al reported that differences in substrates used and various
serotypes of dengue could yield large differences in enzyme kinetics**. Hence, here the
observed difference between our ZIKV constructs and those by Bessaud et al could be
either due to the use of different substrates, due to differences in protein constructs or
both. Previous enzymatic studies of NS2B-NS3pro from various flaviviruses such as
DENV1-4, JEV and YFV have been performed on the same substrate 1418 Al ZIKV
proteases showed higher catalytic rates compared to both JEV and YFV NS2B-NS3pro
(Keat =0.01 s and 0.11 s respectively) and similar rates to DENV4 NS2B-NS3pro (kcat
= 2.9 s) on the same substrates, while substrate binding affinity of these protease were
found to be similar to NS2B-3 proteases from DENV1-4 (K, ranging from 6.2-12 uM
reported by Li et al.* and from YFV (K, = 14 pM), while JEV NS2B-NS3pro has higher
Km of 20 uM *. Sequence variations may thus contribute to the enhanced protease
activity of ZIKV and its pathogenesis (Supplementary Figure 1).
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