
Supplementary Text S1: Comparison with Genome-Scale Essentiality Indices 1 

A previous group performed a genome-scale analysis of gene function of Methanococcus 2 

maripaludis via a saturated transposon mutagenesis (TN-seq) technique on rich and minimal 3 

media (1). Although this dataset does not contain the same quality of knockout data as actual 4 

knockout experiments, it provides a valuable “first pass” test set for gene essentiality of our 5 

model. For minimal medium in particular, their data included 2 whole genome libraries of 6 

mapped insertions, each of which contained growth data for 7 (T1) and 14 generations (T2). 7 

Reasoning that essential genes would likely be conserved across mutants, they correlated number 8 

of insertions at a particular gene location with gene essentiality by calculating an “essentiality 9 

index” (EI) for each location. Based upon a set of “known essential” genes, they set a cutoff of 10 

EI ≤ 3 for essential genes, effectively creating predictions of gene essentiality for all genes.  11 

Considering the 4 sets of library:generation combinations for minimal medium—Lib.1:T1, 12 

Lib.1:T2, Lib.2:T1, Lib.2:T2—each gene  could be predicted to be essential in 0-4 cases. Rather 13 

than globally classify gene essentiality based on all 4 cases, we created 4 separate sets of 14 

essential genes by setting different essentiality thresholds. For example, in “4 instances”, only 15 

genes that were predicted as essential in all 4 libraries were treated as essential genes and all 16 

other genes were considered non-essential; in “1 instance”, all genes that were predicted as 17 

essential in at least 1 library were treated as essential genes. The iMR539 reconstruction shared 18 

537 genes with this dataset, thus we were able to compare gene essentiality predictions across 19 

nearly the entire model to the TN-seq data for minimal medium.  20 

As shown by Figure S1, different thresholds had a great effect on the EI predictions; a lower 21 

threshold necessarily caused an increase in negative (no-growth) outcomes and a decrease in 22 

positive (yes-growth) outcomes. Our model experienced no change in its gene essentiality 23 



predictions in relation to threshold, hence a decrease in threshold resulted in improved 24 

performance on negative predictions and decreased performance on positive predictions.  The 25 

threshold’s effect on overall performance, displayed in Figure S2, shows that our model’s 26 

predictive accuracy in the four cases ranged from 61.3-65.0% and was maximized in the “3 27 

instances” dataset, whereas MCC ranged from 0.277-0.317 and was highest for “2 instances”. 28 

This small discrepancy reflects the difference in how these metrics are calculated, with MCC 29 

putting greater emphasis on our model’s improved ability to predict true negative outcomes.  30 

Overall, this analysis revealed a slight positive correlation between EI predictions and gene 31 

essentiality predictions from out model. It is important to keep in mind that EI, like our 32 

reconstruction, is a model of gene essentiality and should not be confused for actual knockout 33 

data. Through different methods, both models provide hypotheses for gene functions outside 34 

known metabolism and could fuel future investigations to directly measure gene essentiality. 35 

 36 



 37 

Figure S1: Comparison of model predictions with genome-scale essentiality indices (EI) on 38 

minimal media across 4 libraries. Instances indicate the threshold of libraries for qualifying a 39 

gene as lethal. Positive results indicate predicted non-lethal genes, negative results indicate 40 

predicted lethal-genes. TP: true positive, model and EI both predict non-lethality; TN: true 41 

negative, model and EI both predict lethality; FP: false positive, model predicts non-lethality, EI 42 

predicts lethality; FN: false negative, model predicts lethality, EI predicts non-lethality.  43 
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 45 

Figure S2: Matthews Correlation Coefficient (MCC; left y-axis) and predictive accuracy (ACC; 46 

right y-axis) comparing model predictions with genome-scale essentiality indices (EI) on 47 

minimal media across 4 libraries. Instances indicate the threshold of libraries for qualifying a 48 

gene as lethal.  49 
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Supplementary Text S2: Plots Illustrating Determination of Growth Yield 51 

Parameters  52 

 53 

Figure S3: Determination of the relationship between cell density and optical density (OD660). 54 

Linear regression was set to intersect (0,0), as cell density must necessarily be 0 when OD660 = 0. 55 

For specific methodology on how these points were gathered, see Methods.  56 
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 57 

Figure S4: Illustration of the process used to determine ATP maintenance values (see Methods). 58 

Using all 9 measured samples, GAM (slope) and NGAM (y-intercept) were determined as 168.4 59 

(mmol per grams [cell mass]) and 5.12 (mmol per grams [cell mass] per hour), respectively. 60 

  61 



Supplementary Text S3: Demonstrating our Free Energy Estimation 62 

Capabilities 63 

By including available free energy of formation values for exchange metabolites, we have 64 

equipped our model to quickly estimate overall free energy generation. To demonstrate this 65 

functionality, we consider the case of hydrogen concentrations in methanogenic environments. In 66 

our growth simulations we accept a list of exchange metabolites and a vector of their 67 

concentrations in units of mM (see https://github.com/marichards/methanococcus). By default, 68 

we assume that all aqueous concentrations for these metabolites are 1 mM, thus if concentrations 69 

are not supplied we calculate overall free energy as follows: 70 

>> solution = maxGrowthOnH2Only(model);  71 
 72 
Biomass flux: 0.096861 73 
 74 
Formate flux: 0.000000 75 
CO2 flux: -52.579347 76 
H2 flux: -205.169846 77 
H2O flux: 103.908440 78 
CH4 flux: 50.000000 79 
NH3 flux: -0.752865 80 
PO4 flux: 0.009705 81 
Acetate flux: 0.000000 82 
 83 
Overall reaction: 84 
CO2 + 4 H2 --> 2 H2O + CH4 85 
 86 
Model overall reaction (per mole CH4) 87 
1.05 CO2 + 4.10 H2 --> 2.08 H2O + CH4 88 
 89 
Predicted Yield Coefficient: 2.79 gDCW/mol CH4 90 
 91 
Expected ATP/CH4 Yield: 0.5 92 
Predicted ATP/CH4 Yield: 0.475 93 
 94 
Warning: All external metabolite concentrations set to 1 mM  95 
> In maxGrowthOnH2Only at 99  96 
 97 
Predicted Free Energy Generation: -6.457393 kJ/gDCW  98 
 99 

A key feature of hydrogenotrophic methanogens is their ability to thrive in conditions with low 100 

H2 partial pressure (~10 Pa). Converting to aqueous concentration via Henry’s Law coefficient 101 

(2), 10 Pa corresponds to 7.7 x 10
-5

 mM. We can estimate overall free energy for this hydrogen 102 

concentration by specifying this parameter: 103 

>> solution = maxGrowthOnH2Only(model,{'EX_cpd11640[e0]'},[7.7e-5]); 104 
 105 
Biomass flux: 0.096861 106 
 107 
Formate flux: 0.000000 108 
CO2 flux: -52.579347 109 
H2 flux: -205.169846 110 



H2O flux: 103.908440 111 
CH4 flux: 50.000000 112 
NH3 flux: -0.752865 113 
PO4 flux: 0.009705 114 
Acetate flux: 0.000000 115 
 116 
Overall reaction: 117 
CO2 + 4 H2 --> 2 H2O + CH4 118 
 119 
Model overall reaction (per mole CH4) 120 
1.05 CO2 + 4.10 H2 --> 2.08 H2O + CH4 121 
 122 
Predicted Yield Coefficient: 2.79 gDCW/mol CH4 123 
 124 
Expected ATP/CH4 Yield: 0.5 125 
Predicted ATP/CH4 Yield: 0.475 126 
 127 
Predicted Free Energy Generation: -1.448827 kJ/gDCW 128 
 129 

As illustrated by this quick calculation, we predict overall free energy of the system to still be 130 

favorable for methane generation from H2, though of much smaller magnitude than at higher H2 131 

concentrations. Assuming other external metabolite concentrations remain at 1 mM, we can also 132 

conduct a short sensitivity analysis of H2 concentration on overall free energy. Setting H2 133 

concentrations from (10
-10

 - 10
0
), we can calculating the overall free energy for methanogenesis 134 

in each case produces Figure S5. This figure shows the expected logarithmic relationship 135 

between H2 concentration and overall free energy, with ΔG = 0 at [H2] ≈ 5 x 10
-6

 mM (PH2 ≈ 0.65 136 

Pa).  137 

 138 



 139 

Figure S5: Semi-log plot showing our sensitivity analysis of the effects of [H2] on overall free 140 

energy generation(ΔG). 141 



Supplementary Text S4: Description of Select Files 142 

We have created the iMR539 reconstruction in both XML (SBML) and Matlab data structure 143 

formats and made those available along with our scripts for working with the model. for the most 144 

up to date scripts and model files, please refer to our GitHub repository 145 

(https://github.com/marichards/methanococcus). A selection of these materials are briefly 146 

described below; please note that all scripts are dependent on the COBRA Toolbox 2.0.5 in 147 

Matlab (3) 148 

iMR539.xml 149 

This file contains the M. maripaludis model in SBML, an extensible format compatible with 150 

most constraint-based modeling platforms. It is identical to the model we deposited in the 151 

Biomodels database (4) with identifier MODEL1607200000. 152 

iMR539.mat 153 

This file contains the M. maripaludis model in Matlab data structure format, the standard format 154 

used for constraint-based modeling in the COBRA toolbox. In addition to the standard COBRA 155 

model fields, this model file includes additional metadata, including free energies of formation 156 

for exchange reactions in kJ/mmol.  157 

maxGrowthOnH2.m 158 

This Matlab script simulates iMR539 for maximum biomass production during growth on 159 

hydrogen with acetate supplementation and using ammonia as the nitrogen source. The script not 160 

only returns the flux solution, but also prints out physiologically-relevant parameters including 161 

relevant in/out fluxes, predicted biomass yield, and the predicted overall chemical reaction. It is 162 

dependent on the following included scripts: switchToH2.m, switchToNH3.m, 163 

setMethaneSecretion.m, optimizeThermoModel.m. 164 

maxGrowthOnFormate.m 165 

This Matlab script simulates iMR539 for maximum biomass production during growth on 166 

formate with acetate supplementation and using ammonia as the nitrogen source. The script not 167 

only returns the flux solution, but also prints out physiologically-relevant parameters including 168 

relevant in/out fluxes, predicted biomass yield, and the predicted overall chemical reaction. It is 169 

dependent on the following included scripts: switchToFormate.m, switchToNH3.m, 170 

setMethaneSecretion.m, optimizeThermoModel.m. 171 

simulateKOPanel.m 172 

This Matlab script simulates iMR539 for growth on the knockout panel shown in Figure 5 (see 173 

main text). It prints out the predicted wild type biomass production under each media 174 

formulation, followed by the predicted biomass production under each knockout condition, and 175 

https://github.com/marichards/methanococcus


concluding with the overall predictive accuracy and Matthew’s Correlation Coefficient (MCC) 176 

when compared to experimental knockout data. It is dependent on the following included scripts: 177 

switchToH2.m, switchToFormate.m, setMethaneSecretion.m. 178 

switchToH2.m 179 

This Matlab script changes the growth conditions for the iMR539 model such that the in silico 180 

media contains hydrogen and carbon dioxide as the main substrates, plus acetate as a 181 

supplementary source. It also constrains methane secretion to 50 mmol/(gDCW∙h) and bounds 182 

maximum flux through Eha/Ehb to 5 mmol/(gDCW∙h). It is dependent on the 183 

setMethaneSecretion.m script. 184 

switchToFormate.m 185 

This Matlab script changes the growth conditions for the iMR539 model such that the in silico 186 

media contains formate as the main substrate, plus acetate as a supplementary source. It also 187 

constrains methane secretion to 50 mmol/(gDCW∙h) and bounds maximum flux magnitude 188 

through Eha/Ehb to 5 mmol/(gDCW∙h). It is dependent on the setMethaneSecretion.m script. 189 

switchToNH3.m 190 

This Matlab script sets the nitrogen source for the iMR539 model as ammonia, the default 191 

substrate used in standard culturing conditions, by allowing unlimited ammonia uptake.  192 

setMethaneSecretion.m 193 

This Matlab script sets the methane secretion rate for the iMR539 model to a specified value, 194 

effectively constraining the biomass production, product secretion, and uptake rates of the model 195 

during simulation. It also constrains the magnitude of flux through Eha/Ehb to 10% of the 196 

methane secretion rate to enforce our assumption that Eha/Ehb can only play an anaplerotic role 197 

during growth.  198 

removeEhaBounds.m 199 

This Matlab script removes the constraints on iMR539 for the Eha/Ehb reaction(s), allowing flux 200 

up to standard lower/upper bounds of -1000/1000. 201 

optimizeThermoModel.m 202 

This Matlab script adds overall free energy predictions for simulating the iMR539 model, 203 

returning a predicted value for overall Gibbs free energy. It is dependent on the presence of a 204 

“freeEnergy” array in the supplied model, a feature which exists only in the Matlab version of 205 

iMR539 (iMR539.mat). For more information on this script, please refer to Supplementary File 206 

4.  207 



switchToSpecificFd.m 208 

This Matlab script changes several reactions in the iMR539 model by creating 2 new specific 209 

types of ferredoxin. The original ferredoxin species—cpd11620 and cpd11621—are considered 210 

“promiscuous” ferredoxins and this script creates specific species—Fdrd*1/2 and Fdox*1/2—211 

that each appear in only a few reactions. These changes have little effect on standard growth 212 

predictions; however, they may prove important in future simulations involving ferredoxin 213 

specificity.  214 

 215 
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