Study	Demographics	EMG Equipment and Techniques	Design	Methods	Outcomes
1.Nummela et al 1993	Age range 20-28(25+/-3yrs) Mean Height 1.83+/-0.06m	Bipolar surface electrodes Constant electrode	10 sprinters 400m runners/hurdlers All male	Two 400m runs performed separately on two successive days on outdoor track	The role of central and peripheral fatigue was evaluated by comparing maximal sprint running in fatigued and non-fatigued conditions.
	Mean Weight 73+/- 6kg	distance 20mm on each muscle belly	EMG successfully recorded in7/10	Day One: subjects ran a maximal 20m, with a flying start over 40m followed by a 400m time trial with	AEMG of RF increased significantly during the submaximal 20m run to the end of 400m during in the braking phase (p =0.05) no significant changes were seen in the other three
	All male	Electrode places marked for each day EMG transmitter fixed with belt to waist. Extra load 1.8kgs EMG activity was amplified and recorded telemetrically)	Participants Outdoor track 4x leg muscles of the right leg Gastrocnemius medialis GAm Biceps Femoris BF Vastus Lateralis VL Rectus Femoris RF	Day Two: subjects ran sub-maximal 20m runs with a flying start at the average speed of the first 100m during the 400m run on the previous day. The maximal and sub-maximal 20m runs were run 3-5 times and the 400m only once. Non-smoothed EMG signals were rectified, integrated and averaged (AEMG) for three phases of	 muscles. Comparison of the two maximal conditions, maximal 20m and the 400m AEMG of GAm and BF were significantly greater during non-fatigued condition in the propulsion phase (p<0.001) and (p<0.05) respectively. The AEMG of all the muscles differed significantly between the different runs in the braking (p<0.01), the propulsion (p<0.05) and the pre-activation phase (p<0.05). The increase in AEMG was 28% in the braking phase and 8% in the propulsion phase. There was a significant difference in the EMG activity in BF and GAm in the propulsion phase between fatigued 400m run and non-fatigued and maximal 20m-run.
				running: the pre-activation (50ms prior to ground phase), braking and propulsion phases.	The AEMG of RF and VL did not differ between these two conditions
2.Nummela et al 1992	Mean age 23.7 S.D 3.5	Bipolar surface electrodes Constant electrode	6 sprinters All male Gastrocnemius medialis	Two days of 200m on indoor track Day One: subjects ran a maximum speed test over 200m and 400m	EMG recordings were measured during all runs and drop jumps. A loose sole with a special switch was used to determine contact times during all runs.
	Mean Height 186cm S.D 5 Mean BM 75kg	distance 20mm Placed longitudinally over motor point of	GAm, biceps femoris,BF rectus femoris, RF vastus lateralis,VL	Day 2:subjects 100m and 300m with 20m flying start on each day.	EMG and EMG:running velocity ratio increased progressively with running distance. EMG activity was greatest in both muscles during the ground
	SD 7	muscles EMG transmitter fixed	One Leg: Right Leg Only GAm and VL used	A rest period of five hours between runs was allocated on each day.	reaction phase of the 400m sprint (p<0.05). Both the EMG:force ratio in drop jumps and EMG:running
	Mean Training years 6 SD 2	with belt. Extra load 3kgs	in final analysis Mean Training years 6	Before the 400m sprint and immediately after each run, the subjects performed drop jumps	speed ratio increased during the second half of the 400m, suggesting primary cause of fatigue in the 400m sprint is

		Wired system EMG	SD2	from a height of 39cm.	
		signals stored on magnetic tape			
3.Mastalerz et al 2012	Mean age 24+/-2yrs Mean BM72+/-2.2kg	Self adhesive, disposable, surface electrodes	4 professional 400m runners	Subjects ran a 400m run at four different intensities timed at every 100m on an indoor athletic tartan track.	Mean power frequency (MPF) increased by 23.6% biceps femoris (BF) and 19.5% rectus femoris (RF) in left leg compared with 17.5% (BF) and 12.5% (RF) in right leg.
	Mean Height177+/-1.3cm All male	Skin shaved, cleaned with isopropyl alcohol,abraded with coarse gauze	Rectus Femoris RF Biceps Femoris BF both legs	Need to add more here	During the run with maximum intensity, a 30% difference between left and right BF and 11% for RF fatigue was observed in the first 25 seconds and decreased to 3% for BF and 9% for RF after the 25^{th} second of the testing.
		Electrode placement Validated by			Increases in fatigue measured by EMG activity were only seen in highest velocity run.
		Winter et al 8mm diameter, 20mm intraelectrode distance			Greater fatigue was noted in the left limb compared to the right during the 400m run on the tartan track.
		SEMG signal amplified and recorded telemetrically			The differences between both legs and the more substantial load on the BF is likely due to the result of the curving part of the track. This effect was also observed in RF but not as significantly.
4.Paavolainen et al 1999	Mean Age HC23.8+/-3.6 LC 24.3+/-2.8 Mean BM HC68.5+/-6.2	Beckman miniature skin electrodes Skin dry shaved, rubbed with sandpaper, cleaned with alcohol	19 athletes 9 high calibre (HC) and 10 low calibre(LC) runners/orienteers	10k using a 200m distance on an indoor track with a 9.4m long force platform system consisting of five 2D and 3D force plates.	In the maximal 20m runs the average integrated EMG (IEMG) of VL, BF and GA during the pre contact and contact phases were 28.5-57.2% lower (p<0.001) from the 20m after to the 20m before. The IEMG:force ratio of the total contact, braking and
	LC 71.3+/-6.0 Mean Height HC178.9+/-6.1 LC180.1+/-4.3	Electrodes positioned longitudinally over belly of the muscle	Indoor Track Vastus lateralis VI, Rectus Femoris RF,Biceps Femoris BF,	after running 3,5,7 and 9km all subjects ran a 200m constant velocity lap at a speed of 4.5km/s. The athletes ran 20m before and 20m after the 10K at maximal	propulsion phases decreased by 35.1-13.5% (p<0.05-0.001) from 20m before to 20m after. No differences were seen within each group. During the constant velocity the average IEMG activity in VL increased with no changes in BF or GA.
		Intra-electrode distance of 20mm EMG signals amplified and recorded	Gastrochemius medialis GAm measured One Leg: Right leg 19 elite cross-country	speed.	No significant changes occurred in the IEMG:force ratio during the constant velocity lap. The EMG measurements for RF during the constant velocity laps and the after lap were successful for only 11/19 subjects leaving only the remaining three muscles for testing.
		telemetrically	runners Background Training years		The decreased IEMG:force ratio under these experimental conditions may not only be peripheral but have a central origin.

			HC 9.1+/-3.2 LC9.0+/-2.4		
5.Rahnama et al 2006	Mean age21.4+/-3.1yrs Mean BM74.5+/-8.5kg Mean Height1.77+/-0.06m	Two elcectrodes per muscle Bipolar surface electrodes 20mm diameter Skin shaved, washed with alcohol, lightly abraded 20mm intraelectrode distance RF midway between ASIS and superior border of patella BF:Long head, midway between ischial tuberosity and lateral condly of femur TA over greatest area of muscle bulk Gastrocnemuis, lateral head over greatest area of muscle bulk		exercise protocol. This included	to remove circadian variables. During the first session the subjects performed a warm-up including soccer specific stretching exercises and running at low speed on treadmill. The subject then performed the EMG measurement treadmill protocol for the soccer specific exercises. During the second session, a control test was performed where the same warm was conducted followed by the EMG measurement protocol. The subjects then rested for 45 minutes before repeating the protocol. They had another 45 minute before the final EMG measurements were taken. Each muscle showed a statistically significant increase in EMG activity as speed increased in each condition (exercise and control) (p<0.001).RF (p<0.05), BF (p<0.01) & TA (p<0.05) all decreased activity at each fatigue state, but not GA. After
6. Patras et al 2011	All male Mean Age 24.8+/-5.3 Mean BM77.3+/-7.5kg Mean Height 177+/-5.3cm	Pre-gelled Skin shaved and rubbed with abrasive paper 20mm fixed intra- electrode distance 10mm diameter	14 amateur soccer players All had ACL reconstructed knees Treadmill testing Vastus Lateralis Both Legs Alteralis Both	players performed a GXT test to volitional exhaustion to determine VO_{2max} , lactate threshold. Testing was performed after a warm up of 3 minutes walking at self-selected speed followed by 5 mins jogging at 8km/hr. The	Final EMG for the reconstructed leg had moderate relationship with lactate threshold (r=0.47, p=0.09 and velocity at 4mM (r=0.52, p=0.06) which was not statistically significant.

			All with bone patella bone graft-18.5+/-4.3 months before testing Return to sports 6months after reconstruction following widely accepted criteria	10km/hr and increased by 2km/hr every 3 minutes. In the second visit EMG activity was recorded from vastus lateralis (VL) bilaterally during 10min run for 15 secs at 3 rd & 10 th minute.	did not demonstrate relationship, which may indicate that injury and surgery modify ability of local muscles to tolerate high intensity running.
7. Gefen et al 2002	2 male: 25, 17 2 female:28, 17	Shaved skin, scrubbed with alcohol Surface electrode discs 9mm No exact placement stated	4athletes Treadmill Testing Gastrocnemius lateralis, GAI and medialis GAm, Soleus S, Tibialis anterior TA, Extensor Halucis Longus EHL, Peroneus longus PL One Leg	Marching in athletes was included because a similar method was used to the other studies and importantly the treadmill velocity for the test was 8km/hr, which is the speed of a slow jog or run and faster than a quick walk (-6.5km/hr). The treadmill marching distance was of 2km with 30 inversion/eversion motions of the foot performed pre and post exercise with and without shoes.	 fatigue occur in the LGA and PL muscles which were shown to decrease by 20%. Reductions of 15-20% in duration of signal bursts were observed in MGA and S. The maximum median frequency, MF decrease was recorded for the PL and GAI, fatigue was evident in these muscles after 10 minutes. Due to small numbers single subject designed statistics were designed to test the significance of the substantial drops in of
8.Hanon et al 2005	Mean age26.8+/-5.13 MeanBM65.4+/-2.2kg Mean Height 179.9+/-3.72cm	Bipoloar configuration 10mm diameter Skin scraped No exact placement stated	9 trained athletes Treadmill testing 6 muscles GM,BF, VL, RF, TA, GaS One leg All male, well trained 5-7 sessions per week	Treadmill testing with incremental running tests, increasing in speed every four minutes for twenty minutes, with one minute rest intervals between each. One leg was used for EMG recordings with isometric contractions of each muscle used prior to testing Burst EMG and distance integrated EMG (iEMG), readings were during flight (f) and contact (c) phases.	On the burst scale, an increase in iEMG between start and end was shown for BF-contact and RF-contact. RF-flight before the end p<0.05. For the distance scale GA was the only muscle not to show an increase in iEMG between the 20m at the start and the 20m at the end. The iEMG increased significantly during the last stage for both VL and TA. For BF-f+c and RF-c this increased significantly during middle and penultimate stages. Different muscles exhaust earlier and are different at different speeds with GA, VL at lower speeds BF and RF and higher speeds. The hip mobilising muscles BF and RF were seen to fatigue

					earlier than the other muscles. This is consistent with the linear increase of stride length and speed and explains the resulting fatigue.
9. Mizrahi et al	Calisthenics twice per week Mean Age: 30.1+/-5.1 Mean height: 173.9+/-7.3cm Body Mass 70.4kg+/-9.2Kg	No documented skin preparation Two pairs of small bipolar disposable Ag/AgCl snap sur- face electrodes 10mm diameter No exact placement stated	22 males Treadmill Testing Gastrocnemius and quadriceps Right leg EMG successfully recorded in 12 subjects	Each subject was subjected to an incremental load on the treadmill with an increasing speed to determine his anaerobic threshold which was determined non- invasively as the onset of initial increase in each of the ventilatory equivalent for oxygen (WVO2) and ventilatory equivalent for carbon dioxide (VE/VCO2) The running speed was initially 1 m/s and was increased every 30 sec by increments of 0.22 m/s until the point of anaerobic threshold determination. According to PETCO2 by the end of the 30 min of running on the treadmill all subjects were divided into two groups. Surface electrodes were placed over the quadriceps and gastrocnemius muscles of the right leq.	group (n = 12) did not show a significant change of the amount of PETCO2 at the end of the test and was defined as the non- fatigue group. The average speed for the fatigue group (2.76 ± 0.29 m/sec) was not significantly different from the non-fatigue group (2.75 ± 0.48 m/sec). Only twelve of the subjects were instrumented with the surface electrodes for EMG evaluation due to procedural constraints. The mean, root mean square, mean and median frequency were calculated. In the fatigued gastrocnemius group there was a decrease in the time domain, but it was not statistically significant. No change was noted in the frequency domain results. The gastrocnemius data for the non-fatigue group also do not indicate a significant variation with time. As for the case of the
10. Mizrahi et al	Mean age 24.2 SD, 3.7 Mean height 175.5 SD, 5.9 cm, leg length 90.0 SD, 3.0 cm	Two bipolar Ag/AgCl electrodes 10mm diameter Placed 2cm apart in centre of rectus femoris muscle belly No skin preparation documented	14 males, student population Treadmill Testing Recreational runners 8- 10km/week Quadriceps Right leg	There were two running tests, separated by at least one week to ensure fatigue-free initial conditions: one level running and the other at a decline angle of -4°. The running tests were performed on a treadmill. Prior to the running tests, the anaerobic threshold was determined for each subject by monitoring the respiratory data (as per study 9) in level running.	limb. The markers were attached to the right leg in the sagittal plane to the greater femoral trochanter, the lateral condyle of femur, the lateral malleolus, below the lateral malleolus and opposite to the head of the fifth metatarsal.
	Body mass 73.2 SD, 8.3 kg			Running was at a speed exceeding	Metabolic fatigue was not reached in downhill running. No

	each subject by 5% and lasted 30 min. Before the test, a 15 min warm	significant changes in either iEMG or mean power frequencies MPF were noted in level running despite the fact that the anaerobic threshold was exceeded in this case and metabolic fatigue did develop. In downhill running,
		Statistically significant increases during running were noted in the quadriceps iEMG from the 20th min and onwards and in the MPF from the 15th min and onwards.