## **Electronic Supplementary Material**

Metal complexation chemistry used for phosphate and nucleotide determination: an investigation of the Yb<sup>3+</sup>pyrocatechol violet sensor

Ernestas Gaidamauskas<sup>a</sup>, Kanokkarn Saejueng<sup>b</sup>, Alvin A. Holder<sup>a</sup>, Subalita Baruah<sup>a</sup>, Boris A. Kashemirov<sup>b</sup>, Debbie C. Crans<sup>a\*</sup>, Charles E. McKenna<sup>b\*</sup>

<sup>a</sup> Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872 <sup>b</sup> Department of Chemistry, USC, Los Angeles, CA 90089-0744

Debbie C. Crans: Fax: 970-491-1801; E-mail: crans@lamar.colostate.edu

Charles E. McKenna: Fax: 213-740-0930; E-mail: mckenna@usc.edu

CONTENTS

Figure S1. The absorbance spectra upon addition of ATP to the 2:1 and 1:1  $Yb^{3+}$ : PV sensor Figure S2. The absorbance spectra upon addition of P<sub>i</sub> to the 2:1 and 1:1  $Yb^{3+}$ : PV sensor Figure S3. Speciation diagrams for solutions of  $Yb^{3+}$  and ATP.  $Yb^{3+}$  hydrolysis species are not included Figure S4. Speciation diagrams for solutions of  $Yb^{3+}$  and ATP.  $Yb^{3+}$  hydrolysis species are included



**Figure S1.** The absorbance spectra upon addition of ATP to the 100  $\mu$ M Yb<sup>3+</sup> and 50  $\mu$ M PV solution (a) and to the 50  $\mu$ M Yb<sup>3+</sup> and 50  $\mu$ M PV solution (b) in 10 mM HEPES buffer (pH 7.0). ATP concentration range (in  $\mu$ M) is shown next to the spectra.



**Figure S2.** The absorbance spectra upon addition of  $P_i$  to the 100  $\mu$ M Yb<sup>3+</sup> and 50  $\mu$ M PV solution (a) and to the 50  $\mu$ M Yb<sup>3+</sup> and 50  $\mu$ M PV solution (b) in 10 mM HEPES buffer (pH 7.0).  $P_i$  concentration range (in  $\mu$ M) is shown next to the spectra.



Figure. S3. Speciation diagrams for solutions of Yb<sup>3+</sup> and ATP in 0.1 M KCl. The data used were derived from Ref. [28]: ATPH<sup>3-</sup> (log  $\beta_{011} = 6.47$ ), ATPH<sub>2</sub><sup>2-</sup> (log  $\beta_{012} = 10.47$ ), ATPH<sub>3</sub><sup>-</sup> (log  $\beta_{013} = 12.64$ ), ATPH<sub>4</sub> (log  $\beta_{014} = 14.69$ ) ATP'H<sub>1</sub> (log  $\beta_{01-1} = -11.78$ ), YbATP<sup>-</sup> (log  $\beta_{110} = 6.44$ ), YbATPH (log  $\beta_{111} = 10.46$ ), YbATPH<sub>2</sub><sup>+</sup> (log  $\beta_{112} = 13.72$ ), YbATP(OH)<sup>2-</sup> (log  $\beta_{11-1} = -2.73$ ), YbATP'(OH)<sup>3-</sup> (log  $\beta_{11-2} = -11.79$ ), YbATP<sub>2</sub><sup>5-</sup> (log  $\beta_{120} = 10.56$ ). Dashed lines indicate conditions where precipitates may form.



**Figure. S4.** Speciation diagrams for solutions of Yb<sup>3+</sup> and ATP. The data used were derived from Ref. [28]: ATPH<sup>3-</sup> (log  $\beta_{011} = 6.47$ ), ATPH<sub>2</sub><sup>2-</sup> (log  $\beta_{012} = 10.47$ ), ATPH<sub>3</sub><sup>-</sup> (log  $\beta_{013} = 12.64$ ), ATPH<sub>4</sub> (log  $\beta_{014} = 14.69$ ) ATP'H<sub>-1</sub> (log  $\beta_{01-1} = -11.78$ ), YbATP<sup>-</sup> (log  $\beta_{110} = 6.44$ ), YbATPH (log  $\beta_{111} = 10.46$ ), YbATPH<sub>2</sub><sup>+</sup> (log  $\beta_{112} = 13.72$ ), YbATP(OH)<sup>2-</sup> (log  $\beta_{11-1} = -2.73$ ), YbATP'(OH)<sup>3-</sup> (log  $\beta_{11-2} = -11.79$ ), YbATP<sub>2</sub><sup>5-</sup> (log  $\beta_{120} = 10.56$ ). Yb<sup>3+</sup> hydrolysis species formation constants were taken from Ref. [50]: Yb(OH)<sup>2+</sup> (log  $\beta_{10-1} = -7.7$ ), Yb(OH)<sub>2</sub><sup>+</sup> (log  $\beta_{10-2} = -15.8$ ), Yb(OH)<sub>3</sub> (log  $\beta_{10-3} = -24.1$ ), and Yb(OH)<sub>4</sub><sup>-</sup> (log  $\beta_{10-4} = -32.7$ ). Dashed lines indicate conditions where precipitates may form.