
RNA-seq_analysis_tools	

About	

RNA-seq_analysis	tools	is	a	package	of	Python	scripts	designed	primarily	to	analyse	
differential	expression	and	splicing	between	samples	using	RNA-seq	data.	There	are	
also	scripts	for	obtaining	gene/transcript	sequences	and	co-ordinates.	The	scripts	
work	on	the	output	of	the	Tuxedo	suite	of	tools	for	RNA-seq	analysis	(Trapnell	et	al.,	
2012)	to	identify	genes,	transcripts,	or	introns	in	splice	forms	that	are	expressed	
above	a	user-specified	threshold	in	one	or	more	user-specified	samples	and	at	or	
below	a	user-specified	threshold	in	one	or	more	other	user-specified	samples.	

Citation	

To	cite	RNA-seq_analysis_tools	or	any	of	the	individual	scripts	please	cite	this	paper.	

Requirements	

All	the	scripts	in	RNA-seq_analysis_tools	require	Python.	They	have	been	tested	only	
with	Python	2.7.3.	Some	of	the	scripts	have	further	requirements;	see	the	
documentation	on	the	individual	scripts	below	for	more	information.	

	

	 	



Differential_expression	

About	

Differential_expression	is	a	combination	of	two	Python	scripts	for	analysing	
differential	expression	between	samples	using	RNA-seq	data.	These	scripts	work	on	
the	output	of	the	Tuxedo	suite	of	tools	for	RNA-seq	analysis(Trapnell	et	al.,	2012)	to	
identify	genes	or	transcripts	that	are	expressed	above	a	user-specified	threshold	in	
one	or	more	user-specified	samples	and	at	or	below	a	user-specified	threshold	in	
one	or	more	other	user-specified	samples.	Genes	are	identified	
with	differential_expression_genes.py	and	transcripts	are	identified	with	
differential_expression_transcripts.py.	
	
For	example,	Differential_expression	could	be	used	to	identify	putative	male-
specifically	expressed	genes,	which	are	expressed	in	males,	but	not	in	females.	It	
may	be	advisable	to	use	a	threshold	higher	than	0	FPKM	to	detect	genuine	
expression	of	genes,	to	reduce	false	positives,	and	to	use	a	threshold	higher	than	0	
FPKM	to	confirm	genuine	absence	of	expression	of	genes,	to	reduce	false	negatives.	
False	positives	or	false	negatives	could	be	caused	by	e.g.	errors	in	transcript	
assembly	or	sample	cross-contamination.	So	in	this	case	the	user	might	specify	a	
threshold	of	10	FPKM	for	male	samples	(genes	must	have	an	expression	level	above	
10	FPKM	in	these	samples),	and	0.5	FPKM	for	female	samples	(genes	must	not	an	
expression	level	above	0.5	FPKM	in	these	samples).	

The	information	output	by	Differential_expression	is	already	available	in	the	output	
of	Cuffdiff,	but	not	in	a	convenient	format;	Differential_expression	extracts	only	the	
genes	of	interest	and	lists	information	on	these	genes	in	a	convenient	tabular	
format.	

Requirements	

Differential_expression	requires	Python.	It	has	been	tested	only	with	Python	2.7.3.	

Differential_expression	works	on	the	output	of	the	Tuxedo	suite	of	tools	for	RNA-seq	
analysis.	A	file	output	by	Cuffdiff	is	required.	It	has	been	tested	only	with	Cuffdiff	
v2.1.1.	

Usage	

Both	Differential_expression	scripts	have	a	number	of	required	and	optional	
arguments,	detailed	below.	



Required	arguments	

• above_threshold	-	space-separated	list	of	samples	for	which	
genes/transcripts	output	must	have	an	FPKM	value	above	t	(see	'Optional	
arguments'	section);	the	sample	names	must	be	written	exactly	as	in	the	
isoform_exp.diff	file	(see	below)	

• absent	-	space-separated	list	of	samples	for	which	genes/transcripts	output	
must	not	have	an	FPKM	value	above	t_absent	(see	'Optional	arguments'	
section);	the	sample	names	must	be	written	exactly	as	in	the	isoform_exp.diff	
file	(see	below)	

• expression	-	path	to	isoform_exp.diff	file	output	by	Cuffdiff	

Optional	arguments	

• t	-	threshold	FPKM	value	-	genes/transcripts	output	must	have	an	FPKM	
value	above	this	in	samples	listed	in	the	above_threshold	argument;	default	
value	is	0	

• t_absent	-	threshold	absent	FPKM	value;	genes/transcripts	output	must	not	
have	an	FPKM	value	above	this	in	samples	listed	in	the	absent	argument;	
default	value	is	0	

• other	-	space-separated	list	of	samples	for	which	expression	information	is	
desired	but	for	which	expression	values	do	not	influence	the	genes/transcript	
output;	the	sample	names	must	be	written	exactly	as	in	the	isoform_exp.diff	
file	

Example	

To	identify	putative	male-specifically	expressed	genes	as	per	the	example	in	the	
'About'	section,	the	command	might	be:	

./differential_expression_genes.py	-t	10	-t_absent	0.5	-above_threshold	
male1	male2	-absent	female1	female2	-expression	isoform_exp.diff			

Output	

Both	Differential_expression	scripts	produce	one	output	file,	
called	gene_expression_profiles.txt	fordifferential_expression_genes.py,	
and	transcript_expression_profiles.txt	for	differential_expression_transcript
s.py.	This	file	lists	the	genes/transcripts	identified	as	fitting	the	user-specified	
criteria	(e.g.	male-specifically	expressed)	and	their	expression	values	in	the	user-
specified	samples	in	tabular	format.	

	 	



Differential_splicing	

About	

Differential_splicing	is	a	Python	script	for	analysing	differential	splicing	between	
samples	using	RNA-seq	data.	It	works	on	the	output	of	the	Tuxedo	suite	of	tools	for	
RNA-seq	analysis	(Trapnell	et	al.,	2012)	to	identify	introns	in	splice	forms	that	are	
expressed	above	a	user-specified	threshold	in	one	or	more	user-specified	samples	
and	at	or	below	a	user-specified	threshold	in	one	or	more	other	user-specified	
samples.	

For	example,	Differential_splicing	could	be	used	to	identify	putative	male-specific	
introns,	which	are	present	in	splice	forms	expressed	in	males,	but	absent	from	splice	
forms	of	the	same	genes	expressed	in	females.	It	may	be	advisable	to	use	a	
threshold	higher	than	0	FPKM	to	detect	genuine	presence	of	splice	forms,	to	reduce	
false	positives,	and	to	use	a	threshold	higher	than	0	FPKM	to	confirm	genuine	
absence	of	splice	forms,	to	reduce	false	negatives.	False	positives	or	false	negatives	
could	be	caused	by	e.g.	errors	in	transcript	assembly	or	sample	cross-contamination.	
So	in	this	case	the	user	might	specify	a	threshold	of	10	FPKM	for	male	samples	
(introns	must	be	in	transcripts	with	an	expression	level	above	10	FPKM	in	these	
samples),	and	0.5	FPKM	for	female	samples	(introns	must	not	be	in	transcripts	with	
an	expression	level	above	0.5	FPKM	in	these	samples).	

Requirements	

Differential_splicing	requires	Python.	It	has	been	tested	only	with	Python	2.7.3.	It	
also	requires	bedtools.	It	has	been	tested	only	with	bedtools	version	2.16.2.	

Differential_splicing	takes	a	few	hours	to	run	on	a	standard-sized	dataset	and	so	is	
probably	best	run	on	a	high	performance	server	with	multiple	cores.	

Differential_splicing	works	on	the	output	of	the	Tuxedo	suite	of	tools	for	RNA-seq	
analysis.	Files	output	by	Cuffdiff,	Cuffmerge	and	TopHat	are	required.	It	has	been	
tested	only	with	Cuffdiff	v2.1.1,	Cuffmerge	v1.0.0	and	TopHat	v2.0.9.	

Usage	

Differential_splicing	has	a	number	of	required	and	optional	arguments,	detailed	
below.	

	



Required	arguments	

• above_threshold	-	space-separated	list	of	samples	for	which	introns	output	
must	be	in	splice	forms	with	an	FPKM	value	above	t	(see	'Optional	
arguments'	section);	the	sample	names	must	be	written	exactly	as	in	the	
isoform_exp.diff	file	(see	below)	

• absent	-	space-separated	list	of	samples	for	which	introns	output	must	not	be	
in	splice	forms	with	an	FPKM	value	above	t_absent	(see	'Optional	arguments'	
section);	the	sample	names	must	be	written	exactly	as	in	the	isoform_exp.diff	
file	(see	below)	

• genome	-	path	to	genome	FASTA	file	
• expression	-	path	to	isoform_exp.diff	file	output	by	Cuffdiff	
• gtf	-	path	to	merged.gtf	file	output	by	Cuffmerge	
• junctions	-	space-separated	list	of	paths	to	junctions.bed	files	output	by	

Tophat	for	above_threshold	andother	samples,	with	the	paths	for	
the	above_threshold	samples	listed	first	and	in	the	same	order	as	for	
theabove_threshold	argument,	and	the	paths	for	the	other	samples	listed	
second	and	in	the	same	order	as	for	theother	argument	

Optional	arguments	

• t	-	threshold	FPKM	value	-	introns	output	must	be	in	splice	forms	with	an	
FPKM	value	above	this	in	samples	listed	in	the	above_threshold	argument;	
default	value	is	0	

• t_absent	-	threshold	absent	FPKM	value;	introns	output	must	not	be	in	
transcripts	with	an	FPKM	value	above	this	in	samples	listed	in	
the	absent	argument,	and	there	must	be	an	alternative	transcript	for	the	
gene	in	question	with	an	FPKM	value	above	this	in	at	least	one	of	the	samples	
listed	in	the	absent	argument	(otherwise	the	program	would	identify	introns	
in	genes	with	sample-specific	expression	as	well	as	genes	with	sample-
specific	splicing);	default	value	is	0	

• other	-	space-separated	list	of	samples	for	which	expression	information	is	
desired	but	for	which	expression	values	do	not	influence	the	introns	output;	
the	sample	names	must	be	written	exactly	as	in	the	isoform_exp.diff	file	

• min_specific_intron	-	introns	output	must	have	a	length	in	nucleotides	
above	this	value;	default	value	is	10	

Example	

To	identify	putative	male-specific	introns	as	per	the	example	in	the	'About'	section,	
the	command	might	be:	

./differential_splicing.py	-t	10	-t_absent	0.5	-above_threshold	male1	male2	
-absent	female1	female2	-genome	genome.fa	-expression	isoform_exp.diff	-gtf	
merged.gtf	-junctions	TopHat_files/Male1/junctions.bed	
TopHat_files/Male2/junctions.bed	TopHatfiles/Female1/junctions.bed	
TopHatfiles/Female2/junctions.bed			



Output	

Differential_splicing	produces	a	number	of	output	files:	

• specific_intron_information	-	This	file	lists	the	splice	forms	with	introns	
identified	as	fitting	the	user-specified	criteria	(e.g.	male-specific)	and	
provides	further	details	in	tabular	format,	as	described	below.	The	final	three	
columns	provide	information	useful	for	primer	design	for	experimental	
validation.	*Note:	Introns	that	are	present	in	multiple	different	splice	forms	
will	be	listed	multiple	times	-	one	line	corresponds	to	one	splice	form.	

o The	first	column	gives	the	locus	of	the	gene	in	the	genome.	
o The	second,	third	and	fourth	columns	give	information	on	the	gene	

and	transcript	ID.	
o The	next	columns	give	the	expression	levels	of	the	splice	form	in	each	

of	the	user-specified	samples.	
o The	next	columns	give	the	number	of	reads	spanning	the	predicted	

exon-exon	junction	for	the	intron	in	each	of	the	user-specified	
samples.	

o The	next	column	gives	the	location	in	the	sequence	provided	in	the	
final	column	of	the	predicted	exon-exon	junction	for	the	intron	in	
question.	This	number	is	the	nucleotide	on	the	3'	side	of	the	exon-
exon	junction.	This	is	useful	when	designing	primers	to	span	this	
junction,	to	experimentally	validate	the	predicted	intron	-	for	example	
this	value	minus	1	can	be	used	for	the	value	of	the	'Overlap	junctions'	
parameter	of	Primer-BLAST	to	design	primers	spanning	this	junction.	

o The	next	column	gives	the	location	in	the	sequence	provided	in	the	
final	column	of	any	other	predicted	exon-exon	junctions.	These	may	
be	useful	to	know	as	it	may	be	advisable	when	designing	primers	to	
experimentally	validate	the	predicted	intron	in	question	to	avoid	
primers	spanning	other	predicted	exon-exon	junctions,	as	this	may	
complicate	matters	and	lead	to	false	negative	results.	

o The	final	column	gives	the	transcript	sequence	surrounding	the	
intron.	This	is	useful	for	primer	design.	A	maximum	of	500	bp	either	
side	of	the	intron	is	shown,	as	a	typical	PCR	product	is	not	longer	than	
1000	bp.	

• intron_co-ordinates.bed	-	This	file	lists	the	genomic	co-ordinates	of	the	
introns	identified	as	fitting	the	user-specified	criteria	(e.g.	male-specific).	This	
is	useful	for	extracting	the	sequences	of	the	introns	from	the	genome	FASTA	
file	(using	bedtools).	

• gene_expression_profiles.txt	-	This	file	lists	the	FPKM	values	for	all	
transcripts	from	genes	identified	as	having	at	least	one	transcript	with	an	
intron	fitting	the	user-specified	criteria.	

• Sequences	-	This	folder	contains	FASTA	files	for	the	genes	with	introns	
identified	as	fitting	the	user-specified	criteria	(e.g.	male-specific).	The	file	
called	all_genes_genomic_sequences	is	a	multi-FASTA	file	containing	genomic	
sequences	for	all	the	relevant	genes.	This	is	useful	if	you	want	to	BLAST	the	



genes,	e.g.	if	they	are	not	annotated	and	you	want	to	know	what	function	
they	may	have.	The	remaining	files	in	this	folder	are	multi-FASTA	files	for	
each	individual	gene.	The	first	entry	in	each	file	is	the	genomic	sequence	for	
the	gene.	This	is	followed	by	the	sequence(s)	for	the	transcript(s)	identified	
as	having	introns	fitting	the	user-defined	criteria.	This	is	followed	by	the	
sequence(s)	for	the	other	transcript(s)	for	that	gene.	The	transcript	
sequences	have	dashes	for	nucleotides	in	introns,	so	that	all	sequences	line	
up	with	each	other	when	imported	into	programs	for	visualisation	
(e.g.	Geneious).	

	 	



Get_gene_co-ordinates	

About	

Get_gene_co-ordinates	is	a	Python	script	designed	for	obtaining	gene	co-ordinates	
from	the	output	of	the	Tuxedo	suite	of	tools	for	RNA-seq	analysis	(Trapnell	et	al.,	
2012)	for	genes	of	interest,	though	it	could	also	be	used	on	gtf	files	from	other	
sources.	This	might	be	useful	for	e.g.	comparing	the	co-ordinates	of	predicted	genes	
to	those	of	annotated	genes,	to	identify	genes	where	the	annotation	may	be	
incomplete.	

Requirements	

Get_gene_co-ordinates	requires	Python.	It	has	been	tested	only	with	Python	2.7.3.	

Usage	

Get_gene_co-ordinates	has	two	required	arguments,	detailed	below.	

Required	arguments	

• gtf	-	path	to	gtf	file	
• genes	-	path	to	text	file	containing	list	of	genes	(in	a	single	column)	for	which	

transcript	sequences	are	desired	

Example	

To	obtain	gene	co-ordinates	for	selected	genes,	the	command	might	be:	

./get_gene_co-ordinates.py	-gtf	merged.gtf	-genes	genes.txt		

Output	

Get_gene_co-ordinates	produces	one	output	file,	called	gene_co-ordinates.bed.	
This	is	a	BED	file	containing	co-ordinates	for	all	the	genes	listed	in	the	input	text	file.	

	 	



Get_transcript_sequences	

About	

Get_transcript_sequences	is	a	pair	of	Python	scripts	for	obtaining	transcript	
sequences	from	the	output	of	the	Tuxedo	suite	of	tools	for	RNA-seq	
analysis	(Trapnell	et	al.,	2012),	though	it	could	also	ge	used	on	gtf	files	from	other	
sources.	The	get_all_transcript_sequences.py	script	obtains	all	predicted	
transcript	sequences,	which	might	be	useful	for	e.g.	creating	a	BLAST	database	to	
BLAST	other	sequences	against.	Theget_transcript_sequences_aligned.py	script	
obtains	predicted	transcript	sequences	in	an	aligned	format	for	genes	of	interest,	
which	might	be	useful	for	e.g.	primer	design	to	test	genes	of	interest.	

Requirements	

Get_transcript_sequences	requires	Python.	It	has	been	tested	only	with	Python	
2.7.3.	It	also	requires	bedtools.	It	has	been	tested	only	with	bedtools	version	2.16.2.	

Usage	

Both	Get_transcript_sequences	scripts	have	two	required	arguments,	
and	get_transcript_sequences_aligned.py	has	one	additional	argument,	detailed	
below.	

Required	arguments	

• genome	-	path	to	genome	FASTA	file	
• gtf	-	path	to	gtf	file	

Additional	argument	for	get_transcript_sequences_aligned.py:	

• genes	-	path	to	text	file	containing	list	of	genes	(in	a	single	column)	for	which	
transcript	sequences	are	desired	

Example	

To	obtain	sequences	for	all	transcripts	predicted	in	the	gtf	file,	the	command	might	
be:	

./get_all_transcript_sequences.py	-gtf	merged.gtf	-genome	genome.fa		
To	obtain	aligned	transcript	sequence	for	selected	genes,	the	command	might	be:	

./get_transcript_sequences_aligned.py	-gtf	merged.gtf	-genome	genome.fa	-
genes	genes.txt		



Output	

The	get_all_transcript_sequences.py	script	produces	one	output	file,	
called	all_transcripts.fa.	This	is	a	multi-FASTA	file	containing	sequences	for	all	the	
transcripts	predicted	in	the	gtf	file.	
The	get_transcript_sequences_aligned.py	script	produces	multiple	output	files,	
one	for	each	gene	listed	in	the	input	text	file.	Each	is	a	multi-FASTA	files	containing	
sequences	for	the	genomic	sequence	followed	by	all	the	transcripts	predicted	in	the	
gtf	file	for	that	gene.	The	transcript	sequences	have	dashes	for	nucleotides	in	
introns,	so	that	all	sequences	line	up	with	each	other	when	imported	into	programs	
for	visualisation	(e.g.	Geneious).	

	

	

	


