Supplemental data for:

Investigating inducible short-chain alcohol dehydrogenases/reductases clarifies rice oryzalexin biosynthesis

Naoki Kitaoka¹, Yisheng Wu², Jiachen Zi³, Reuben J. Peters*

Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, U.S.A.

Figure S1. Alignment of SDRs investigated in this report. The TGxxxGxG coenzyme binding and catalytic YxxxK motifs are underlined, while the Asp residue indicating the preference for NAD⁺ over NADP⁺ is indicated by an asterisk. Note that OsSDR110C-MI4 appears to be truncated at the N-terminus relative to the other MI clade members, and may represent a pseudo-gene.

	20		40		60		
OCMAS/SDR110C-MS1	MAAC		C C L		CKNANTCCA	SCUCACTAR	26
OSMAS/SDR110C-MS1	MAAG				CKWAWLTCCA	SCICACTARL	25
OrSDR110C-MS2	MAC		S S NC		CKWALLTCCA	SCICECTARI	33
OcsDR110C-M33			S DACENSCES		CKWANITCCA	SCICKATAKE	60
OSSERTIOC-MIS		EINNALGAAI	SFAUENSUES	I A SIN SAUREA	CKWALLTCCA	SCICKNTAKE	20
Os5DR110C-MI4		DCDDTDAASS			CKWANITCCA	SCICRATARE	50
OSSERTIOC-MIZ		NUNNIPANJJ	33WINEA		UNVAVII UUA	JUIUNAIAEE	1 30
		1		100		120	1
OsMAS/SDR110C-MS1	FVKHGARVVV	ADIQDELGAS	LVAELGPDAS	S YVHC DVT NE	GDVAAAVDHA	VARFGKLDVN	96
OsSDR110C-MS2	FVKHGARVVV	ADIQDELGAS	LVAELGPDAS	S YVHC DVT NE	GDVAAAVDHA	VATEGKLDVM	95
OsSDR110C-MS3	FVK HGAQVVV	ADIQDEAGAR	LCAELGSATA	S YVR C DVT S E	DDVAAAVDHA	VARYGKLDVN	97
OsSDR110C-MI3	FIENGAKVIM	A DV Q D D L G H S	TAAELGPDA-	SYTRCDVTDE	AQVAAAVDLA	VKRHGHLDIL	119
OsSDR110C-MI4	FIKNGAKVII	ADVQDELGHS	AAA <mark>K L</mark> G P D A –	SYTHCDVTDE	AQVEAAVDLA	VRLHGHLDIL	89
OsSDR110C-MI2	FVRNGAKVIL	ADVQDDLGHA	VAAELGADAA	SYARCDVTDE	AQVAAAVDLA	VARHGRLDVV	116
		* 140		160		180	1
OCMAS/SDB110C MS1		DCEDMSECT					1.54
OSMAS/SDR110C-MS1		PCERITEST					154
OrsDR110C-MS2							155
OSSDR110C-M33						CH LLCTASE	170
OSSDR110C-MIS		PODDMASVDL					1/0
OcsDR110C-MI2							140
OSSDR110C-MIZ							1/3
		1		220		240	1
OsMAS/SDR110C-MS1	SSSVSGAASH	AYTTSKHALV	GETENAAGEL	GRHGIRVNCV	S P A G V A T P L A	RAAMGMD	211
OsSDR110C-MS2	S S S V S G T A S H	AYTTSKRALV	GETENAAGEL	GRHGIRVNCV	SPAAVATPLA	RAAMGMD	210
OsSDR110C-MS3	A <mark>S</mark> A V A G T A S H	AYTCAKRALV	GLTENAAAEL	GRHGIRVNCV	S P A A A A T P L A	TGYVGL E	213
OsSDR110C-MI3	TGVMPMPNIA	LYAVSKATTI	A I V R AAA E P L	SRHGLRVNAI	S P H G T R T P M A	MHVLSQMYPC	238
OsSDR110C-MI4	AG <mark>VMPIPNI</mark> A	MYSVSKATTI	A I V R AAA E P L	SRHGLRVNAL	S P T G T R T P M M	MHIISQMTPC	208
OsSDR110C-MI2	AGVIGGVAVP	HY <mark>SVSK</mark> AAVL	GLVRAVAGEM	A <mark>r s</mark> gvrvna i	S P N Y I WT P MA	AVAFARWYPS	235
		260		280		300	1
OcMAS/SDR110C_MS1					VVSCONERVE		268
OsDR110C-MS2		EKSANLKCVC			VVS CONLEVE	CCVSVVN-SS	268
OsSDR110C-MS2		FAVANLKCV-	RERVEDIAAA		VVSCHNELID	CCCSIVN-PS	269
OsSDR110C-MI3					YVNCHNLVVD	COLLENKOS	296
OSDR110C-MI4					YVNCHNLVVD	CCETTHKCD	266
OSDR110C-MI2	RSADDHRRIV			AVELASDEAK	YVNCHNLVVD	CCYTYCKYPN	295
035571100-1012							233
OSMAS/SDR110C-MS1	EGEERD- 274						
OsSDR110C-MS2	FGFFRD- 274						
OsSDR110C-MS3	EGIEKD* 276						
OsSDR110C-MI3	IRLN 300						

OsSDR110C-MI4 NRM---N 270 OsSDR110C-MI2 MPVPDGH 302

OsMAS/SDR110C-MS1 Ρ S OsSDR110C-MS2 Total Ion Counts Total Ion Counts S Р l 17.0 Retention Time (min.) 16.5 17.5 17.5 16.5 16.0 17.0 18.0 16.0 18.0 Retention Time (min.) OsSDR110C-MI3 OsSDR110C-MS3 Р Total Ion Counts Total Ion Counts Ρ 16.5 17.5 1 17.5 17.0 Retention Time (min.) 16.0 16.0 18.0 16.5 17.0 18.0 Retention Time (min.) 91 P (3-keto-*syn*-pimaradiene) S (3β-hydroxy-syn-pimaradiene) 255 286 105 119 lon Counts lon Counts 257 229 227 288 200 *m/z* 200 100 150 250 150 250 300 300 100 m/z (minin (minin H H HO 0

Figure S2. SDR activity with the simplified substrate analog 3β -hydroxy-*syn*-pimaradiene. GC-MS chromatograms for each active SDR, mass spectra for the substrate and product, and catalyzed oxidation reaction.

Figure S3. SDR activity with the simplified substrate analog 2α -hydroxy-*ent*-cassadiene. GC-MS chromatograms for each active SDR, mass spectra for the substrate and product, and catalyzed oxidation reaction.

Figure S4. SDR activity with the simplified substrate analog 3α -hydroxy-*ent*-cassadiene. GC-MS chromatograms for each active SDR, mass spectra for the substrate and product, and catalyzed oxidation reaction.

Figure S5. SDR activity with the simplified substrate analog 3α -hydroxy-*ent*-sandaracopimaradiene. GC-MS chromatograms for each active SDR, mass spectra for the substrate and product, and catalyzed oxidation reaction.

Figure S6. SDR activity with the simplified substrate analog 7β -hydroxy-*ent*-sandaracopimaradiene. GC-MS chromatograms for the active SDR110C-MS3, mass spectra for the substrate and product, and catalyzed oxidation reaction.

Sequence of synthetic OsSDR110C-MS2