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A. Small Area Estimates of County-Level Obesity Prevalence 

Inputs 

National Survey of Children’s Health (NSCH) individual-level data from the 2007 and 2011-

2012 survey waves were pooled to increase total sample size. Because post-stratification (see 

below) requires the cross-classification of individuals in age x sex x race strata, we elected to 

coarsely categorize NSCH into two age strata (10-14 and 15-17), and two race/ethnic groups 

(white and non-white). County Federal Information Processing Standard (FIPS) codes from the 

restricted access data, available in collaboration with the Research Data Center of the Centers for 

Disease Control and Prevention, were used to identify multiple respondents from the same 

county and to merge individual-level respondents with county-level variables. 

 

For post-stratification, the population at risk for obesity was defined as the number of 

adolescents in each county in the eight age x sex x race strata. These denominator counts were 

obtained from the 2008-2012 American Community Survey (ACS) of the U.S. Census Bureau. 

County-level poverty rate was also abstracted from the 2008-2010 ACS. 

 

Because we extended the Zhang approach by incorporating information from geographically 

contiguous counties in estimation (see below), we restricted to 3,109 counties in the contiguous 

U.S. plus the District of Columbia. This improves the estimation of sparse-count counties 

through spatial interpolation based on geographic contiguity. 

 

Multilevel Model 

To recover sources of local variation in obesity prevalence we fit a 3-level mixed effects 

model.1,2 Individuals are nested within counties which are nested within states. We estimated 



Appendix 

Geography of Adolescent Obesity in the U.S., 2007–2011 

Kramer et al. 

American Journal of Preventive Medicine 

fixed effects for age, sex, race, survey year, county poverty, and Census region, as well as 

county- and state-level random intercepts, and state-level random slopes for age, sex, and race. 

The following model was fit to the NSCH data using survey weights re-scaled to total sample 

size within each state to account for selection probabilities3: 

 

Level 1 (NSCH respondent):  

𝑃𝑟(𝑦𝑖𝑗𝑘𝑦𝑐𝑠 = 1) = 𝑙𝑜𝑔𝑖𝑡−1(𝛽0𝑐𝑠 + 𝛽1𝑠𝑎𝑔𝑒𝑖𝑐𝑠 + 𝛽2𝑠𝑠𝑒𝑥𝑗𝑐𝑠 + 𝛽3𝑠𝑟𝑎𝑐𝑒𝑘𝑐𝑠 +  𝛽4𝑦𝑒𝑎𝑟𝑦) 

 

Level 2 (County):    

𝛽0𝑐𝑠 = 𝛾0𝑠 + 𝛾1𝑐𝑡𝑦_𝑝𝑜𝑣𝑐𝑠 + 𝑢. 𝑐𝑜𝑢𝑛𝑡𝑦𝑐𝑠 

 

Level 3 (State):   

 𝛾0𝑠 = 𝛿0 + 𝛿𝑟𝑒𝑔𝑟𝑒𝑔𝑖𝑜𝑛𝑠 + 𝑢. 𝑠𝑡𝑎𝑡𝑒𝑠 

 𝛽1𝑠 = 𝛿𝑎𝑔𝑒 + 𝑎𝑔𝑒. 𝑠𝑙𝑜𝑝𝑒𝑠 

 𝛽2𝑠 = 𝛿𝑠𝑒𝑥 + 𝑠𝑒𝑥. 𝑠𝑙𝑜𝑝𝑒𝑠 

 𝛽3𝑠 = 𝛿𝑟𝑎𝑐𝑒 + 𝑟𝑎𝑐𝑒. 𝑠𝑙𝑜𝑝𝑒𝑠 

 

At level 1, we are interested in the probability that a child in age group i, sex group j, race group 

k, surveyed in year y, and residing in county c, and state s, is obese as defined as a BMI for age 

and sex greater than the 95th percentile. We estimate this probability as a function of a county-

specific intercept, β0cs, a fixed effect for year, β4, and β1s – β3s capturing the state-specific effect 

of age, sex, and race (see below). 
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At the county level, the intercept β0cs is decomposed into a state-level intercept, γs, a fixed effect 

for county poverty rate, and the county random effect, u.countycs. The county random effect 

represents county-level variation around the state average conditional on other covariates. 

 

At the state level, the state intercepts, γs are further decomposed into a global (national) intercept, 

δ0, plus three fixed effects for census regions (referent, Northeast region), δreg, and a state-level 

random intercept, u.states.  In addition to the random intercepts, random slopes for age, sex, and 

race are estimated at the state level. In each case there is a fixed effects component representing 

the average effect of each factor in the full national sample, as well as a random effects 

component representing the state-specific deviation in the importance of each variable for 

obesity prevalence. 

 

All variance components (e.g., u.countycs, u.states, age.slopes, sex.slopes, race.slopes) are 

assumed to arise from a multivariate normal distribution with mean zero and covariance matrix 

omega as estimated in the glmer() function in R package lme4. 

 

Spatial Interpolation 

In some counties there were no NSCH respondents, and thus no county-specific random intercept 

was estimated. Building on Tobler’s First Law of Geography,4 we borrow statistical information 

from geographically proximate counties (e.g., first-order Queen contiguity) to impute missing 

values under the assumption that neighboring counties are more alike than non-neighboring 

counties on average. Specifically we imputed missing county random intercepts with the average 

of geographically contiguous county random intercept values. As a sensitivity analysis, we 
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conducted internal validation after dropping these imputed values with little change in results 

(results not shown). 

 

Post-Stratification 

The predicted prevalence of obesity for every strata of age x sex x race x county/state can then be 

calculated directly from model coefficients. To summarize highly stratified prevalence in a 

meaningful way, we apply them to the Census-derived population at risk in each strata to 

estimate an overall county specific marginal prevalence which takes into account local 

demographic structure and geographic variation. The prevalence of obesity in each strata is 

calculated in this manner: 

𝑃𝑟(𝑦𝑖𝑗𝑘𝑐𝑠 = 1) =
𝑒𝑥𝑝(𝛽0𝑐𝑠 + 𝛽𝑖1𝑠 + 𝛽𝑗2𝑠 + 𝛽𝑘3𝑠)

1 + 𝑒𝑥𝑝(𝛽0𝑐𝑠 + 𝛽𝑖1𝑠 + 𝛽𝑗2𝑠 + 𝛽𝑘3𝑠)
 

 

Stratum-specific prevalence is converted to county-specific prevalence in this manner by 

multiplying the stratum-specific prevalence by the stratum-specific population size (Popijkcs): 

𝑃𝑟𝑒𝑣𝑐𝑠 =
∑ ∑ ∑ (𝑃𝑟𝑖𝑗𝑘𝑐𝑠 × 𝑃𝑜𝑝𝑖𝑗𝑘𝑐𝑠)𝑘𝑗𝑖

∑ ∑ ∑ 𝑃𝑜𝑝𝑖𝑗𝑘𝑐𝑠𝑘𝑗𝑖
 

 

Estimating Obesity Prevalence Model Uncertainty 

Following previous work,5 we approximated modeled county-level obesity prevalence 

uncertainty by taking 1,000 draws from the distributions described by the model coefficients and 

associated SEs, and in each case recalculated the post-stratification prevalence to create a 

distribution of uncertainty summarized as SEs. We summarize the spatial distribution of these 

approximated SEs in Appendix Figure 1. 
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Appendix Figure 1. Approximated SEs from model-estimated obesity prevalence of children 

10-17 years old in U.S. Counties, National Survey of Children’s Health 2007 and 2011-2012. 

 

 

Measuring Geographic Disparities 

Quantification of the relative disparity or disproportionality among unordered groups such as 

geographic units can be summarized with measures including the Theil’s Index, Mean Log 

Deviation, and Index of Disparity.6,7 We carried out calculations on residuals from an empty 

model (intercept-only: baseline observed geographic disparity) and a fully adjusted model in 

order to characterize the proportion of geographic disparity which is ‘explained’ or accounted for 

by measured variables. Formulas and results for each of the three methods are summarized 

below. 
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Appendix Table 1. Measure of Geographic Disparity 

Formula6,7 Measure in empty and 

adjusted model 

% reduction in 

adjusted vs empty 

model 

Theil’s Index 

𝑇𝐼 = ∑ 𝑟𝑐 × ln(𝑟𝑐)

𝑐

 

Empty: 346.7 

Adjusted: 182.6 

47% 

Mean Log Deviation 

𝑀𝐿𝐷 = ∑ − ln(𝑟𝑐)

𝑐

 

Empty: 361.8 

Adjusted: 200.9 

44% 

Index of Disparity 

𝐼𝐷 =
(

∑ |𝜀𝑐 − 𝜀|̅𝑐
𝑛⁄ )

𝜀̅
⁄ × 100 

Empty: 37.8 

Adjusted: 25.8 

32% 

𝑟𝑐 =
𝜀𝑐

𝜀̅⁄  

𝜀𝑐=county specific model residual: 𝜀𝑐 = 𝑦𝑐 − �̂� where yc is the observed prevalence and y-hat 

is the model-predicted prevalence 

𝜀̅ =
∑ 𝜀𝑐𝑛

𝑛
 where n is the number of counties 

 

Measuring Geographic Clustering 

Spatial autocorrelation is the degree to which like values (highs or lows) are located near one 

another. The Moran’s I is a commonly used measure of global spatial autocorrelation akin to the 

Pearson correlation coefficient except that instead of correlating two separate variables, it 

correlates obesity prevalence in each county with the average obesity prevalence in all 

geographic adjacent counties. The Moran’s I statistic ranges from -1 to +1, although in practice 

Moran’s I is typically zero (no spatial clustering or autocorrelation) or positive which is 

suggestive of spatial autocorrelation or clustering. We calculated the Moran’s I separately on the 

model residuals from the empty model (intercept only) and from the adjusted model, in order to 

understand the crude observed degree of clustering of obesity as compared to the residual 

clustering above and beyond that explained by included variables. The Moran’s I from the empty 

model is: 
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𝐼 =
∑ ∑ 𝑤𝑐𝑐′

𝑁
𝑐′=1

𝑁
𝑐=1 (𝜀𝑐 − 𝜀)̅(𝜀𝑐′ − 𝜀)̅

∑ ∑ 𝑤𝑐𝑐′
𝑁
𝑐′=1

𝑁
𝑐=1

 (
1

1
𝑁

∑ (𝜀𝑐 − 𝜀)̅2𝑁
𝑐=1

) 

Where I=Moran’s I statistic, N indexes counties; wcc’ is an n x n Queen contiguity matrix 

representing spatial relationships among index counties (c) and other counties (c’); εc is the 

model residual (observed adolescent obesity prevalence minus model predicted prevalence) in 

the cth county, and 𝜀 ̅is the mean of all county-specific residuals in the geographically contiguous 

counties indicated in the wcc’ weights matrix. 

 

B. Hierarchical Bayesian Regression Approach 

The Bayesian framework can help address multiple comparisons and multi-collinearity in part by 

a change in inferential focus. 

 

Through the use of parameter shrinkage, the Bayesian regression framework is well adapted to 

address concerns with multi-collinearity and concerns for multiple comparisons.8 We replicated 

the multivariable adjusted regression model in a hierarchical Bayesian framework by placing a 

common uninformative prior on the betas for county and state variables (βc and βs, respectively). 

 

𝑦𝑐~𝑁(�̂�𝑐, 𝜎𝑦
2) 

�̂�𝑐 = 𝛼0 + 𝛼𝑠 + 𝜷𝒄 + 𝜷𝒔 

𝜷𝒄~𝑁(0, 𝜎𝑐
2) 

𝜷𝒔~𝑁(0, 𝜎𝑠
2) 

𝑎0, 𝑎𝑗~𝑁(0, 100) 

𝜎𝑦
2, 𝜎𝑐

2, 𝜎𝑠
2~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,100) 
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Where yc, the county-level obesity prevalence is assumed to arise from a normal distribution 

with mean y-hat and variance sigma squared-y. Y-hat in turn is a function of a global intercept, 

α0, a random intercept for state s, and the linear combination of betas from vector βc and βs, 

representing the effects of each covariate measured at the county and state level, respectively.  

Uniform priors were placed on each of the variance parameters, and normal priors were placed 

separately on the county and state level predictors. Inference is made from the median and 95% 

Bayesian credible interval of each parameter.  
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