1	Supplementary Information
2	
3	Development and comparative study of chemosynthesized antigen and
4	mimotope-based immunoassays for class-specific analysis of O,O-dimethyl
5	organophosphorus pesticides
6	Fengchun Zhao, Huimin Wang, Xiao Han, and Zhengyou Yang*
7	Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology,
8	Shandong Agricultural University, Taian 271018, China.
9	* To whom correspondence should be addressed. Email: zhyouyang@sdau.edu.cn

Hapten	Yield	¹ H-NMR (600 MHz, CDCl ₃)
Hapten 1	39.10%	δ 7.99-7.95 (m, 1H), 7.91-7.89 (m, 1H), 7.50-7.43 (m, 2H), 3.96-3.78 (m, 6H)
Hapten 2	71.20%	δ 7.98-7.94 (m, 1H), 7.92 (dd, J = 2.5, 1.8 Hz, 1H), 7.49-7.45 (m, 2H), 4.27 (dq, J = 10.0, 7.1 Hz, 4H), 1.39 (td, J = 7.1, 0.8 Hz, 6H)
Hapten 3	59.20%	δ 8.13 (d, J = 8.6 Hz, 2H), 7.30-7.27 (m, 2H), 3.88 (d, J = 13.9 Hz, 6H)
Hapten 4	78.10%	δ 8.12 (t, J = 5.5 Hz, 2H), 7.31-7.27 (m, 2H), 4.34-4.18 (m, 4H), 1.43-1.32 (m, 6H)
Hapten 5	29.30%	δ 8.03 (d, J = 7.8 Hz, 1H), 7.59-7.52 (m, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 3.89 (d, J = 13.9 Hz, 6H)
Hapten 6	48.10%	δ 8.02 (d, J = 7.8 Hz, 1H), 7.60-7.54 (m, 1H), 7.40 (d, J = 8.3 Hz, 1H), 7.29 (t,J = 7.6 Hz, 1H), 4.29 (dq, J = 9.5, 7.1 Hz, 4H), 1.37 (dt, J = 7.9, 7.1 Hz, 6H)
Hapten 7	42.40%	δ 7.97 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 1.7 Hz, 1H), 7.01 (d, J = 8.6 Hz, 1H), 4.00 – 3.85 (m, 9H)
Hapten 8	72.50%	δ 7.96 (dt, J = 13.8, 6.9 Hz, 1H), 7.92 (t, J = 1.9 Hz, 1H), 7.00 (d, J = 8.6 Hz, 1H), 4.29 (dq, J = 9.6, 7.1 Hz, 4H), 3.93 (s, 3H), 1.40 (t, J = 7.1 Hz, 6H)
Hapten 9	39.80%	δ 8.06-7.76 (m, 2H), 7.33 (d, J = 7.9 Hz, 1H), 3.90 (d, J = 13.9 Hz, 6H), 2.40 (s, 3H)
Hapten 10	68.20%	δ 7.95 (s, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 4.28 (dq, J = 9.9, 7.1 Hz, 4H), 2.40 (s, 3H), 1.40 (td, J = 7.0, 0.8 Hz, 6H)
Hapten 11	37.10%	δ 7.86 (d, J = 1.7 Hz, 1H), 7.32-7.28 (m, 1H), 7.27 (d, J = 3.6 Hz, 1H), 3.88 (d, J = 13.8 Hz,6H), 2.63 (s, 3H)
Hapten 12	69.30%	δ 7.88 (s, 1H), 7.30 (dt, J = 9.8, 4.9 Hz, 1H), 7.26 (t, J = 4.1 Hz, 1H), 4.35-4.15 (m, 4H), 2.63(s, 3H), 1.46-1.32 (m, 6H)
Hapten 13	52.10%	δ 7.74 (dd, J = 8.3, 1.5 Hz, 1H), 7.70 (d, J = 1.0 Hz, 1H), 7.29 (dd, J = 8.3, 1.7 Hz, 1H), 3.96-3.88 (m, 9H)
Hapten 14	81.40%	δ 7.80-7.64 (m, 2H), 7.32 (dd, J = 8.3, 1.7 Hz, 1H), 4.29 (dq, J = 9.7, 7.1 Hz, 4H), 3.93 (s, 3H), 1.4533 (m, 6H)
Hapten 15	49.70%	δ 7.99 (s, 1H), 7.95 (dd, J = 8.5, 1.9 Hz, 1H), 7.32 (dd, J = 8.5, 1.2 Hz, 1H), 3.89 (d, J = 13.9Hz, 6H), 2.37 (s, 3H)
Hapten 16	79.40%	δ 7.98 (d, J = 6.0 Hz, 1H), 7.97-7.92 (m, 1H), 7.36 (d, J = 8.5 Hz, 1H), 4.27 (dq, J = 9.3, 7.1Hz, 4H), 2.37 (s, 3H), 1.39 (td, J = 7.1, 0.5 Hz, 6H)
Hapten 17	48.20%	δ 8.09 (d, J = 8.6 Hz, 1H), 7.12-7.09 (m, 1H), 7.08 (s, 1H), 3.88 (d, J = 13.9 Hz, 6H), 2.66 (s, 3H)
Hapten 18	75.60%	δ 8.10 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 9.1 Hz, 1H), 7.09 (s, 1H), 4.34 -4.18 (m, 4H), 2.66 (s, 3H), 1.38 (td, J = 7.1, 0.6 Hz, 6H)
Hapten 19	25.40%	δ 10.74 (s, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.14 (s, 1H), 7.10 (d, J = 8.1 Hz, 1H), 3.91 (d, J = 13.9 Hz, 6H), 2.42 (s, 3H)
Hapten 20	37.80%	δ 7.91 (d, J = 8.0 Hz, 1H), 7.19 (s, 1H), 7.08 (d, J = 8.0 Hz, 1H), 4.38-4.19 (m, 4H), 2.41 (s, 3H), 1.38 (td, J = 7.1, 0.8 Hz, 6H)

12 Table S2. Comparision of the IC₅₀ values (ng/mL) of immunoassays for *O*,*O*-dimethyl OPs

13 developed in this study and in the literatures. ^aO,O-dimethyl OPs. ^bO,O-diethyl OPs. ^cOPs

14 not used in this study.

		This stduy (mAb3C9)	Hua et al. ¹¹	Liang et al. ⁹	Liu et al. ¹⁰
No.	Analytes			$\begin{array}{c} \text{NO}_2 \begin{array}{c} \text{H}_3\text{CO} \\ \text{H}_3\text{CO} \end{array} \overset{\text{S}}{\stackrel{\text{H}}{P}} - \text{SCH}_2\text{CH}_2\text{COOH} \end{array}$	$\begin{array}{c} H_3CO \underset{H_3CO}{\overset{H}{\underset{H_3CO}{\overset{H}{}}}} P-O {\overset{H}{\underset{H_3CO}{\overset{H}{}}}} -(CH_2)_2-COOH \end{array}$
		соон			
1	Parathion-methyl ^a	4.7	3.7	438.9	580
2	Famphur ^a	1.3	58215.7	-	-
3	Phosmet ^a	1.4	-	159.7	-
4	Azinphos-methyl ^a	1.5	>100000	-	-
5	Cyanophos ^a	2.9	20.3	-	-
6	Methidathion ^a	3.1	-	191.7	-
7	Chlorpyrifos-methyl ^a	3.9	>100000	-	810
8	Fenitrothion ^a	4.4	8.9	324	3540
9	Tolclofos-methyl ^a	6.6	>100000	-	1100
10	Fenthion ^a	14.5	>100000	788.9	1210
11	Fenchlorphos ^a	44.3	-	-	-
12	Tetrachlorvinphos ^a	54.4	-	-	-
13	Bromophos-methyl ^a	75.5	-	-	-
14	Pirimiphos-methyl ^a	77.4	-	-	-
15	Azinphos-ethyl ^b	95.3	-	-	-
16	Dichlorvos ^a	132.1	>100000	-	-
17	Dimethoate ^a	170.3	>100000	28.9	-
18	Monocrotophos ^a	179.1	-	-	-
19	Paraoxon-methyl ^a	231.0	118.7	-	-
20	Diazinon ^b	1812.4	-	-	-
21	Parathion ^b	2412.5	11.3	>1000	-
22	Phoxim ^b	2652.4	>100000	-	-
23	Triazophos ^b	2786.5	>100000	-	-
24	Quinalphos ^b	2824.3	-	-	-
25	EPN ^b		18.3	-	-
26	Paraoxon-ethyl ^b	-	162.2	-	-
27	Malathion ^a	-	>100000	30.1	10470
28	Isochlorthion ^a	-	576.6	-	-

16 **Table S3. Sensitivity and selectivity of the mAb4D11-based dcELISA for OPs.** ^aIC₅₀ values

17 are in units of ng/mL. ${}^{b}CR$ (%) was calculated by the equation [(IC₅₀ of parathion/IC₅₀ of

No.	Analytes	IC_{50}^{a}	$CR(\%)^{b}$	LOD ^a
1	Parathion-methyl	14.5	100.0	2.0
2	Fenthion	4.8	303.6	0.9
3	Fenitrothion	8.1	180.2	1.2
4	Cyanophos	17.6	82.5	2.3
5	Chlorpyrifos-methyl	24.4	59.4	5.7
6	Tolclofos-methyl	31.4	46.2	9.5
7	Fenchlorphos	55.0	26.4	13.3
8	Pirimiphos-methyl	62.1	23.4	9.1
9	Bromophos-methyl	124.6	11.6	31.4
10	Parathion	163.6	8.9	17.5
11	Quinalphos	184.2	7.9	32.5
12	Phoxim	244.1	5.9	49.5
13	Triazophos	279.7	5.2	59.9
14	Diazinon	288.3	5.0	73.2
15	Famphur	346.4	4.2	80.3
16	Dichlorvos	1827.9	0.8	437.2
17	Tetrachlorvinphos	2431.3	0.6	536.3
18	Paraoxon-methyl	2643.3	0.5	512.5
19	Monocrotophos	2914.5	0.5	594.3
20	Azinphos-methyl	>5000	< 0.3	ND^{c}
21	Azinphos-ethyl	>5000	< 0.3	ND
22	Dimethoate	>5000	< 0.3	ND
23	Phosmet	>5000	< 0.3	ND
24	Methidathion	>5000	< 0.3	ND

18 analyte)] $\times 100$. ^cNo detection.

20 Table S4. Mimotope sequences and IC₅₀ of parathion-methyl determined by phage-

21 **ELISA.**

Mimotope name	Mimotope sequence	A_{\max}	IC ₅₀ (ng/mL)
M3 (M7, M12)	C L Y H P W N N C	1.41	20.1
M4 (M8, M10, M12)	C L <u>G </u> T T <u>P F </u> F C	1.52	16.9
M20 (M21, M25)	C T <u>G</u> T T <u>P F</u> Y C	1.64	12.6
M32 (M35, M37)	C R <u>G</u> S M <u>P F</u> W C	1.38	18.4
M39 (M42)	C M A R Y M S A C	1.59	13.2

22 -

23 Table S5. Recoveries of OPs from spiked samples determined by the chemosynthesized

24 antigen-based dcELISA (n=3). ^aThe OPs in spiked samples are in unit of ng/g. ^bR is the

Commiss	Analyte	Azinpho	Azinphos-methyl		Fenitrothion		Parathion-methyl	
Samples	Spiked ^a	5	10	10	20	10	20	
Angela	R (%)	95.6	102.5	97.7	91.8	90.3	108.2	
Apple	CV (%)	4.5	7.6	10.2	8.9	14.1	8.2	
Cabbaga	R (%)	93.9	97.8	101.2	98.2	112.8	101.7	
Cabbage	CV (%)	13.2	3.5	9.3	6.8	5.5	4.8	
augumbar	R (%)	101.7	108.5	101.8	94.7	106.2	101.3	
cucumber	CV (%)	3.9	6.5	8.7	10.1	6.4	5.8	

25 average recovery.

27 Table S6. Recoveries of OPs from spiked samples determined by the mimotope-based

Commiss	Analyte	Azinpho	s-methyl	Fenitro	Fenitrothion		Parathion-methyl	
Samples	Spiked ^a	5	10	10	20	10	20	
Apple	R (%)	92.4	102.5	97.7	94.8	93.3	108.2	
Apple	CV (%)	4.7	4.9	6.6	9.8	6.7	4.3	
Cabbaga	R (%)	93.9	97.8	101.2	98.2	121.5	101.7	
Cabbage	CV (%)	10.4	6.2	13.6	7.7	3.8	5.6	
auaumhan	R (%)	101.7	108.5	101.8	94.7	106.2	101.3	
cucumber	CV (%)	8.2	6.7	9.4	11.2	2.9	3.9	

dcELISA (n=3). ^aThe OPs in spiked samples are in unit of ng/g. ^bR is the average recovery.

Figure S1. Synthetic route of hapten **1**.

31 Figure S2. Detection of mice antisera after three times immunization. (a) Antisera titers determination

- 32 using hapten 1-OVA (10 μg/mL) as coating antigen. (b) antisera titers determination using hapten 5-OVA
- 33 $(10 \,\mu\text{g/mL})$ as coating antigen. (c) B/B₀ values of antiserum M5 against parathion-methyl.

46 Figure S3. Effect of ionic strength, pH, and concentration of methanol on the dcELISAs

47 based on mAb3C9 (a) and mAb4D11 (b). Parathion-methyl was used as analyte. Each point
48 represents the average of three replicates.

59 Figure S4. Characterization of BirA by SDS-PAGE. Lane M: protein standards, lane 1: cell

60 lysate supernatant, lane 2: cell lysate pellet, lane 3: total cell lysate.

Figure S5. Matrix effects of purified and unpurified apple, cabbage and cucumber samples analyzed by chenmosynthesized antigen-based dcELISA (a) and mimotope-based dcELISA (b). PBS was used as control. Unpurified sample extracts were diluted 5, 10 and 20 times before dcELISA analyses. Sample extracts purified by dSPE-based QuEChERS were diluted 2 and 4 times before chemosynthesized antigen-based dcELISA analyses, and 2 times before mimotope-based dcELISA analyses(n=4).