Supplementary Material

A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10

Santiago Ruiz¹, Haitian Zhao¹, Pallavi Chandakkar¹, Prodyot K. Chatterjee², Julien Papoin³, Lionel Blanc^{3,4}, Christine N. Metz^{2,4}, Fabien Campagne^{5,6}, Philippe Marambaud^{1,*}

¹Litwin-Zucker Research Center for the Study of Alzheimer's Disease, ²Center for Immunology and Inflammation, and ³Center for Autoimmune and Musculoskeletal Disorder, The Feinstein Institute for Medical Research, Manhasset, NY, USA. ⁴Hofstra Northwell School of Medicine, Hempstead, NY, USA. ⁵The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and ⁶Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, NY, USA. Correspondence and requests for materials should be addressed to P.M. (email: PMaramba@northwell.edu).

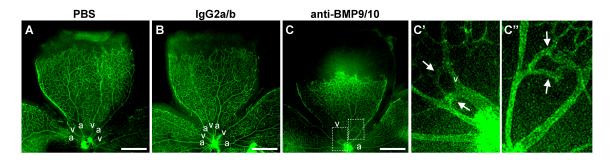
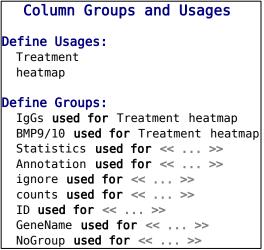


Figure S1: Direct injection of BMP9 and BMP10 blocking Abs leads to abnormal hypervascularization and AVMs in neonatal retinas. (A-C") Representative images of fluorescent isolectin B4-stained retinas from P6 neonates directly injected with PBS (A), control IgG2a/b Abs (B), or BMP9/10 blocking Abs (C). C' and C" are higher magnification images of the relevant boxed areas in C. a, artery; v, vein; scale bars, 500 μ m.


The following document presents the RNA-Seq data analysis conducted for this manuscript in MetaR (<u>http://metaR.campagnelab.org</u>, for a description of the language used to express the analyses, see MetaR: simple, high-level languages for data analysis with the R ecosystem. Fabien Campagne, William ER Digan, Manuele Simi BioRxiv <u>http://dx.doi.org/10.1101/030254</u>).

Gene counts obtained with GobyWeb were analyzed with the following MetaR code:

Figure S2. GobyWeb counts are imported into MetaR. Columns are manually tagged with annotations that indicate what type of data the column contains (see SF2 for definition of the column groups used to annotate columns).

Table QKJBKNK-counts-table.tsv File Path \${PM RETINA}/data/OKJBKNK-counts-table.tsv Columns element-id: string [ID] element-type: [one of: GENE] KJLVBLC-PM-R1-Retina-IGg2a2b : numeric [counts, IgGs] XYYUDDK-PM-R9-Retina-BMP9 : numeric [counts, BMP9/10] OPAEERQ-PM-R8-Retina-BMP9 : numeric [counts, BMP9/10] IVRLWSH-PM-R2-Retina-IGg2a2b : numeric [counts, IgGs] KBXIQDP-PM-R5-Retina-IGg2a2b : numeric [counts, IgGs] OVCXUYC-PM-R6-Retina-IGg2a2b : numeric [counts, IgGs] UVRMRBK-PM-R12-Retina-BMP9: numeric [counts, BMP9/10] TCUEBZA-PM-R10-Retina-BMP9 : numeric [counts, BMP9/10] DIFAXQW-PM-R3-Retina-IGg2a2b : numeric [counts, IgGs] DXHRWYD-PM-R4-Retina-IGg2a2b : numeric [counts, IgGs] HKOEODD-PM-R11-Retina-BMP9: numeric [counts, BMP9/10] GSUOHEC-PM-R7-Retina-BMP9 : numeric [counts, BMP9/10]

Figure S3. Column Group Definitions. SF1 refers annotated columns with groups. The MetaR column group and usage defines these groups and their relationships (e.g., IgGs and BMP9/10 are two types of Treatment).

Figure S4. Differential Expression Analysis and Heat Map Construction. This figure presents the main analysis, which call genes differentially expressed with Limma Voom, joins normalized expression values, reduces the results to significantly differentially expressed genes (FDR<=1%) and abs(log2 FC)>=0.7 to reduce the size of the heat map to fit on the figure), adds gene names from Biomart, and constructs a heat map. The multiplot statement offers a preview of the heat map (not shown here, see Figure 3 of the manuscript). Finally, results are written to a tab delimited file.

Analysis DiffExp Retina BMP9			
t import table OKJBKNK-counts-table.tsv			
limma voom counts= 0KJBKNK-counts-table.tsv model: ~ 9 + Treatment			
comparing $BMP9/10$ - $IgGs$ -> stats: results normalized: normalized			
join (normalized, results) by group ID -> joined			
subset rows joined when true: \$(adj.P.Val) <= 0.01 & (\$(logFC) >= 0.7 \$(logFC) <= -0.7) -> 1% FDR			
transform table 1% FDR -> 1% FDR one ID {			
drop column element-id			
; query biomart database Ensembl Genes 83 and dataset Mus musculus genes (GRCm38.p4)			
get attributes Ensemble Gene ID from feature of types string with column group annotation			
MGI symbol from feature of types string with column group annotation GeneName			
filters Ensembl Gene ID(s) [e.g. ENSG00000139618] from 1% FDR one ID <no rowfilter=""></no>			
-> geneNames			
join (1% FDR one ID, geneNames) by group 🔟 -> with gene names			
// at this point, with gene names contains 3 columns with ID group. Drop 2 to make it clea r which one to use for heatmap			
transform table with gene names -> one ID column only {			
drop column genes			
drop column Ensembl_Gene_ID_from_feature			
heatmap with one ID column only select data by one or more group BMP9/10, group IgGs -> heatmap no style [show names using group GeneName			
anotate with these groups: Treatment			
scale values: scale by row			
cluster columns: true cluster rows: true			
1			
<pre>multiplot -> preview [1 cols x 1 rows] Preview</pre>			
[heatmap]			
render heatmap as PDF named "heatmap-RETINA-2.pdf" - no style			
write with gene names to "selected-RETINA-normalized.tsv " 📮			

Figure S5. Annotation of differentially expressed genes. This analysis retrieves gene annotations using BioMart, joins the annotation with the normalized read count table, reorders columns and writes the annotated results to a file.

Analysis Annotate selected				
1 import table selected-RETINA-normalized.tsv				
query biomart database Ensembl Genes 83 and dataset Mus musculus genes (GRCm38.p4)				
get attributes Ensembl Gene ID from feature of types string with column group annotation ID				
MGI symbol from feature of types string with column group annotation Annotation				
Description from feature of types string with column group annotation Annotation				
<pre>filters Ensembl Gene ID(s) [e.g. ENSG00000139618] from selected-RETINA-normalized.tsv when true: \$(logFC) != 0 -> resultFromBioMart</pre>				
join (selected-RETINA-normalized.tsv , resultFromBioMart) by group ID -> annotated				
reorder columns in table annotated {		DOWN	group ID -> reordered	
	UP	DOWN	group ib -> reordered	
	UP	DOWN	group Annotation	
	UP	DOWN	group IgGs	
	UP	DOWN	group BMP9/10	
	UP	DOWN	group Statistics	
	}			
write reordered to "annotated-RETINA-0.7-normalized.tsv "				

Table S1 presents the annotated results (annotated-RETINA-0.7-normalized.tsv, imported into Excel) and describes differentially expressed genes with a log 2 fold change larger than 0.7 (in absolute value).