SUPPLEMENTAL INFORMATION

Binding of macrolide antibiotics compels the ribosome to discriminate against

specific substrates based on their charge and size

Shanmugapriya Sothiselvam, Sandro Neuner, Lukas Rigger, Dorota Klepacki, Ronald Micura, Nora Vázquez-Laslop and Alexander S. Mankin

SUPPLEMENTAL FIGURES

Figure S1. Related to Figure 1. Drug induced ribosome stalling in the MRLR ORF is not dependent on the mRNA or tRNA structure and identity of the third amino acid is not significant for ERY-dependent ribosome stalling in the MKLK ORF. (A) Top: Sequence of the wild type MRLR ORF and the ORFs with synonymous changes in the codons corresponding to the critical amino acid residues of the stalling motif. The wt RLR sequence is decoded by tRNAs Arg4, Leu2, Arg2; In the mutants M1-M3, the same sequence is decoded by Arg2, Leu1/Leu3, Arg2 (M1), Arg2, Leu3, Arg2, (M2), Arg5, Leu4/Leu5, Arg3 (M4). The penultimate (-1) amino acid residue of the nascent chain in the drug-stalled ribosome, the P site, and the A site residues are marked above the peptide sequence. Bottom: Toeprinting analysis of ERY dependent ribosome stalling on the wt and mutant MRLR ORFs. Black arrows indicate translation arrest at the Leu₃ codon (black box in the sequence on the side of the gel and in the top panel. Gray arrows point to the toeprint bands generated by the ribosomes, which bypassed the Leu₃ codon and were captured at the downstream Pro codon (gray box) due to the presence of mupirocin, an IleRS inhibitor. Sequencing lanes are marked. Gels are representative of two independent experiments. (B) Toeprinting analysis of ERY dependent ribosome stalling on the MKXK ORFs. Lanes marked as '-' and '+" represent the reactions with the MRLR template performed without and with ERY, respectively. The complete ORF encoding the peptide starting with the MKLK sequence is shown above the gels. Arrows are as in (A) except that in the case of the lle₃ mutation in the MKXK peptide (lane marked 'l'), the lle₇ codon was replaced with the Trp codon and mupirocin was substituted with indlomycin the TrpRS inhibitor. Sequencing lanes are marked. Gels are representative of two independent experiments.

Figure S2. Related to Figure 1. Different macrolide antibiotics show similar sensitivity to the mutations of the RLR motif. (A) Chemical structures of macrolides ERY and AZI and of ketolide SOL. (B) Toeprinting analysis of drug-dependent ribosome stalling during translation of the peptides with alanine substitutions in the RLR motif. The penultimate (-1) amino acid residue of the nascent chain in the drug-stalled ribosome, the P site, and the A site residues are marked above the peptide sequence. Black arrows indicate ERY, AZI or SOL dependent translation arrest at codon 3. The toeprint bands representing ribosomes captured at the downstream Pro_5 codon due to the presence of mupirocin, an IIeRS inhibitor, are indicated by gray arrows. Sequencing lanes are marked. Gels are representative of two independent experiments.

Figure S3. Related to Figure 2. Ribosome-catalyzed reaction of the model A site substrates with MRL-tRNA (A and B) or MAL-tRNA (C and D) in the absence of ERY. (A,C) Gel electrophoresis analysis of the [³⁵S] labeled MRL-tRNA^{Leu} (A) or MAL-tRNA^{Leu} (C) remaining upon reaction of the ribosome-mRNA-peptidyl-tRNA complex with the indicated acceptor substrate analogs in the absence of ERY. All the substrates conform to the general structure ACCA-N-X where X represents the amino acid. The time of incubation with the acceptor substrates is indicated above the gel lanes. Cartoons on the side of the gels indicate the band corresponding to [³⁵S] labeled MRL-tRNA^{Leu} (A) or MAL-tRNA^{Leu} (C). Triangle points to the band representing fMet-tRNA^{fMet} present in the reaction. Gels are representative of at least two independent experiments. (B,D) Quantification of the unreacted MRL-tRNA^{Leu} (B) or MAL-tRNA^{Leu} (D) over the course of the time from the corresponding gels. The amount of peptidyl-tRNA^{Leu} at 0 min was set as 100%. Error bars show deviation from the mean based on two independent experiments. The experiment with the ACCA-N-aminoalanine substrate was performed only once.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Chemical synthesis of ACCA-amino acid conjugates

The ACCA-amino acid conjugates containing 6-azido-L-norleucine, 6-hydroxy-6norleucine, norleucine, (2*S*)-2-aminooctanoic acid (AOA) (called in the paper 'ethylnorleucine' (NIe-Et) for consistency) or L-2,3-diaminopropionic acid (Dap) (called in the paper 'amino alanine' (AAIa) for consistency) were synthesized as outlined in **Scheme. S1** and described below. All the other ACCA-amino acid conjugates were synthesized following the procedures described by Moroder et al. (2009).

Scheme S1. Synthesis of solid supports and RNA-amino acid conjugates. Reaction conditions: **a**) 1.3 equiv Fmoc-amino acid-OBt, 1.5 equiv DIPEA, in *N*,*N*-dimethylformamide, r.t., 5 h, r.t., 12 h; **b**) 5 equiv of adipic acid bis(pentafluorophenyl)ester, 1 equiv DMAP in *N*,*N*-dimethylformamide/pyridine (1/1, v/v), r.t., 1 h; **c**) ~3 equiv (w/w) amino-functionalized polystyrene support (*GE Healthcare*, Custom Primer SupportTM 200 Amino), ~2 equiv (w/w) pyridine, *N*,*N*-dimethylformamide, r.t., 1 day; **d**) automated RNA solid-phase synthesis, deprotection, and purification. Fmoc = *N*-(9-fluorenyl)methoxycarbonyl, Alloc = allyloxycarbonyl, Bt = Benzotriazol-1-yl, DIPEA = *N*,*N*-diisopropylethylamine, DMAP = 4-(*N*,*N*-dimethylamino)pyridine.

Chemical synthesis of solid supports 4

General remarks. Reagents were purchased in the highest available quality from commercial suppliers (Sigma-Aldrich, Acros, IRIS Biotech GmbH) and used without further purification. Organic solvents for reactions were dried overnight over freshly activated molecular sieves (4Å). The reactions were carried out under argon atmosphere. ¹H and ¹³C spectra were recorded on a Bruker DRX 300 MHz spectrometer. Chemical shifts (δ) are reported relative to tetramethylsilane (TMS) referenced to the residual proton signal of the deuterated solvent DMSO-d₆ (2.50 ppm for ¹H NMR spectra and 39.52 ppm for ¹³C spectra). The following abbreviations were used to denote

multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Signal assignments were based on ¹H-¹H-COSY and ¹H-¹³C-HSQC experiments. MS experiments were performed on a Finnigan LCQ Advantage MAX ion trap instrumentation (Thermo Fisher Scientific) with an electrospray ion source. Samples were analyzed in the positive- or negative-ion mode. Reaction control was performed via analytical thin-layer chromatography (TLC, Macherey-Nagel) with fluorescent indicator. Spots were further visualized using cerium molybdate or anisaldehyde staining reagents. Column chromatography was carried out on silica gel 60 (70-230 mesh). Custom Primer SupportTM 200 Amino was purchased from GE Healthcare. Derivatized amino acids Fmoc-L-Nle(6-N₃)-OH (also called Fmoc-L-Lys(N3)-OH), Fmoc-L-Nle(6-OtBDMS)-OH, Fmoc-L-Nle-OH and Fmoc-L-2Aoc-OH (also called Fmoc-L-2Aoc-OH) were purchased from *Iris Biotech GmbH*. Solid supports **4** containing other amino acids (L-Lys, L-Orn, L-Glu, etc.,) were prepared as described by Moroder et al. (2009).

N⁶-[(Di-n-butylamino)methylene]-3'-[N-(9-fluorenyl)methoxycarbonyl-6-azido-L-

norleucinyl]amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-D-adenosine (**2*NIe-N**₃). Fmoc protected L-6-azidonorleucine (100 mg, 0.26 mmol) was dissolved in DMF (10 mL) followed addition of O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium bv hexafluorophosphate (HBTU, 96 mg, 0.26 mmol), 1-hydroxybenzotriazole hydrate (HOBt, 39 mg, 0.26 mmol) and N,N-diisopropylethylamine (DIPEA, 52 µL, 0.30 mmol). After 3 minutes of activation, 3'-amino- N^6 -[(di-*n*-butylamino)methylene]-3'-deoxy-5'-O-(4,4'dimethoxytrityl)-D-adenosine 1 (Geiermann et al., 2015) (140 mg, 0.20 mmol, in 1 mL DMF) was added and the mixture was stirred overnight at room temperature. Then, the solvent was evaporated, the residue dissolved in CH₂Cl₂ and washed consecutively with half-saturated aqueous NaHCO₃ solution, 5% citric acid solution, and saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), evaporated, and the crude product was purified via SiO₂ chromatography yielding 162 mg of compound **2*NIe-N₃** as white foam (75 %).

¹H NMR (300 MHz, CDCl₃) δ 9.04 (s, 1H, HC=N(6)), 8.47 (s, 1H, H-C(2)), 8.17 (s, 1H, H-C(8)), 7.71 (m, 2H, HC(ar)), 7.53 (m, 2H, HC(ar)), 7.38-7.16 (m, 13H, HC(ar) and CDCl₃), 6.91 (s, 1H, NH(3')), 6.77 (d, 4H, J = 9.0, CH(ar)), 6.02 (s, 1H, H-C(1')), 5.50 (d, 1H, J = 7.5, H-N(Nle)), 4.69 (s, 2H, H-C(2') and H-C(3')), 4.32 (m, 3H, H-C(4') and O-CH₂(Fmoc)), 4.17 (m, 2H, H-C(9, Fmoc) and CH(α , Nle)), 3.72 (s, 6H, 2xOCH₃(DMT)), 3.67 (m, 2H, N(CH₂CH₂CH₂CH₃)), 3.45-3.30 (m, 4H, H₂C(5') and N(CH₂CH₂CH₂CH₃)), 3.16 (t, 2H, J = 6.7, H₂C-N₃), 1.69-1.26 (m, 14H, N(CH₂CH₂CH₂CH₃)₂ and 3xCH₂), 1.00-0.91 (m, 6H, N(CH₂CH₂CH₂CH₃)₂). ¹³C NMR (75 MHz, CDCl₃): δ 172.3, 162.7, 160.5, 159.0 (HC=N(6)), 156.4, 152.4 (C(2)), 150.5, 144.5, 143.8, 143.7, 141.4, 139.6, 135.7, 130.2 (C(ar)), 128.3 (C(ar)), 128.0 (C(ar)), 127.2 (C(ar)), 125.1 (C(ar)), 120.1 (C(ar)), 113.3 (C(ar)), 91.4 (C(1')), 86.6, 83.2 (C(4')), 74.7 (C(2')), 67.3 (O-CH₂(Fmoc)), 63.0 (C(5')), 55.3 (2xOCH₃(DMT)), 55.0 (C(α , Nle)), 52.0 (C(3') and N(CH₂CH₂CH₂CH₃)₂), 51.1 (CH₃-N₃), 47.2 (CH(Fmoc)), 45.4 (N(CH₂CH₂CH₂CH₂CH₃)₂), 38.7, 36.6, 32.4 (CH₂), 31.1 (CH₂), 29.4 (CH₂), 28.5 (CH₂), 22.7 (CH₂), 20.3 (CH₂), 19.9 (CH₂), 14.0 (CH₃), 13.8 (CH₃). ESI-MS (m/z): [M+H]⁺ calcd for C₆₁H₇₀N₁₁O₈, 1084.54; found 1084.57.

N⁶-[(Di-n-butylamino)methylene]-3'-[N-(9-fluorenyl)methoxycarbonyl-6-azido-Lnorleucinyl]amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-2'-O-[1,6-dioxo-6-

(*pentafluorophenyloxy*)*hexyl]*-D-*adenosine* ($3*NIe-N_3$). To a solution of compound $2*NIe-N_3$ (162 mg, 0.15 mmol) in DMF (1.5 mL) and pyridine (1.0 mL) was added DMAP (20 mg, 0.16 mmol) and bis(pentafluorophenyl) adipate (143 mg, 0.30 mmol). The mixture was stirred for one hour followed by evaporation of the solvents. The crude product was

purified via SiO₂ chromatography (CH₂Cl₂/acetone, 7/3) yielding 112 mg of compound $3*NIe-N_3$ as white foam (55%).

¹H NMR (300 MHz, CDCl₃) δ 8.96 (s, 1H, HC=N(6)), 8.49 (s, 1H, H-C(2)), 8.09 (s, 1H, H-C(8)), 7.75 (m, 2H, H-C(ar)), 7.55 (m, 2H, H-C(ar)), 7.40-7.19 (m, 13H, H-C(ar) and CDCl₃), 6.77 (d, 4H, J = 8.6, H-C(ar)), 6.77 (d, 1H, J = 7.1, H-N(3')), 6.15 (d, 1H, J = 2.9, H-C(1')), 5.82 (m, 1H, H-C(2')), 5.33-5.22 (m, 2H, H-N(Nle) and H-C(3')), 4.49-4.35 (m, 2H, O-CH₂(Fmoc)), 4.20 (m, 2H, H-C(4') and H-C(9, Fmoc)), 4.03 (m, C-H(α, Nle)), 3.76 (s, 6H, OCH₃(DMT)), 3.64 (t, 2H, J = 6.1, N(CH₂CH₂CH₂CH₃)₂), 3.45-3.35 (m, 4H, H-C(5') and N(CH₂CH₂CH₂CH₃)₂), 3.21-3.16 (m, 2H, N₃-CH₂), 2.58 and 2.40 (s, 2H, OOCCH₂CH₂CH₂CH₂COO), 1.74-1.46 (m, 12H, $N(CH_2CH_2CH_2CH_3)_2$ and OOCCH₂CH₂CH₂CH₂COO and 3 x CH₂(Nle)), 1.39-1.26 (m, 4H, N(CH₂CH₂CH₂CH₃)₂), 0.97-0.88 (m, 6H, N(CH₂CH₂CH₂CH₃)₂). ¹³C NMR (75 MHz, CDCl₃): δ 171.6, 169.5, 162.9, 159.9, 158.7 (HC=N(6)), 156.5, 152.8 (C(2)), 151.0, 144.4, 143.7, 141.4 (C(8)), 140.1, 135.6, 135.5, 130.2 (C(ar)), 129.3 (C(ar)), 128.3, 128.0, 127.2, 127.0 (C(ar)), 125.9 (C(ar)), 125.0, 124.9 (C(ar)), 120.2 (C(ar)), 113.3 (C(ar)), 87.7 (C(1')), 86.8, 82.4 (C(4')), 75.3 (C(2')), 67.2 (O-CH₂(Fmoc)), 63.1 (C(5')), 55.3 (2xOCH₃), 54.8 (C(α, Nle)), 52.1, 51.1 (N₃-CH₂), 50.6 (C(3')), 47.2 (HC(Fmoc)), 45.4 (N(CH₂CH₂CH₂CH₃)₂)), 38.7, 36.7, 33.3 (OOCCH₂CH₂CH₂CH₂CCOO), 32.9 (OOCCH₂CH₂CH₂COO), 31.6 (CH₂), 31.4 (CH₂), 31.0 (CH₂), 29.3 (CH₂), 28.5 (CH₂), 24.0 (CH₂), 23.9 (CH₂), 20.2 (CH₂), 19.9 (CH_2) , 13.9 (2x CH₃). ESI-MS (m/z): $[M+H]^+$ calcd for $C_{73}H_{76}N_{11}O_{11}$, 1378.57; found 1378.56.

DMTO-rA^{3'-NH}-(*N-Fmoc-6-N*₃-*Nle*) solid support (**4*Nle-N**₃). Compound **3*Nle-N**₃ (112 mg, 0.083 mmol) was dissolved in dry DMF (2.0 mL) and pyridine (15 µL) was added. To this solution, amino-functionalized support (*GE Healthcare*, *Custom Primer Support*TM 200 *Amino*, 300 mg) was added, and the suspension was agitated for 20 hrs at room temperature. Subsequently, the beads were collected on a Büchner funnel and washed with DMF, methanol, and CH₂Cl₂. For capping of unreacted amino groups, the beads were treated with a mixture of solution A (0.2 M phenoxy acetic anhydride in THF, 10 mL) and solution B (0.2 M *N*-methyl imidazole, 0.2 M *sym*-collidine in THF, 10 mL) and agitated for 10 min at room temperature. The suspension was filtrated again, the beads were washed with THF, methanol and CH₂Cl₂, and dried under vacuum. Loading of the support **4*NIe-N**₃ was 40 µmol/g.

N⁶-[(Di-n-butylamino)methylene]-3'-[N-(9-fluorenyl)methoxycarbonyl-6-O-

tert.butyldimetylsilyloxy-L-norleucinyl]amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-D-

adenosine (**2*NIe-OH**). *N*-Fluorenylmethoxycarbonyl-*O-tert*.butyldimetylsilyl-6-hydroxy-Lnorleucine (144 mg, 0.30 mmol) was dissolved in DMF (3 mL) followed by addition of *O*-(benzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate (HBTU, 113 mg, 0.30 mmol), 1-hydroxybenzotriazole hydrate (HOBt, 46 mg, 0.30 mmol) and *N*,*N*diisopropylethylamine (DIPEA, 60 µL, 0.34 mmol). After 3 minutes of activation, 3'amino- N^6 -[(di-*n*-butylamino)methylene]-3'-deoxy-5'-*O*-(4,4'-dimethoxytrityl)-D-adenosine **1** (Geiermann et al., 2015) (162 mg, 0.23 mmol, in 1 mL DMF) was added and the mixture was stirred overnight at room temperature. Then, the solvent was evaporated, the residue dissolved in CH₂Cl₂ and washed consecutively with half-saturated aqueous NaHCO₃ solution, 5% citric acid solution, and saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), evaporated and the crude product was purified via SiO₂ chromatography yielding 240 mg of compound **2*NIe-OH** as white foam (90 %).

¹H NMR (300 MHz, CDCl₃) δ 9.10 (s, 1H, HC=N(6)), 8.45 (s, 1H, H-C(2)), 8.16 (s, 1H, H-C(8)), 7.72 (m, 2H, H-C(ar)), 7.56 (m, 2H, H-C(ar)), 7.34-7.18 (m, 13H, H-C(ar) and CDCl₃), 6.89 (b, 1H, HN(3')), 6.77 (d, 4H, J = 8.2, HC(ar)), 6.00 (s, 1H, H-C(1'), 5.50 (d, 2H)), 6.00 (s, 2H), 1H, H-C(1'), 5.50 (d, 2H)

1H, J = 6.3, H-N(NIe)), 4.76 (m, 1H, H-C(2')), 4.68 (s, 1H, H-C(3'), 4.35 (m, 3H, H-C(4') and O-CH₂(Fmoc)), 4.18 (t, 2H, J = 6.9, H-C(α , Fmoc) and H-C(9, DMT)), 3.74 (s, 8H, 2x OCH₃(DMT) and OCH₂(NIe)), 3.64-3.61 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 3.55 (m, 2H, H-C(5')), 3.38 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 1.63 (m, 4H, N(CH₂CH₂CH₂CH₃)₂), 1.59-1.41 (m, 6H, 3xH₂C(NIe)), 1.37 (m, 4H, N(CH₂CH₂CH₂CH₃)₂), 0.98-0.89 (m, 6H, N(CH₂CH₂CH₂CH₃)₂), 0.86 (s, 9H, 3xCH₃(TBDMS)), 0.02 (s, 6H, 2xSi-CH₃(TBDMS)). ¹³C NMR (75 MHz, CDCI₃) δ 172.6, 159.2, 158.6 (HC=N(6)), 156.5, 152.0 (C(2)), 150.6, 144.5, 143.9, 141.4, 139.9 (C(8)), 135.8, 130.2 (C(ar)), 128.3 (C(ar)), 127.9 (C(ar)), 127.2 (C(ar)), 125.2 (C(ar)), 120.1 (C(ar)), 113.3 (C(ar)), 91.3 (C(1')), 86.7, 83.7 (C(4')), 74.7 (C(2')), 67.3 (OCH₂(Fmoc)), 62.9 (C(5')), 55.3 (C(α , NIe) and 2x OCH₃), 52.2 (C(3') and N(CH₂CH₂CH₂CH₃)₂) and CH₂(NIe)), 26.1 (3x CH₃(TBDMS)), 22.1 and 20.4 and 19.9 (N(CH₂CH₂CH₂CH₃)₂) and CH₂(NIe)), 18.4, 14.1 (N(CH₂CH₂CH₂CH₃)₂), 13.8 (N(CH₂CH₂CH₂CH₃)₂), -5.2 (2x Si-CH₃). ESI-MS (m/z): [M+H]⁺ calcd for C₆₇H₈₅N₈O₉Si, 1173.62; found 1173.55.

N⁶-[(Di-n-butylamino)methylene]-3'-[N-(9-fluorenyl)methoxycarbonyl-6-O-

tert.butyldimetylsilyloxy-L-norleucinyl]amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-2'-O-

[1,6-dioxo-6-(pentafluorophenyloxy)hexyl]-D-adenosine (3*Nle-OH 6). To a solution of compound 2*Nle-OH (230 mg, 0.20 mmol) in DMF (2.5 mL) and pyridine (2.0 mL) was added DMAP (26 mg, 0.22 mmol) and bis(pentafluorophenyl) adipate (188 mg, 0.39 mmol). The mixture was stirred for one hour followed by evaporation of the solvents. The crude product was purified via SiO₂ chromatography (CH₂Cl₂/acetone, 7/3) yielding 167 mg of compound 3*Nle-OH as white foam (58%).

¹H NMR (300 MHz, CDCl₃) δ 8.96 (s, 1H, HC=N(6)), 8.49 (s, 1H, H-C(2)), 8.08 (s, 1H, H-C(8)), 7.74 (d, 2H, J = 7.4, H-C(ar)), 7.54 (d, 2H, J = 7.2, H-C(ar)), 7.41-7.19 (m, 13H, H-C(ar) and CDCl₃), 6.76 (d, 4H, J = 8.6, H-C(ar)), 6.50 (b, 1H, H-N(3')), 6.16 (d, 1H, J = 3.0, H-C(1')), 5.83 (m, 1H, H-C(2')), 5.20 (m, 2H, H-C(3') and H-N(Nle)), 4.47-4.26 (m, 3H, O-CH₂(Fmoc) and H-C(9, Fmoc)), 4.18 (m, 1H, H-C(4')), 3.99 (m, 1H, H-C(α, Nle)), 3.75 (s, 6H, $2xOCH_3(DMT)$), 3.64 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 3.56 (t, 2H, J = 6.3 $(OCH_2(Nle))$, 3.45 (m, 2H, H-C(5')), 3.38 (t, 2H, J = 7.2, N(CH_2CH_2CH_2CH_3)_2), 2.57 (s, 2H, (OOCCH₂CH₂CH₂CH₂COO)), 2.41 (s, 2H, (OOCCH₂CH₂CH₂CH₂COO)), 1.78-1.28 (m, 18H, 3xCH₂(Nle) and (OOCCH₂CH₂CH₂CH₂COO) and N(CH₂CH₂CH₂CH₃)₂), 0.93 (m, 6H, N(CH₂CH₂CH₂CH₃)₂), 0.88 (s, 9H, 3xCH₃(TBDMS)), 0.04 (s, 6H, 2xSi-CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 171.6, 169.4, 160.0, 158.7 (HC=N(6)), 152.9 (C(2)), 151.1, 144.4, 143.7, 141.4 140.0 (C(8)), 139.6, 135.7, 130.2 (C(ar)), 129.3 (C(ar)), 128.4 (C(ar)), 128.0 (C(ar)), 127.2 (C(ar)), 127.0 (C(ar)), 125.9 (C(ar)), 125.0 (C(ar)), 120.2 (C(ar)), 113.3 (C(ar)), 87.5 (C(1')), 86.9, 82.6 (C(4')), 75.2 (C(2')), 67.3 (OCH₂(Fmoc)), 63.3 (C(5')), 62.8 (N(CH₂CH₂CH₂CH₃)₂), 55.3 (C(α, Nle) and 2xOCH₃(DMT)), 52.0 (N(CH₂CH₂CH₂CH₃)₂), 50.6 (C(3')), 47.2 (CH(Fmoc)), 45.4 (OCH₂(Nle)), 38.7, 33.3 and 32.9 (OOCCH₂CH₂CH₂CH₂COO), 32.4-29.4 (OOCCH₂CH₂CH₂COO and/or CH₂(NIe) and/or $N(CH_2CH_2CH_2CH_3)_2),$ 26.1 CH₃(TBDMS)), 24.0-18.5 (2x (OOCCH₂CH₂CH₂COO and/or CH₂(Nle) and/or N(CH₂CH₂CH₂CH₃)₂), 13.9 and 13.8 $(2x CH_3)$, 1.1, -5.2 $(2x Si-CH_3)$. ESI-MS (m/z): $[M+H]^+$ calcd for $C_{79}H_{92}F_5N_8O_{12}Si$, 1467.65; found 1467.63.

DMTO-rA^{3-*NH*}-(*N-Fmoc-6-OtBDMS-Nle*) solid support (**4*****Nle-OH**). Compound **3*****Nle-OH** (167 mg, 0.11 mmol) was dissolved in dry DMF (3.0 mL) and pyridine (21 μ L) was added. To this solution, amino-functionalized support (*GE Healthcare*, *Custom Primer Support*TM 200 Amino, 400 mg) was added, and the suspension was agitated for 20 hrs at room temperature. Subsequently, the beads were collected on a Büchner funnel and washed

with DMF, methanol, and CH_2Cl_2 . For capping of unreacted amino groups, the beads were treated with a mixture of solution A (0.2 M phenoxy acetic anhydride in THF, 10 mL) and solution B (0.2 M *N*-methyl imidazole, 0.2 M *sym*-collidine in THF, 10 mL) and agitated for 10 min at room temperature. The suspension was filtrated again, the beads were washed with THF, methanol and CH_2Cl_2 , and dried under vacuum. Loading of the support **4*NIe-OH** was 75 µmol/g.

 N^{6} -[(Di-n-butylamino)methylene]-3'-[N-(9-fluorenyl)methoxycarbonyl-L-norleucinyl]amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-D-adenosine (2*NIe). Fmoc protected L-6azidonorleucine (79 mg, 0.22 mmol) was dissolved in DMF (3 mL) followed by addition of O-(benzotriazol-1-yl)-N.N.N',N'-tetramethyluronium hexafluorophosphate (HBTU, 81 mg, 0.22 mmol), 1-hydroxybenzotriazole hydrate (HOBt, 27 mg, 0.17 mmol) and N,Ndisopropylethylamine (DIPEA, 45 µL, 0.26 mmol). After three minutes of activation, 3'amino-N⁶-[(di-n-butylamino)methylene]-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-D-adenosine 1 (Geiermann et al., 2015) (122 mg, 0.17 mmol, in 1 mL DMF) was added and the mixture was stirred overnight at room temperature. Then, the solvent was evaporated, the residue dissolved in CH₂Cl₂ and washed consecutively with half-saturated aqueous NaHCO₃ solution, 5% citric acid solution, and saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), evaporated and the crude product was purified via SiO_2 chromatography yielding 116 mg of compound **2***NIe as white foam (65%).

¹H NMR (300 MHz, CDCl₃) δ 9.04 (s, 1H, HC=N(6)), 8.48 (s, 1H, H-C(2)), 8.14 (s, 1H, H-C(8)), 7.72 (m, 1H, H-C(ar)), 7.54 (m, 2H, H-C(ar)), 7.36-7.16 (m, 13H, H-C(ar) and CDCl₃), 6.83 (s, 1H, H-N(3')), 6.76 (d, 4H, J = 8.5, H-C(ar)), 5.99 (s, 1H, H-C(1')), 5.39 (d, 1H, J = 7.3, H-N(Nle)), 4.77 (m, 1H, H-C(2')), 4.66 (m, 1H, H-C(3')), 4.34 (m, 3H, O- $CH_{2}(Fmoc)$ and H-C(4')), 4.18 (m, 2H, H-C(α , Nle) and H-C(9, Fmoc)), 3.75 (s, 6H, 2xOCH₃(DMT)), 3.69 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 3.39 (m, 4H, H-C(5') and N(CH₂CH₂CH₂CH₃)₂), 1.66 (m, 6H, H₂C(β, Nle) and N(CH₂CH₂CH₂CH₃)₂), 1.38 (m, 4H, N(CH₂CH₂CH₃CH₃)₂), 1.26 (m, 4H, 2xH₂C(NIe)), 0.94 (m, 6H, N(CH₂CH₂CH₂CH₂CH₃)₂), 0.84 (t, 3H, J = 6.6, H₃C(NIe)). ¹³C NMR (75 MHz, CDCI₃) δ 172.6 (HC=N(6)), 160.5, 158.9, 158.6, 156.4, 152.5 (C(2)), 150.7, 144.5, 143.9, 143.8, 141.4, 139.6 (C(8)), 135.8, 135.7, 130.2 (C(ar)), 128.3 (C(ar)), 128.0 (C(ar)), 127.9 (C(ar)), 127.2 (C(ar)), 126.9 (C(ar)), 125.2 (C(ar)), 120.1 (C(ar)), 113.3 (C(ar)), 91.4 (C(1')), 86.6, 83.6 (C(4')), 74.7 (C(2')), 67.3 (O-CH₂(Fmoc)), 63.4 (C(5')), 55.3 (C(α, Nle) and 2xOCH₃(DMT)), 52.4 (C(3')), 52.1 (N(CH₂CH₂CH₂CH₃)₂), 47.2 (CH(Fmoc)), 46.3, 45.4 (N(CH₂CH₂CH₂CH₂CH₃)₂), 32.5 (N(CH₂CH₂CH₂CH₂CH₃)₂ and CH₂(NIe)), 31.1 (N(CH₂CH₂CH₂CH₃)₂), 29.4, 27.7 (CH₂(NIe)), 22.4 (CH₂(Nle)), 20.3 (N(CH₂CH₂CH₂CH₃)₂), 19.9 (N(CH₂CH₂CH₂CH₃)₂), 14.0, 14.0 (N(CH₂CH₂CH₂CH₃)₂), 13.8 (CH₃(NIe), 11.0. ESI-MS (m/z): [M+H]⁺ calcd for C₆₁H₇₁N₈O₈, 1043.54; found 1043.55.

N⁶-[(Di-n-butylamino)methylene]-3'-[N-(9-fluorenyl)methoxycarbonyl-L-norleucinyl]amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-2'-O-[1,6-dioxo-6-(pentafluorophenyloxy)hexyl]-D-

adenosine (**3*****NIe**). To a solution of compound **2*****NIe** (62 mg, 0.06 mmol) in DMF (1.5 mL) and pyridine (1.0 mL) was added DMAP (7 mg, 0.06 mmol) and bis(pentafluorophenyl) adipate (89 mg, 0.19 mmol). The mixture was stirred for one hour followed by evaporation of the solvents. The crude product was purified via SiO₂ chromatography (CH₂Cl₂/acetone, 7/3) yielding 36 mg of compound **2*****NIe** as white foam (46%).

¹H NMR (300 MHz, CDCl₃) δ 8.97 (s, 1H, HC=N(6)), 8.48 (s, 1H, H-C(2)), 8.01 (s, 1H, H-C(8)), 7.73 (m, 2H, HC(ar)), 7.75 (m, 2H, HC(ar)), 7.40-7.18 (m, 13H, HC(ar) and CDCl₃), 6.75 (d, 4H, J = 7.8, HC(ar)), 6.54 (m, 1H, HN(3')), 6.14 (d, 1H, J = 2.6, HC(1')), 5.83 (m, 1H, HC(2')), 5.27 (m, 1H, HN(NIe)), 5.20 (m, 1H, HC(3')), 4.43 (m, 2H, OCH₂(Fmoc)),

4.18 (m, 2H, HC(4') and HC(9, Fmoc)), 4.01 (m, 1H, HC(α, Fmoc)), 3.75 (s, 6H, 2xOCH₃(DMT)), 3.67 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 3.45-3.35 (m, 4H, HC(5') and N(CH₂CH₂CH₂CH₃)₂), 2.57 (m, 2H, OOCCH₂CH₂CH₂CH₂COO), 2.39 (m, 2H, OOCCH₂CH₂CH₂CH₂COO), 1.65 (m, 8H, CH₂(AOA) and OOCCH₂CH₂CH₂CH₂CH₂COO and N(CH₂CH₂CH₂CH₃)₂), 1.36 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 1.23 (m, 4H, 2xCH₂(NIe)), 0.93 (q, 6H, N(CH₂CH₂CH₂CH₃)₂), 0.84 (t, 3H, CH₃(Nle)). ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 171.6, 169.6, 169.5, 162.7, 160.3, 158.6 (HC=N(6)), 158.5, 156.5, 153.1 (C(2)), 151.3, 144.5, 143.8, 141.4, 140.0 (C(8)), 135.7, 130.2 (C(ar)), 128.4 (C(ar)), 127.9 (C(ar)), 127.2 (C(ar)), 125.1 (C(ar)), 120.1 (C(ar)), 113.3 (C(ar)), 87.5 (C(1')), 86.8, 82.5 (C(4')), 75.2 (C(2')), 67.2 (OCH₂), 63.4 (C(5')), 55.3 (C(α, NIe) and 2xOCH₃(DMT)), 52.0 (N(CH₂CH₂CH₂CH₃)₂), 50.7 (C(3')), 47.2 (CH(Fmoc)), 46.3, 45.3 (N(CH₂CH₂CH₂CH₃)₂), 36.6, 34.7 (OOCCH₂CH₂CH₂CH₂CCOO), 33.3 (OOCCH₂CH₂CH₂CH₂COO), 32.9, 31.6, 31.1 (CH₂(Nle)), 29.4 (2x OOCCH₂CH₂CH₂CH₂COO), 27.8 (CH₂(Nle)), 25.7, 24.0 and 23.9 (N(CH₂CH₂CH₂CH₃)₂), 22.4 (CH₂(Nle)), 20.3 (N(CH₂CH₂CH₂CH₃)₂), 19.9, 14.0 $(N(CH_2CH_2CH_2CH_3)_2)$, 13.8 $(CH_3(Nle))$, 8.8. ESI-MS (m/z): $[M+H]^+$ calcd for C₇₅H₈₂F₅N₈O₁₁, 1337.57; found 1337.46.

DMTO-rA^{3'-NH}-(*N-Fmoc-Nle*) solid support (**4*Nle**). Compound **3*Nle** (36 mg, 0.03 mmol) was dissolved in dry DMF (1.5 mL) and pyridine (5 μ L) was added. To this solution, amino-functionalized support (*GE Healthcare, Custom Primer Support*TM 200 Amino, 200 mg) was added, and the suspension was agitated for 20 hrs at room temperature. Subsequently, the beads were collected on a Büchner funnel and washed with DMF, methanol, and CH₂Cl₂. For capping of unreacted amino groups, the beads were treated with a mixture of solution A (0.2 M phenoxy acetic anhydride in THF, 10 mL) and solution B (0.2 M *N*-methyl imidazole, 0.2 M *sym*-collidine in THF, 10 mL) and agitated for 10 min at room temperature. The suspension was filtrated again, the beads were washed with THF, methanol and CH₂Cl₂, and dried under vacuum. Loading of the support **4*Nle** was 40 µmol/g.

N⁶-[(Di-n-butylamino)methylene]-3'-[(2S)-N-(9-fluorenyl)methoxycarbonyl-2-amino-

octanamido]-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-D-adenosine (**2*AOA**). (2S)-N-(9fluorenyl)methoxycarbonyl-2-aminooctanic acid (83 mg, 0.20 mmol) was dissolved in DMF (3 mL) followed by addition of O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU, 66 mg, 0.17 mmol), 1-hydroxybenzotriazole hydrate (HOBt, 27 mg, 0.17 mmol) and N,N-diisopropylethylamine (DIPEA, 35 µL, 0.20 mmol). After 3 minutes of activation, 3'-amino- N^6 -[(di-n-butylamino)methylene]-3'-deoxy-5'-O-(4,4'dimethoxytrityl)-D-adenosine **1** (Geiermann et al., 2015) (95 mg, 0.13 mmol, in 1 mL DMF) was added and the mixture was stirred overnight at room temperature. Then, the solvent was evaporated, the residue dissolved in CH₂Cl₂ and washed consecutively with half-saturated aqueous NaHCO₃ solution, 5% citric acid solution, and saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), evaporated and the crude product was purified via SiO₂ chromatography yielding 62 mg of compound **2*AOA** as white foam (43%).

¹H NMR (300 MHz, CDCl₃) δ 9.05 (s, 1H, HC=N(6)), 8.49 (s, 1H, H-C(2)), 8.17 (s, 1H, H-C(8)), 7.71 (m, 2H, H-C(ar)), 7.54 (m, 2H, H-C(ar)), 7.39-7.14 (m, 13H, H-C(ar)), 6.87 (m, 1H, H-N(3')), 6.75 (d, 4H, J = 8.4, H-C(ar)), 6.01 (s, 1H, H-C(1')), 5.48 (d, 1H, J = 7.4, H-N(AOA)), 4.79 (m, 1H, H-C(2')), 4.69 (m, 1H, H-C(3')), 4.36 (m, 3H, OCH₂(Fmoc) and H-C(4')), 4.18 (m, 2H, H-C(α , AOA) and H-C(9, Fmoc)), 3.74 (s, 6H, OCH₃(DMT)), 3.72-3.60 (m, 2H, N(CH₂CH₂CH₂CH₂CH₃)₂), 3.48-3.36 (m, 4H, N(CH₂CH₂CH₂CH₃)₂ and H-C(5')), 1.62 (m, 6H, N(CH₂CH₂CH₂CH₂CH₃)₂) and CH₂(AOA)), 1.38-1.29 (m, 6H, N(CH₂CH₂CH₂CH₃)₂ and CH₂(AOA)), 1.24 (br, 6H; 3xCH₂(AOA)), 0.97-0.83 (m, 9H, N(CH₂CH₂CH₂CH₃)₂)

3xCH₃). ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 160.7, 158.8 (HC=N(6)), 156.5, 152.5 (C(2)), 150.8, 144.7, 144.1, 141.5 139.8 (C(8)), 136.0, 130.2, 128.3, 128.0, 127.2, 125.2, 120.1 113.3, 91.4(C(1')), 86.8, 83.7 (C(4')), 74.9 (C(2')), 67.4 (O-CH₂(Fmoc)), 63.5 (C(5')), 55.4 (C(α, AOA) and 2xOCH₃(DMT)), 52.5 (C(3')), 52.1 (N(CH₂CH₂CH₂CH₃)₂), 47.3, 46.5 (CH(Fmoc)), 45.5 (N(CH₂CH₂CH₂CH₃)₂), 38.9, 32.9, 31.8 and 31.2 (N(CH₂CH₂CH₂CH₃)₂ and CH₂(AOA)), 29.4 and 29.1 (N(CH₂CH₂CH₂CH₃)₂ and CH₂(AOA)), 25.7 (CH₂(AOA)), 22.7 (CH₂(AOA)), 20.4 and 20.0 (N(CH₂CH₂CH₂CH₃)₂), 14.3-13.9 (N(CH₂CH₂CH₂CH₃)₂ and CH₃(AOA)), 8.9. ESI-MS (m/z): [M+H]⁺ calcd for C₆₃H₇₅N₈O₈, 1071.57; found 1071.44.

N⁶-[(Di-n-butylamino)methylene]-3'-[(2S)-N-(9-fluorenyl)methoxycarbonyl-2-aminooctanamido]-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-2'-O-[1,6-dioxo-6-

(*pentafluorophenyloxy*)*hexyl*]-D-*adenosine* (**3*AOA**). To a solution of compound **2*AOA** (62 mg, 0.06 mmol) in DMF (1.5 mL) and pyridine (1.0 mL) was added DMAP (7 mg, 0.06 mmol) and bis(pentafluorophenyl) adipate (89 mg, 0.19 mmol). The mixture was stirred for one hour followed by evaporation of the solvents. The crude product was purified via SiO₂ chromatography (CH₂Cl₂/acetone, 7/3) yielding 36 mg of compound **3*AOA** as white foam (46%).

¹H NMR (300 MHz, CDCl₃) δ 8.99 (s, 1H, HC=N(6)), 8.49 (s, 1H, H-C(2)), 8.08 (s, 1H, H-C(8)), 7.75 (m, 2H, H-C(ar)), 7.56 (m, 2H, H-C(ar)), 7.41-7.16 (m, 13H, H-C(ar)), 6.78 (d, 4H, J = 8.7, H-C(ar)), 6.52 (br, 1H, H-N(3')), 6.16 (d, 1H, J = 3.1, H-C(1)), 5.83 (m, 1H, H-C(2')), 5.24 (m, 2H, H-C(3') and H-N(AOA)), 4.47-4.29 (m, 2H, O-CH₂(Fmoc)), 4.18 (m, 2H, H-C(4') and H-C(9, Fmoc)), 4.01 (m, 1H, H-C(α, AOA)), 3.75 (s, 6H, 2xO-CH₃(DMT)), 3.64 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 3.45-3.36 (m, 4H, H₂C(5') and N(CH₂CH₂CH₂CH₃)₂), 2.57 (s, 2H, OOCCH2CH2CH2CH2COO), 2.41 (s, 2H, OOCCH2CH2CH2CH2COO), 1.65-1.57 (m, 8H, CH₂(AOA) and OOCCH₂CH₂CH₂CH₂COO and N(CH₂CH₂CH₂CH₃)₂), 1.39-1.29 (m, 4H, N(CH₂CH₂CH₂CH₃)₂), 1.28-1.19 (m, 8H, CH₂(AOA)), 0.97-0.84 (m, 9H, 3xCH₃). ¹³C NMR (75 MHz, CDCl₃) δ 172.0, 171.6, 169.5, 159.9, 158.7 (HC=N(6)), 156.5, 152.7 (C(2)), 151.1, 144.4, 143.7, 141.4 (C(8)), 140.1, 139.6, 135.6 130.2 (C(ar)), 129.3, 128.4(C(ar)), 128.0, 127.2, 127.0, 125.9, 125.0 (C(ar)), 120.1 (C(ar)), 113.3 (C(ar)), 87.6 (C(1')), 86.8, 82.5 (C(4')), 75.2 (C(2')), 67.2 (OCH₂(Fmoc)), 63.2 (C(5')), 55.3 (C(α, NIe) and 2xOCH₃(DMT)), 52.1 (N(CH₂CH₂CH₂CH₃)₂), 50.6 (C(3')), 47.2 (HC(Fmoc)), 45.4 $(N(CH_2CH_2CH_2CH_3)_2),$ 33.3 $(OOCCH_2CH_2CH_2CH_2COO),$ 32.9 (OOCCH₂CH₂CH₂CH₂COO), 31.7 (CH₂(AOA)), 31.1 (OOCCH₂CH₂CH₂CH₂COO), 29.3, 29.0 (2xCH₂(AOA)), 25.7 (CH₂(AOA)), 24.0, 23.8 (N(CH₂CH₂CH₂CH₃)₂), 22.7 (CH₂(AOA)), 20.2, 19.9 (N(CH₂CH₂CH₂CH₃)₂), 14.1-13.7 (3xCH₃). ESI-MS (m/z): [M+H]⁺ calcd for C₇₅H₈₂F₅N₈O₁₁, 1365.60; found 1366.48.

DMTO-rA^{3-*NH*}-(*N-Fmoc-AOA*) solid support (**4*AOA**). Compound **3*AOA** (36 mg, 0.03 mmol) was dissolved in dry DMF (1.5 mL) and pyridine (5 μ L) was added. To this solution, amino-functionalized support (*GE Healthcare*, *Custom Primer Support*TM 200 *Amino*, 200 mg) was added, and the suspension was agitated for 20 hrs at room temperature. Subsequently, the beads were collected on a Büchner funnel and washed with DMF, methanol, and CH₂Cl₂. For capping of unreacted amino groups, the beads were treated with a mixture of solution A (0.2 M phenoxy acetic anhydride in THF, 10 mL) and solution B (0.2 M *N*-methyl imidazole, 0.2 M *sym*-collidine in THF, 10 mL) and agitated for 10 min at room temperature. The suspension was filtrated again, the beads were washed with THF, methanol and CH₂Cl₂, and dried under vacuum. Loading of the support **4*AOA** was 45 µmol/g.

N⁶-[(Di-n-butylamino)methylene]-3'-[3-N-allyloxycarbonyl-2-N-(9-

fluorenyl)methoxycarbonyl-L-2,3-diaminopropionyl]amino-3'-deoxy-5'-O-(4,4'-

dimethoxytrityl)-D-adenosine (2*Dap). 3-N-Allyloxycarbonyl-2-Nfluorenylmethoxycarbonyl-L-2,3-diaminopropionic acid (26 mg, 63 µmol) was dissolved mL) followed O-(benzotriazol-1-yl)-N,N,N',N'in DMF (1 by addition of tetramethyluronium hexafluorophosphate (HBTU, 25 mg, 66 µmol), 1hydroxybenzotriazole hydrate (HOBt, 8 mg, 52 µmol) and N,N-diisopropylethylamine (DIPEA, 13 μ L, 75 μ mol). After 10 minutes of activation, 3'-amino-N⁶-[(di-nbutylamino)methylene]-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-D-adenosine 1 (Geiermann et al., 2015) (35 mg, 49 µmol, in 1 mL DMF) was added and the mixture was stirred overnight at room temperature. Then, 1 mL of water was added and stirring was continued for further 10 minutes. All volatiles were evaporated, the residue dissolved in CH₂Cl₂ and washed consecutively with half-saturated aqueous NaHCO₃ solution, and saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), evaporated and the crude product was purified via SiO_2 chromatography, eluting with a gradient from 1 to 5 % of methanol in dichloromethane, yielding 23 mg of compound **2*Dap** as white foam (42 %).

¹H NMR (300 MHz, d6-DMSO) δ 8.93 (s, 1H, HC=N(6)), 8.40 (s, 1H, H-C(2)), 8.34 (s, 1H, H-C(8)), 8.00 (m, 1H, H-C(ar)), 7.90 - 7.87 (m, 2H, H-C(ar)), 7.70 - 7.68 (m, 2H, H-C(ar)), 7.44 - 7.12 (m, H-C(ar)), 6.77 (m, 4H, H-C(ar)), 6.04 (s, 1H, H-C(1')), 5.86 (m, 1H, H-C(allyl)), 5.25 - 5.09 (m, 2H, H=C(allyl)), 4.75 (m, 1H, H-C(2')), 4.42 (m, 2H, CH₂(allyl)), 4.25 - 4.18 (m, H-C(α), CH₂(Dap), H-C(Fmoc), H-C(3')), 3.69 (s, 7H, 2 x OMe(DMT) and H-C(4')), 3.59 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 3.45 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 3.25 -3.20 (m, 4H, CH₂(Fmoc), 2 x H-C(5')), 1.60 (m, 2H, N(CH₂CH₂CH₂CH₃)₂), 1.32 (m, 2H, $N(CH_2CH_2CH_2CH_3)_2)$, 1.24 (m, 4H. $N(CH_2CH_2CH_2CH_3)_2)),$ 0.92 (m. 6H. $N(CH_2CH_2CH_2CH_3)_2)$ ppm. ESI-MS (m/z): [M+H]⁺ calcd for C₆₂H₇₀N₉O₁₀, 1100.52; found 1100.27.

DMTO-rA^{3-*NH*}-(3-*N*-*Alloc*-2-*N*-*Fmoc*-*Dap*) solid support (**4*Dap**). Compound **2*Dap** (23 mg, 21 µmol) and bis(pentafluorophenyl) adipate (20 mg, 42 µmol) were dissolved in dry DMF (1.5 mL) and pyridine (1.0 mL) and then DMAP (3 mg, 25 µmol) was added to form **3*Dap** in situ. After 2 hours of agitation at room temperature, amino-functionalized support (*GE Healthcare*, *Custom Primer Support*TM 200 Amino, 125 mg) was added, and the suspension was further agitated for 3 days at room temperature. Subsequently, the beads were collected on a Büchner funnel and washed with DMF, methanol and CH₂Cl₂. For capping of unreacted amino groups, the beads were treated with a mixture of solution A (0.2 M phenoxy acetic anhydride in THF, 10 mL) and solution B (0.2 M *N*-methyl imidazole, 0.2 M *sym*-collidine in THF, 10 mL) and agitated for 10 min at room temperature. The suspension was filtrated again, the beads were washed with THF, acetonitrile and CH₂Cl₂, and dried under vacuum. Loading of the support **4*Dap** was 20 µmol/g.

RNA solid-phase synthesis, deprotection and purification

Automated synthesis on solid supports **4**. The 5'-p-ACC moiety was assembled on an *ABI 392 Nucleic Acid Synthesizer* following standard synthesis protocols using 2'-O-[(TriisopropylsilyI)oxy]methyl (TOM) protected nucleoside phosphoramidites (Pitsch et al., 2001; Micura, 2002) and the above described solid supports **4**. Detritylation (120 s): dichloroacetic acid/1,2-dichloroethane (4/96); coupling (120 s): phosphoramidites (0.1 M in acetonitrile, 130 μ L) were activated with benzylthiotetrazole (0.3 M in acetonitrile, 180

 μ L); capping (2 x 10 s, Cap A/Cap B = 1/1): Cap A: phenoxyacetic anhydride (0.2 M in THF), Cap B: *N*-methyl imidazole (0.2 M), sym-collidine (0.02 M) in THF; oxidation (20 s): I₂ (0.2 M) in THF/pyridine/H₂O (35/10/5). Nucleoside phosphoramidites, benzylthiotetrazole, and capping solutions were dried over activated molecular sieves (4 Å) overnight.

Deprotection of the 5'-p-ACCA^{3'NH}-amino acid conjugates. For conjugates synthesized on solid support **4*Dap**: *Allyl deprotection* (for supports **4*NIe-N₃**, **4*NIe-OH**, **4*NIe**, and **4*NIe-Et**, deprotection starts directly with Step A): The solid support was transfered into an Eppendorf tube, dried in high vacuum and purged with argon. Dry and degassed dichloromethane (1.0 mL) was added, followed by borane dimethylamine complex (35 mg). After ten minutes Pd(P[Ph]₃)₄ (35 mg) was added. The reaction was agitated and kept under argon for 3 hours. The solid support was filtered and treated with a solution of sodium diethyldithiocarbamate (0.5% in DMF, 5 x 2 mL) and washed with DMF and dichloromethane.

Step A) Fmoc deprotection. The solid support was treated with a solution of 20 % piperidine in acetonitrile (10 mL, 10 min), washed with acetonitrile and dried (can be done in the ABI synthesis column). Step B) Acyl deprotection and cleavage from the solid support. In an Eppendorf tube, the beads were treated with equal volumes of methylamine in ethanol (8 M, 0.5 mL) and methylamine in H₂O (40%, 0.5 mL) were added. After 6 h shaking at room temperature the supernatant was filtered and evaporated to dryness. Step C) 2'-O-TOM and 6-OtBDMS-NIe deprotection. The obtained residue was treated with TBAF 3 H_2O in THF (1 M, 1 mL) overnight at room temperature. The reaction was guenched by the addition of triethylammonium acetate (TEAA) (1 M, pH 7.4, 1 mL). After reducing the volume of the solution, it was applied on a size-exclusion chromatography column (GE Healthcare, HiPrep 26/10 Desalting, 2.6 x 10 cm, Sephadex G25). By eluating with H₂O, the conjugate-containing fractions were collected, evaporated to dryness, and the residue was dissolved in H_2O (1 mL). Analysis of the crude products was performed by anion-exchange chromatography on a Dionex DNAPac PA-100 column (4 x 250 mm) at 60°C. Flow rate: 1 mL min⁻¹; eluent A: 25 mm Tris·HCI (pH 8.0), 6 M urea; eluent B: 25 mM Tris·HCI (pH 8.0), 0.5 M NaCIO₄, 6 M urea; gradient: 0-60 % B in A within 45 min or 0-40 % B in A within 30 min, UV detection at + = 260 nm.

Purification of the 5'-p-ACCA^{3'NH}-amino acid conjugates. The crude conjugate was purified on a semipreparative Dionex DNAPac PA-100 column (9 x 250 mm) at 60 °C with flow rate of 2 mL min⁻¹ (for eluents see above). Fractions containing the conjugate were loaded on a C18 SepPak Plus cartridge (Waters/Millipore), washed with 0.1–0.15 M (Et₃NH)⁺HCO₃⁻, H₂O, and eluted with H₂O/CH₃CN (1:1). Conjugate-containing fractions were evaporated to dryness and dissolved in H₂O (1 mL). The quality of the purified conjugate was analyzed by analytical anion-exchange chromatography and their molecular weights were confirmed by LC-ESI mass spectrometry. Yields were determined by UV photometrical analysis of conjugate solutions. The final compound was dissolved in water to achieve ~50 mM concentration for stock solutions and later used for soaking.

Characterization of RNA–amino acid conjugates is presented in the figure below which shows: Anion-exchange HPLC traces (top) of: (A) ACCA-3' NH-Nle-N₃, (B) ACCA-3' NH-Nle-OH, (C) ACCA-3' NH-Nle, and (D) ACCA-3' NH-Nle-Et and the corresponding LC–ESI mass spectra (bottom). HPLC conditions: Dionex DNAPac column (4×250 mm), 80 °C, 1 mL min–1, 0–60% buffer B in buffer A within 45 min; buffer A: Tris-HCI (25 mM), urea (6 M), pH 8.0; buffer B: Tris-HCI (25 mM), urea (6 M), NaCIO4 (0.5 M), pH 8.0.

SUPPLEMENTAL TABLE: DNA primers used in the biochemical experiments

Primer name	Primer sequence
Τ7	TAATACGACTCACTATAGGG
NV1	GGTTATAATGAATTTTGCTTATTAAC
MRLR-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATA
	TGAGACTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MALR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATA
	TGGCACTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MCLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATA
	TGTGCCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MDLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GGATCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MELR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
MFLK –I-twd	
MCLD I find	
MOLK -I-IWU	GGGTCTTCGTTTCCCAATTACTTTGAACCAGTAAGGAGGATAG
MHI R _I_fwd	
WITER TIWE	TGCACCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MILR –W-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GATTCTTCGTTTCCCATGGACTTTGAACCAGTAAGTGATAG
MKLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAACTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MLLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATA
	TGCTTCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MMLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GATGCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MNLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAACCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MPLR –I-fwd	
MOLD IC 1	
MQLK –I-fwd	
MSLD I find	
MISLK -I-Iwu	TGTCACTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MTIR_I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
WITER TIWE	GACACTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MVLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GGTACTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MWLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GTGGCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MYLR –I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATA
	TGTATCTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRAR-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGAGCACGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRCR-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGATGCCGTTTCCCAATTACITTGAACCAGTAAGTGATAG
MKDK-I-twd	
MDED LC 4	
MKEK-I-IWd	ΙΑΑΙΑυθΑυΙυΑυΙΑΙΑθθυιΙΑΑΘΙΑΙΑΑΘΟΑΘΟΑΑΑΑΑΤΑΤ

	GAGAGAACGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRFR-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGATTTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRGR-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
initiation i new	GAGAGGTCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRHR_I_fwd	
WINTER-I-I wa	GAGACACCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRIR W fwd	
WINTER W - I W G	GAGAATTCGTTTCCCATGGACTTTGAACCAGTAAGTGATAG
MRKR I fwd	
WINKIN-I-IWU	GAGAAAACGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MDMD I find	
WINININ-I-IWU	GAGAATGCGTTTCCCAATTACTTTGAACCAGTAAGTGATAG
MDND I find	
WIKINK-I-IWU	
MDDD I ford	
WIKPK-I-IWU	
MDOD I faid	
MKQK-I-IWd	
MKKK-I-IWQ	
MRSK-I-fwd	
MRIR-I-fwd	
MRVR-I-fwd	
MKWK-I-IWd	
MRYR-I-IWd	
MDIA I fJ	
MKLA-I-IWQ	
MDLCLfml	
MIKLC-I-IWd	
MKLD-I-IWd	
MDIE I fl	
MIKLE-I-IWQ	
MDIFIC 1	
MIKLF-I-TWO	
MKLG-I-IWd	
MRLH-I-fwd	
MRLI-W-fwd	
MRLK-I-fwd	
MKLL-I-twd	
	GAGACITCITTTCCCAAITACITTGAACCAGTAAGIGATAG
MRLM-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTATGTTCCCAATTACTTTGAACCAGTAAGTGATAG

MRLN-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTAACTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLP-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTCCATTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLQ-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTCAGTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLS-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTTCATTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLT-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTACATTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLV-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTGTATTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLW-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTTGGTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLY-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGACTTTATTTCCCAATTACTTTGAACCAGTAAGTGATAG
MRLR-Mut-rev	GGTTATAATGAATTTTGCTTATTAACGATAGAATTCTATCACTTAC
	TGGTTCAAA
MDLD-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GGATCTTGATTTCCCAATTACTTTGAACCAGTAAGTGATAG
MELE-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GGAACTTGAATTCCCAATTACTTTGAACCAGTAAGTGATAG
RLR-V1-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GCGCCTGCGATTCCCAATTACTTTGAACCAGTAAGTGATAG
RLR-V2-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GCGACTACGCTTCCCAATTACTTTGAACCAGTAAGTGATAG
RLR-V3-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAGGTTGCGGTTCCCAATTACTTTGAACCAGTAAGTGATAG
MKAK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGGCAAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKCK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGTGCAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKDK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGGATAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKEK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGGAAAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKFK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGTTTAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKGK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGGGTAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKHK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGCACAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKIK-W-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGATTAAATTCCCATGGACTTTGAACCAGTAAGTGATAG
MKKK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGAAGAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKLK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGCTTAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKMK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGATGAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKNK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGAACAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKPK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGCCAAAATTCCCAATTACTTTGAACCAGTAAGTGATAG

MKOK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGCAGAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKRK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGCGTAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKSK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGTCAAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKTK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGACAAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKVK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGGTAAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKWK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGTGGAAATTCCCAATTACTTTGAACCAGTAAGTGATAG
MKYK-I-fwd	TAATACGACTCACTATAGGGCTTAAGTATAAGGAGGAAAAAATAT
	GAAGTATAAATTCCCAATTACTTTGAACCAGTAAGTGATAG

References

- Geiermann, A.S. & Micura, R. Native chemical ligation of hydrolysis-resistant 3'-NH-cysteinemodified RNA. *Curr. Protoc. Nucl. Acid Chem.* **62**, 4.64.1-4.64.36 (2015).
- Micura, R. Small interfering RNAs and their chemical synthesis. *Angew. Chem. Int. Ed.* **41**, 2265–2269 (2002).
- Moroder, H., Steger, J., Graber, D., Fauster, K., Trappl, K., Marquez, V., Polacek, N., Wilson, D. N. & Micura, R. Non-hydrolyzable RNA-peptide conjugates: a powerful advance in the synthesis of mimics for 3'-peptidyl tRNA termini. *Angew. Chem. Int. Ed.* 48, 4056–4060 (2009).
- Pitsch, S., Weiss, P. A., Jenny, L., Stutz, A. & Wu, X. Reliable chemical synthesis of oligoribonucleotides (RNA) with 2'-O-[(Triisopropylsilyl)oxy]methyl (2'-O-tom)-protected phosphoramidites. *Helvetica Chimica Acta* **84**, 3773–3795 (2001).