Supplementary information for:

A novel genome editing platform for drug resistant *Acinetobacter baumannii* revealed an AdeR-unrelated tigecycline resistance mechanism

Vincent Trebosc^{1,2}, Sarah Gartenmann¹, Kevin Royet¹, Pablo Manfredi², Marcus Tötzl¹, Birgit Schellhorn¹, Michel Pieren¹, Marcel Tigges¹, Sergio Lociuro¹, Peter C. Sennhenn¹, Marc Gitzinger¹, Dirk Bumann², and Christian Kemmer^{1#}

¹ BioVersys AG, Basel, Switzerland
 ² Biozentrum, University of Basel, Basel, Switzerland

Running title: Genome editing platform for drug resistant *A. baumannii* [#] Corresponding author: Christian Kemmer <u>christian.kemmer@bioversys.com</u>

Keywords: multidrug resistance, knockout, knockin, efflux pumps, adeABC, trm.

Table of content:

Figure S1: Development of artificial tigecycline resistance in A. baumannii using serial passages.

Table S1: Oligonuclotides used in this study.

Table S2: Antibiotic resistance profile of the in vitro evolved tigecycline resistant strains and their parental strains.

Table S3: Important mutations identified by whole genome sequencing of in vitro evolved tigecycline resistant strains.

Table S4: Tigecycline resistance profile of the trm knockout and trm restored strains.

Figure S1: Development of artificial tigecycline resistance in A. baumannii using serial passages. Strain ATCC-17978 and its Δ adeR mutant were grown for 12 days in medium containing indicated tigecycline concentrations. The cells were passaged every 48h into fresh medium containing a duplication in the tigecycline concentration. The artificially evolved tigecycline resistant strains derived from strain A. baumannii ATCC-17978 and its Δ adeR mutant were designated ATCC-17978(TGC) and ATCC-17978_{Δ adeR}(TGC), respectively. The figure was produced, in part, by using Servier Medical Art.

Oligo name	Sequence (5'-3')
oVT01	GGCGCGCCCTGTCAGACCAAGTTTACTC
oVT02	GGCCGGCCTATCAGCTCACTCAAAGG
oVT05	ACTGACTTTAGCCGGTGGTG
oVT08	GTTTTCCCAGTCACGACGC
oVT93	GCAGCTTGTAGGCGTTCATAC
oVT94	AACTTGCTCAATACGACGGC
oVT106	TTTTAATATTATCCCGGGAGAAAATCTGGCTATAGAAAGTG
oVT107	GCCAGATTTTCTCCCGGGATAATATTAAAAAATAGCTAGGGAATATTTTATG
oVT113	CCGCTCGAGCCTAGGGAATTCAAAGAGGAGAAAATGGCACAGCTATATTTCTACTATTCCGC
oVT114	AACTGCAGAAGCTTGGCGCGCCAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGGTTTTTTGTTAATCGTGGCGA
oVT134	TTTTTGCGGCCATTGGTGAG
oVT141	CATTTTCTCCTCTTTGTATTCGCGCGGCCGCG
oVT142	CGCGGCCGCGAATACAAAGAGGAGAAAATG
oVT149	AATTGAGGCCTCTCGAGGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGCCTGCAGGAAGCTTCG
oVT150	GGCCCGAAGCTTCCTGCAGGCTCTAGAGGATC <i>CCCGGG</i> TACCGAGCTCGAATTCCTCGAGAGGCCTC
oVT151	AAAAGAGAGTGAGGGGGGCAC
oVT154	GGAGAATTGAGGCCTCTCGAGTGCACCTTCAGTGACAAAAG
oVT155	AGCTTCCTGCAGGCTCTAGATTTAAGAACTTTTTCAACTACCG
oVT160	ACTGCCATAACCACCAGC
oVT161	CCCATTCATCTTCGGGCTCA
oVT312	AAGGAGAGTTGACACAGCTG
oVT412	AGAATTGAGGCCTCTCGAGGAATTCGCACCTGCACCTAAAAGC
oVT413	CTGGTCTTGCCCGGGGGGAGAAAACCGACACTGATATAC
oVT414	GGTTTTCTCCCCCGGGCAAGACCAGTTGCCGATC
oVT415	CCGCAAGCTTCCTGCAGGCTCTAGACGCTGTGCCCGTTATAATG
oVT416	GAGGAATTCGAGCTCGGTACCTTACAAAAACGGCAAGCC
oVT417	CCGCAAGCTTCCTGCAGGCTCTAGAAGCAATCATCACGTCCAG
oVT423	GGCTACTACAGGAGCAGCAG
oVT424	CTACTTTGATGGCGGCGTTG
adeB-qRT-F	GGATTATGGCGACAGAAGGA
adeB-qRT-R	AATACTGCCGCCAATACCAG
rpoD-qRT-F	GAGTCTAATGGCGGTGGTTC
rpoD-qRT-R	ATTGCTTCATCTGCTGGTTG

 Table S1: Oligonuclotides used in this study.

 Oligo name
 Sequence (5'-3')

MIC (µg/ml)	Tigecycline	Tetracycline	Meropenem	Ciprofloxacin	Gentamycin	
ATCC-17978	0.4	2	0.5	0.5	2	
ATCC-17978(TGC)	25	32	0.5	2	0.5	
ATCC-17978 _{∆adeR}	0.4	2	0.25	0.25	1	
ATCC-17978 _{∆adeR} (TGC)	6.3	64	0.5	4	0.5	

Table S2: Antibiotic resistance profile of the in vitro evolved tigecycline resistant strains and their parental strains.

Table S3: Important mutations identified by whole genome sequencing of in vitro evolved tigecycline resistant strains.

Mutated gene or	Mutations		_	
region	ATCC-17978(TGC)	ATCC-17978 _{∆adeR} (TGC)	Protein function	References
<i>trm</i> (A1S_2858)	IS-17 like transposon inserted in the coding sequence	Adenine in position 311 of <i>trm</i> deleted leading to early stop codon	Methyltransferase potentially involved in rRNAs methylation	(1)
RNase E (A1S_0403)	58 bp deletion in the coding sequence	-	Ribonuclease involved in rRNAs processing and RNA decay	(2)
Intergenic region between <i>RNase E</i> (A1S_0403) and 23S <i>rRNA pseudouridylate</i> <i>synthase</i> (A1S_0404)	ISAba11 element inserted at position 439,336 in the intergenic region	-	RNase E see above. 23S rRNA pseudouridylate synthase involved in modification of 23S rRNA	(3)
adeN (A1S_1979)	-	ISAba11 transposon inserted in the coding sequence	Transcriptional repressor of the <i>adeIJK</i> efflux pump	(4)
abeM (A1S_0395)	-	Cytosine to thymidine mutation (position 429,259) in the promoter region of <i>abeM</i>	MATE family efflux pump	(5)
rpsJ (A1S_3081)	-	S12F substitution in the coding sequence	30S ribosomal protein S10 part of tigecycline binding site in the ribosome	(6, 7)

Table S4: Tigecycline resistance profile of the trm knockout and trm restored strains.

	trm knockout ATCC-17978		<i>trm</i> wildtype recovery					
			BV185		BV186		BV191	
Tigecycline	WT	∆trm	WT	trm+	WT	trm+	WT	trm+
MIC (µg/ml)	0.4	0.8	3.1	1.6	3.1	1.6	12.5	6.3

References:

- 1. Morić I, Savić M, Ilić-Tomić T, Vojnović S, Bajkić S, Vasiljević B. 2010. rRNA Methyltransferases and their Role in Resistance to Antibiotics. J Med Biochem **29**:165–174.
- Mackie GA. 2013. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11:45–57.
- 3. **Gutgsell NS**, **Deutscher MP**, **Ofengand J**. 2005. The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA N Y N **11**:1141–1152.
- 4. **Rosenfeld N, Bouchier C, Courvalin P, Périchon B**. 2012. Expression of the resistance-nodulationcell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother **56**:2504–2510.
- 5. **Su X-Z**, **Chen J**, **Mizushima T**, **Kuroda T**, **Tsuchiya T**. 2005. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother **49**:4362–4364.
- Schedlbauer A, Kaminishi T, Ochoa-Lizarralde B, Dhimole N, Zhou S, López-Alonso JP, Connell SR, Fucini P. 2015. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome. Antimicrob Agents Chemother 59:2849–2854.
- Beabout K, Hammerstrom TG, Perez AM, Magalhães B de F, Prater AG, Clements TP, Arias CA, Saxer G, Shamoo Y. 2015. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Antimicrob Agents Chemother.