#################################################################################################################################### # This wrapper will source the script "simulation script ABV method.R' to simulate data for r runs of j studies of i participants.# #################################################################################################################################### #set number of simulation runs 'r': nr = 10 #set number of studies 'j' in each run 'r': nj = 1000 #set number of participants 'ni_GrpB' and 'ni_GrpB' for each subset 'A' and 'B' for all simulated studies ni_GrpA = 26 ni_GrpB = 26 # set number of trials nCT = 64 nIT = 64 nNT = 32 # NB! for the ABV script, the number of CT and IT trials MUST be twice the number of NT trials!! #################################################################################################################################### # Parameters for drawing random data ("response times") # #################################################################################################################################### #### set the initial parameters for RT mean and standard deviation #### # These are the parameters used for all studies ('j')in the first run ('r'). # For groups a A these parameters will be modified as specified below from the second run onwards # For groups B these parameters are retained over each run - except when dynamic is set to 1 or 2 (see below). # set start parameters for both groups: start_mean <- 600 start_SD <- 30 # set parameters to change over runs 'r': SD_increase = 2 # at the start of each run increase SD rt for both IT & CT trials in groups A (groups B remain at start_SD) # (0 = keep constant, 2 = +2 ms in run 2, +4 ms in run 3, etc.) Mn_increase = 0 # at the start of each run increase the mean rt for both IT & CT trials in groups A (groups B remain at start_mean) # (0 = keep constant, 20 = +20 ms in run 2, +40 ms in run 3, etc.) BI_increase = 0 # at the start of each run increase bias in groups A - half this value will be subtracted from the mean CT value, half this value added to the mean IT value. # (0 = keep constant, 3 = create a difference of 3 ms in run 2, a difference of 6 ms in run 3, etc.) dynamic = 0 # 0: no dynamic; # 1: increase frequency of switches over runs (every 1/r *total number of trials) in group A, # no increases in SD, mean or BI will be applied (!). # in group B the fixed bias is kept constant (at value fixed_BI) within each data set (no switches) and over runs. # 2: increase BI amplitude in groups A using value given for BI_increase and also # implement N_swithces number of switches and a 'fixed_BI'-sized bias in both groups. fixed_BI = 0 # value for fixed_BI to use when dynamic is either 1 or 2 Nswitches = 0 # number of switches to implement when dynamic = 2 #run simulation with above entered parameters: source("simulation script ABV method.R") # save output: SaveSimOutput(method= "TLBS", CSV= FALSE, RDS=TRUE, docx=TRUE) ####################################################################################################################################