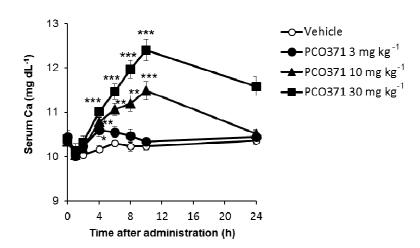
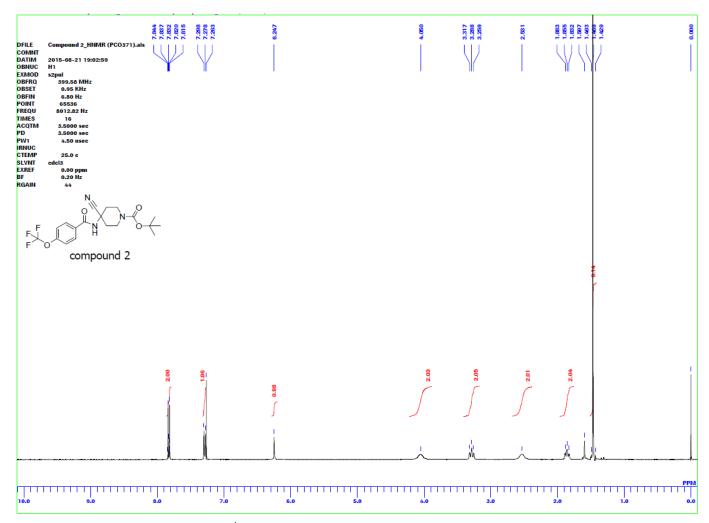
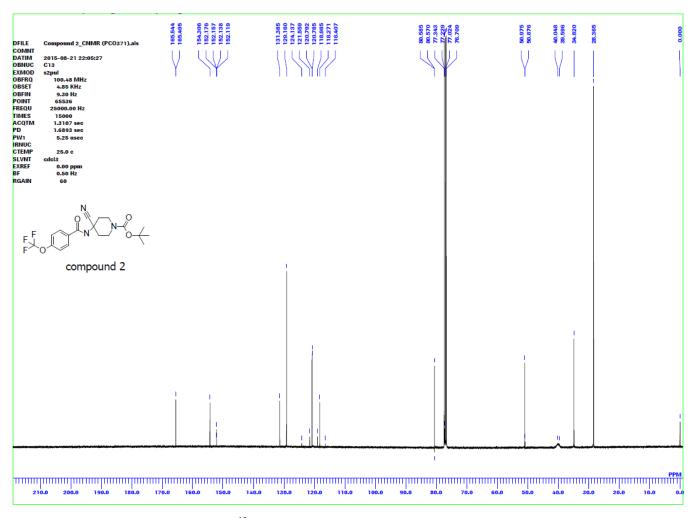

Supplementary Figure 1. Reactivity of PCO371 to rat PTHR1 and PTHR2. (a) cAMP production by hPTH(1-34) and PCO371 in COS-7 cells expressing rat PTHR1. (b) cAMP production by hPTH(1-34), PCO371, and hTIP39 in COS-7 cells expressing rat PTHR2. Data are represented as the mean \pm s.d. of one experiment (n=3).

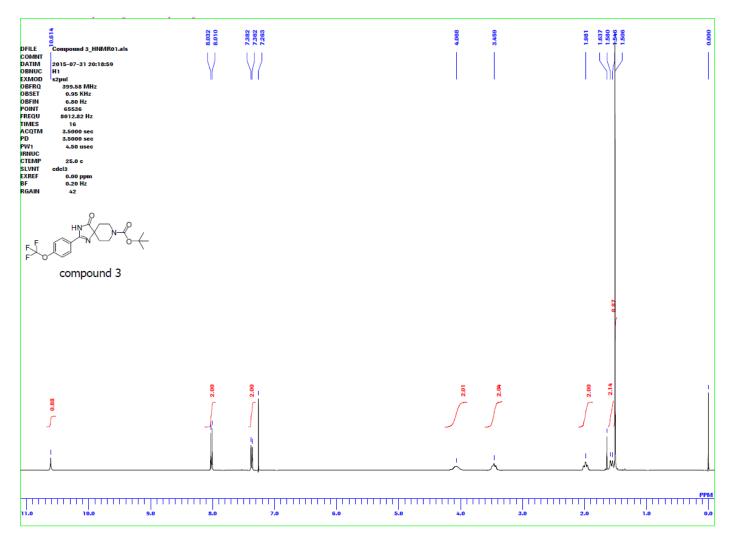
Supplementary Figure 2. Pharmacokinetic profile of PCO371 in OVX rats. OVX rats were treated with a single oral (30 mg kg-1) or intravenous (3 or 10 mg kg-1) administration of PCO371. Data are represented as the mean + s.d. of one experiment (*n*=11 for 3 and 30 mg kg⁻¹ PCO371, *n*=12 for 10 mg kg⁻¹ PCO371). Additional pharmacokinetics parameters are described in **Supplementary Table 2**.

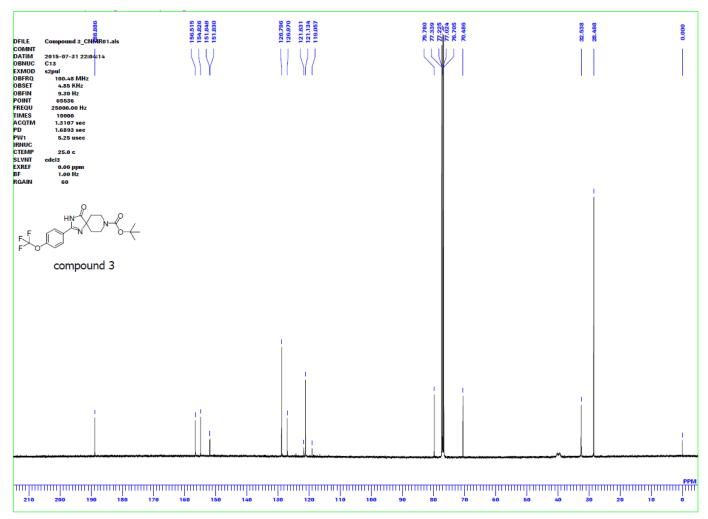

Supplementary Figure 3. BMD of the total femur of OVX rats. Rats were treated oncedaily with PCO371 (p.o.) or hPTH(1-34) (s.c.) for 12 weeks commencing at 12 weeks after OVX surgery. Data are represented as the mean + s.e.m. of one experiment [n=9 for Sham, n=12 for Vehicle and hPTH(1-34), n=10 for 10 mg kg $^{-1}$ POC371, n=11 for 3 and 30 mg kg $^{-1}$ PCO371). Student's t-test was used to compare the sham and OVX vehicle-treated groups; #: t=0.05. Parametric Dunnett's test was used to compare PCO371- or hPTH(1-34)-treated groups with the OVX vehicle-treated group; *: t=0.05, **: t=0.01, ***: t=0.001.

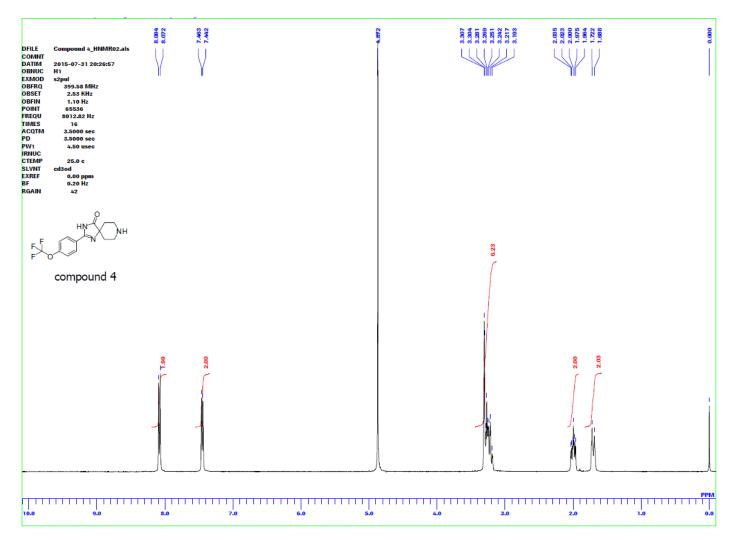

Treatment time (day)

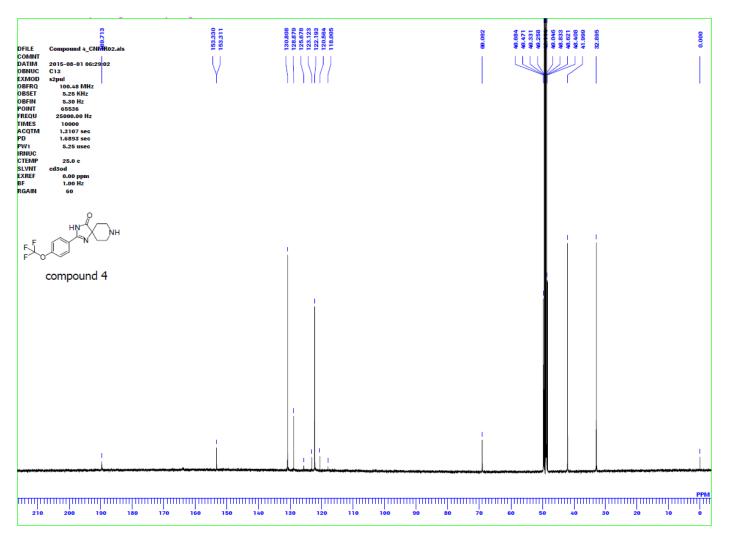
Supplementary Figure 4. Effects of PCO371 on serum parameters in TPTX rats. (a,b)

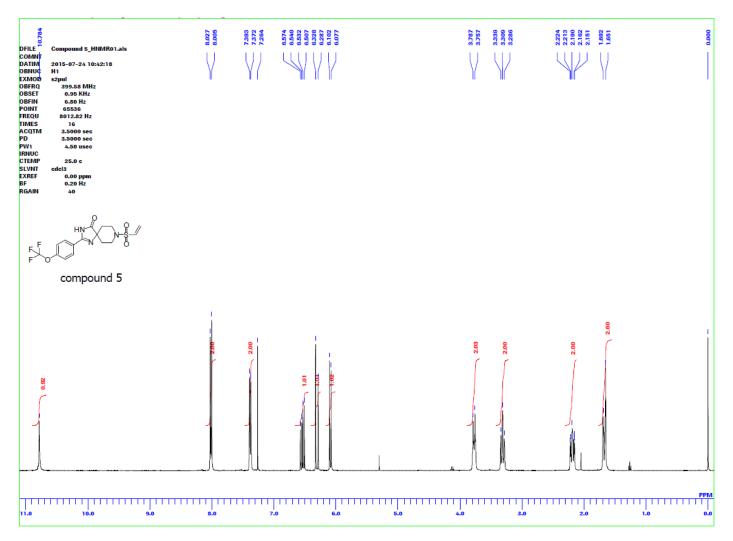

Calcemic (**a**) and hypophosphatemic (**b**) effects of oral PCO371 in single administration or in single twice-daily subcutaneous treatment with hPTH(1–34) (n=5 for each dose). (**c**,**d**) Changes in serum Ca level after once-daily subcutaneous treatment (arrows) with hPTH(1–84) (n=5 for Sham and 9 nmol kg⁻¹ hPTH(1–84), n=4 for TPTX-control) (**c**) and twice-daily subcutaneous treatment (arrows) with hPTH(1–34) (n=5 for Sham, n=4 for TPTX control and 9 nmol kg⁻¹ hPTH(1–34)) (**d**), with shaded areas showing the target therapeutic range (7.6–11.2 mg dL⁻¹) of serum Ca. (**e**) Urinary Ca excretion in TPTX rats after oncedaily administration of hPTH(1–84) for 4 weeks (n=5 for Sham and 9 nmol kg⁻¹ hPTH(1–84), n=4 for TPTX control). (**f**) Levels of 1,25(OH)₂D₃ in serum after twice-daily administration of hPTH(1–34) for 4 weeks (n=5 for Sham, n=3 for TPTX control, n=4 for 9 nmol kg⁻¹ hPTH(1–34)). (**g**) Changes in body weight in TPTX rats treated twice-daily with oral PCO371 for 4 weeks (n=5 for each dose). Data are represented as the mean \pm s.e.m. of one experiment. Student's t-test was used to compare the TPTX vehicle-treated groups with the hPTH(1–34)-treated group;**: P<0.01.

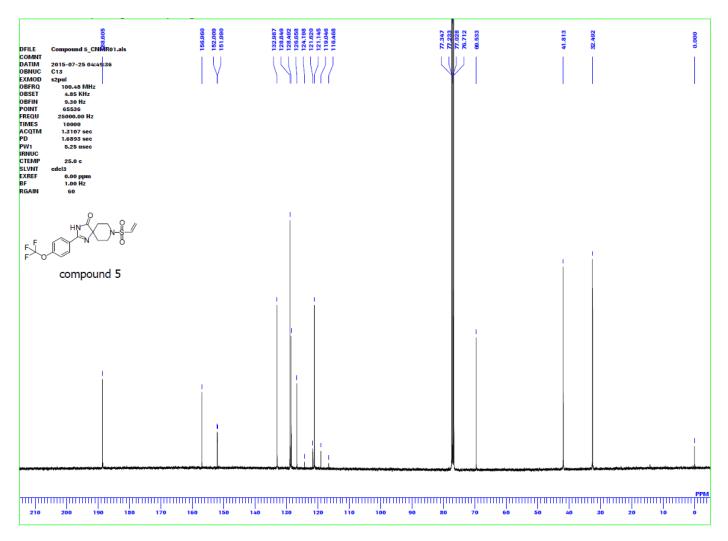

Supplementary Figure 5. Calcemic effect of PCO371 in normal dogs. Time course changes in serum Ca levels in normal dogs after single oral administration of PCO371 (n=6 for each dose). Data are represented as the mean \pm s.e.m. of one experiment. Dunnett's test was used to compare the vehicle-treated groups with the PCO371-treated groups.*: P<0.05, **: P<0.01, ***: P<0.001.

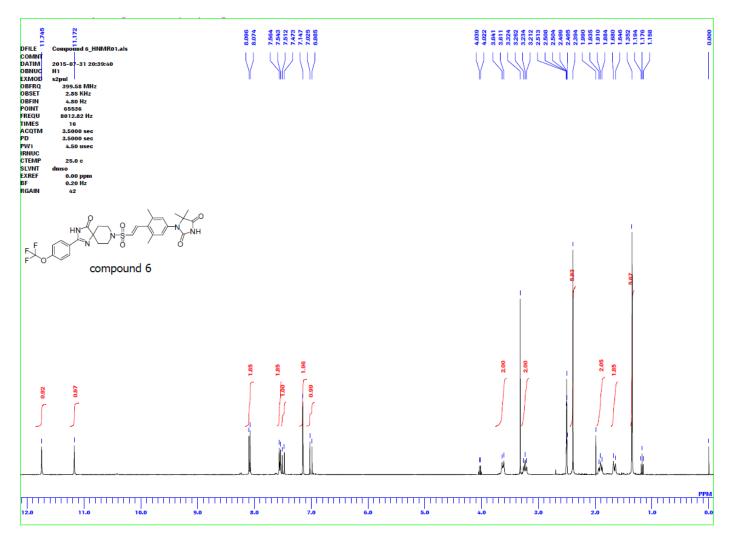

Supplementary Figure 6. ¹H-NMR (400 MHz, CDCl₃) spectrum of compound 2.

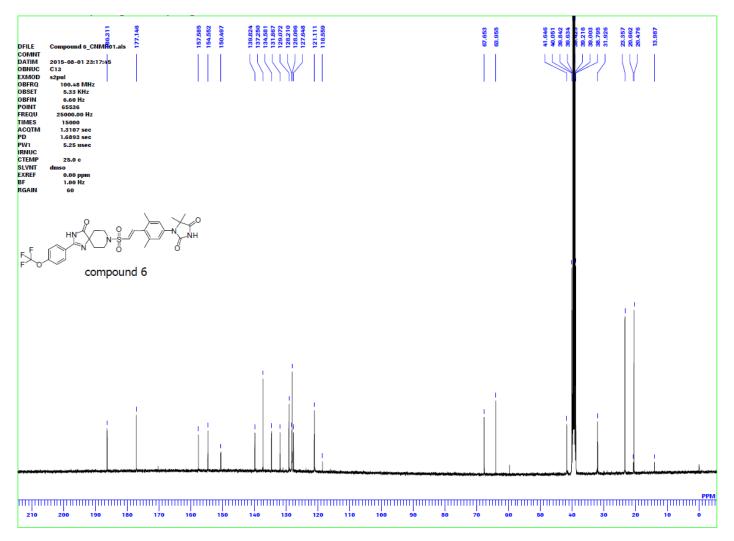

Supplementary Figure 7. 13 C-NMR (100 MHz, CDCI₃) spectrum of compound 2.

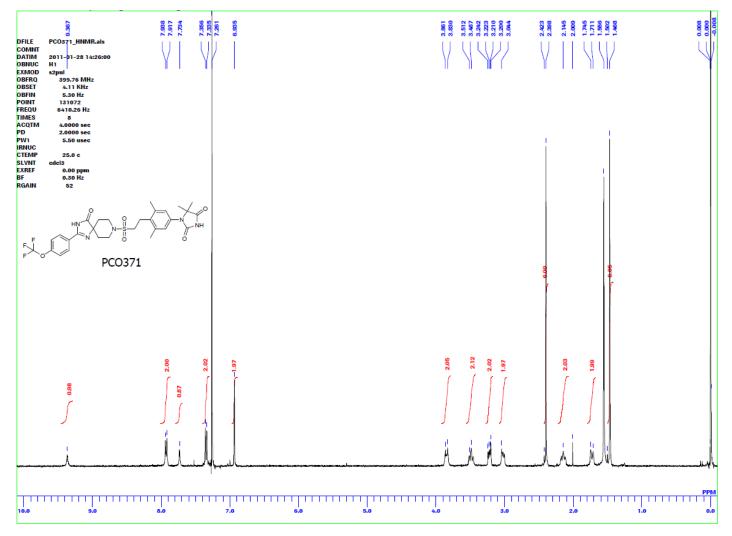

Supplementary Figure 8. $^{1}\text{H-NMR}$ (400 MHz, CDCl₃) spectrum of compound 3.

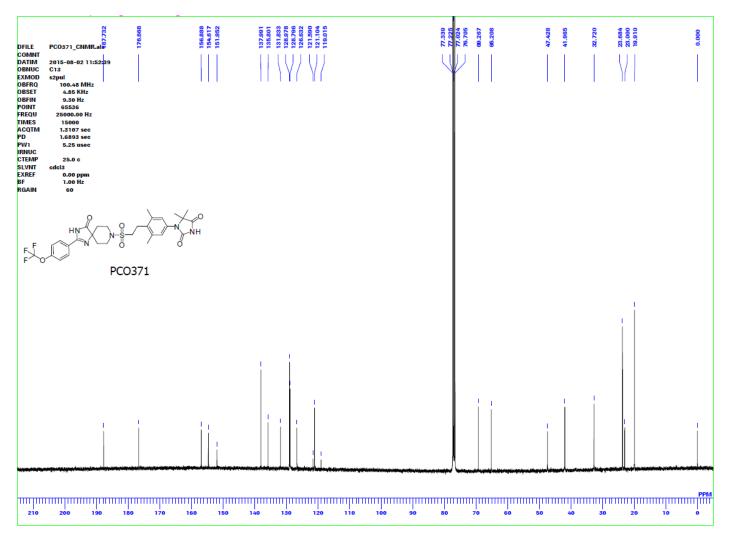

Supplementary Figure 9. $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectrum of compound 3.

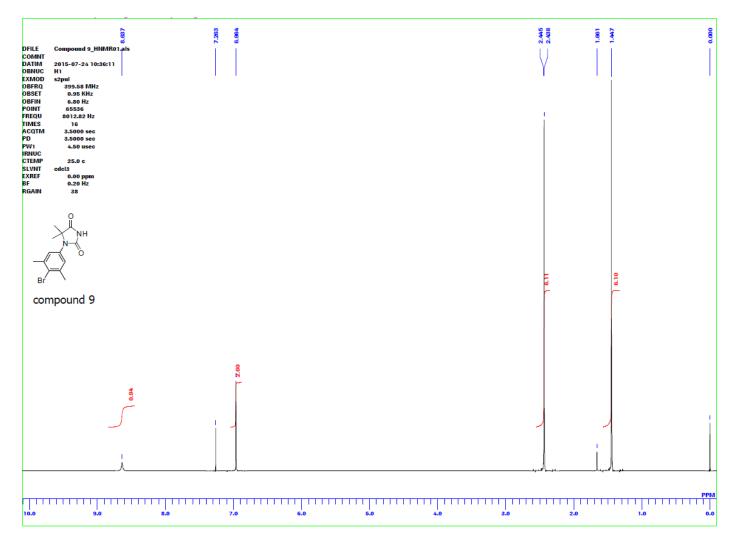

Supplementary Figure 10. ¹H-NMR (400 MHz, CD₃OD) spectrum of compound 4.

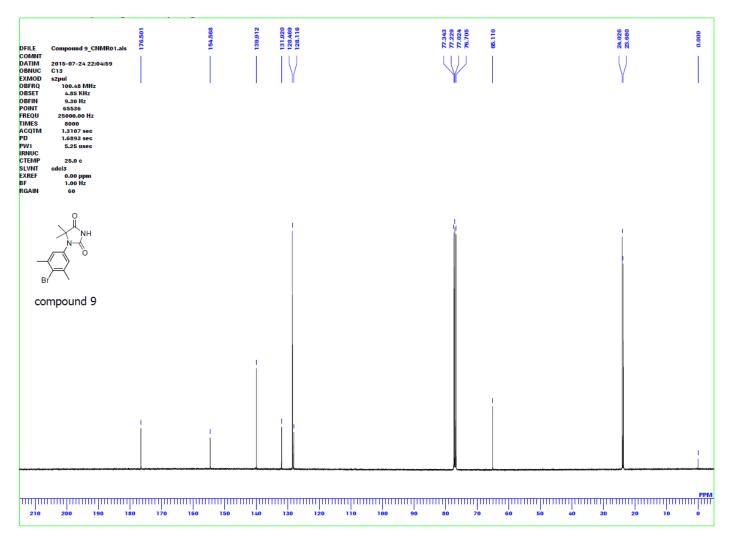

Supplementary Figure 11. ¹³C-NMR (100 MHz, CD₃OD) spectrum of compound 4.


Supplementary Figure 12. $^{1}\text{H-NMR}$ (400 MHz, CDCI₃) spectrum of compound 5.


Supplementary Figure 13. ¹³C-NMR (100 MHz, CDCl₃) spectrum of compound 5.


Supplementary Figure 14. ¹H-NMR (400 MHz, DMSO-d₆) spectrum of compound 6.


Supplementary Figure 15. ¹³C-NMR (100 MHz, DMSO-d₆) spectrum of compound 6.


Supplementary Figure 16. ¹H-NMR (400 MHz, CDCl₃) spectrum of PCO371.

Supplementary Figure 17. ¹³C-NMR (100 MHz, CDCI₃) spectrum of PCO371.

Supplementary Figure 18. $^{1}\text{H-NMR}$ (400 MHz, CDCI₃) spectrum of compound 9.

Supplementary Figure 19. $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) spectrum of compound 9.

Supplementary Table 1. Agonistic and antagonistic effects of PCO371 on class B GPCRs

GPCR		Agonist eff	ect		Antagonist effect					
	Control ago	PCO371 (% of control agonist)		Control antagonis	PCO371 (% inhibition of control agonist)					
		EC ₅₀ (nmol L ⁻¹)	1 μmol L ⁻¹	10 μmol L ⁻¹		IC ₅₀ (nmol L ⁻¹)	1 μmol L ⁻¹	10 µmol L ⁻¹		
CGRP	hCGRPalpha	0.18	<25	<25	hCGRPalpha(8-37)	12	<25	<25		
Calcitonin	human calcitonin	5.6	<25	<25	salmon calcitonin 8-32	26	<25	<25		
CRF1	ovine CRF	11, 12	<25	<25	astressin	8.5 ,5.1	<25	<25		
CRF2	human CRF	14	<25	<25	astressin	14	<25	<25		
GLP-1	GLP-1-(7-34)	0.075, 0.13	<25	<25	excendin-3(9-39)	8	<25	<25		
GLP-2	GLP-2-(1-34)	0.077	<25	<25	-	n.d.	<25	<25		
Glucagon	glucagon	0.092	<25	<25	L168,049	12,000	<25	<25		
Secretin	human secretin	0.075	<25	<25	-	n.d.	<25	<25		
GHRH	human GHRF(1-29)	0.95	<25	<25	[N-Acetyl-Tyr1,D-Arg2]-GHRF	2.5	<25	<25		
PAC1	PACAP1-38	0.11	<2 5	<25	PACAP6-38	40	<2 5	<25		
VPAC1	VIP	0.36	<25	<25	VIP GRF8-27	23	<25	<25		
VPAC2	VIP	0.89	<25	<25	VIP6-28	25,000	<25	<25		

Results of assays for off-target activity of PCO371 against class B GPCRs. PCO371 (1 and 10 μ molL⁻¹) did not show agonistic or antagonistic activity (defined as >25% activity of positive control) against any of the receptors tested, whereas the corresponding agonist or antagonist for each receptor responded at the EC₅₀ or IC₅₀ indicated. Antagonistic activity was measured in the presence of the control agonist indicated. NA: not applicable; NE: not evaluated. Data from one experiment.

Supplementary Table 2. Pharmacokinetics profile in OVX rats

	Dose (mg kg ⁻¹)	Route	T1/2 (hour)	Tmax (hour)	Cmax (ng mL ⁻¹)	C2min (ng mL ⁻¹)	AUC (ng h mL ⁻¹)
	30	p.o.	2.5 ± 0.3	1.4 ± 0.8	95.6 ± 84.4	NE	29,500 ± 17,800
PCO371	3	i.v.	2.4 ± 0.2	NE	NE	17,500 ± 2,330	15,500 ± 2,820
	10	i.v.	2.2 ± 0.2	NE	NE	50,100 ± 6,910	48,700 ± 8,620

OVX rats were treated with a single subcutaneous or a single oral administration of PCO371. Blood samples were collected at 2 min (i.v. only), 15, 30 min, and 1, 2, 4, 8, and 24 h, and pharmacokinetics parameters were determined. C2min: Concentration at 2 min after administration. Data are represented as the mean \pm s.d. of one experiment (n=10 for 10 mg kg⁻¹ PCO371, n=11 for 3 and 30 mg kg⁻¹ PCO371). NE: not evaluated.

Supplementary Table 3. Bone histomorphometry of lumbar vertebra (L2) in OVX rats

	Sh	am	ovx									
	Vehicle		\/ala:	-1-	PCO371						PTH(1-34)	
			Vehicle		p.o. 30 mg kg ⁻¹		i.v. 3 mg kg ⁻¹		i.v. 10 mg kg ⁻¹		s.c. 0.9 nmol kg ⁻¹	
BV/TV (%)	30.4 ±	1.6	17.5 ±	1.3 #	20.1 ±	1.4	23.2 ±	1.9 *	20.1 ±	1.1	34.6 ±	1.8 ***
Tb. Th (µm)	77.5 ±	4.4	61.2 ±	2.4 #	76.0 ±	3.1 *	75.1 ±	4.1 *	79.2 ±	2.7 *	99.4 ±	3.5 ***
Tb. N (N per mm)	3.95 ±	0.15	2.85 ±	0.15 #	2.64 ±	0.14	3.07 ±	0.18	2.54 ±	0.11	3.47 ±	0.12 **
Tb. Sp (μm)	178 ±	8	301 ±	20 #	315 ±	24	264 ±	24	322 ±	18	193 ±	12 ***
ObS/BS (%)	4.05 ±	0.77	15.09 ±	1.09 #	25.14 ±	2.09 ***	14.98 ±	1.07	24.64 ±	2.70 **	17.00 ±	1.65
N.Ob/BS (N per mm)	3.67 ±	0.65	11.39 ±	0.78 #	17.55 ±	1.43 **	11.36 ±	0.71	16.09 ±	1.72 *	12.65 ±	1.04
MAR (μm per day)	1.48 ±	0.11	2.01 ±	0.03 #	2.28 ±	0.08 **	1.84 ±	0.07	2.22 ±	0.06 *	2.04 ±	0.05
BFR/BS (mm³ per mm² per year)	0.029 ±	0.007	0.134 ±	0.012 #	0.285 ±	0.023 ***	0.144 ±	0.013	0.275 ±	0.022 ***	0.224 ±	0.012 ***
OV/TV (%)	0.146 ±	0.030	0.433 ±	0.033 #	0.794 ±	0.085 ***	0.465 ±	0.040	0.690 ±	0.076 *	0.662 ±	0.055 *
ES/BS (%)	14.5 ±	2.0	28.3 ±	2.4 #	39.7 ±	1.6 ***	27.6 ±	2.5	33.0 ±	1.6	20.5 ±	1.6 *
OcS/BS (%)	4.28 ±	0.51	8.79 ±	0.95 #	13.60 ±	0.69 ***	8.49 ±	0.79	11.69 ±	0.70 *	6.13 ±	0.58 *
N.Oc/BS (N per mm)	1.59 ±	0.22	2.92 ±	0.29 #	4.30 ±	0.27 ***	2.55 ±	0.22	3.60 ±	0.20	1.87 ±	0.19 *
BRs.R (mm² per mm² per year)	0.011 ±	0.002	0.036 ±	0.004 #	0.057 ±	0.006 *	0.039 ±	0.005	0.071 ±	0.008 ***	0.068 ±	0.005 ***

Effects of PCO371 and hPTH(1–34) on bone histomorphometry parameters of the cancellous bone of lumbar vertebra (L1) in OVX rats. BV/TV = Bone volume/Tissue volume. Tb.Th = Trabecular thickness. Tb.N = Trabecular number. Tb.Sp = Trabecular separation. Ob.S/BS = Osteoblast surface/Bone surface. N.Ob/BS = Number of osteoblasts/Bone surface. MAR = Mineral apposition rate. BFR/BS = Bone formation rate/Bone surface. OV/TV = Osteoid volume/Tissue volume. ES/BS = Eroded surface/Bone surface. Oc.S/BS = Osteoclast surface/Bone surface. N.Oc/BS = Number of osteoclasts/Bone surface. PCO371 30 mg kg⁻¹ (p.o.) and 10 mg kg⁻¹ (i.v.) are exposure-matched dose settings. Data are represented as the mean \pm s.e.m. (n=9–12) of one experiment. Student's t-test was used to compare the sham and the OVX control groups; #: P<0.05. Parametric Dunnett's test was used to compare each OVX treated group with the OVX control group; *: P<0.05, **: P<0.01, ***: P<0.001.

Supplementary Table 4. Pharmacokinetics profile in TPTX rats

		Dose	T _{1/2}	T _{max}	C _{max}	AUC	
	Route	Dose	(h)	(h)	(ng mL ⁻¹)	(ng h mL ⁻¹)	
		30	0.2 ± 0.1	0.2 ± 0.2	3.42 ± 1.10	1.80 ± 0.78	
hPTH(1-84) (nmol kg ⁻¹)	S.C.	100	1.7 ± 2.2	0.1 ± 0.1	8.67 ± 1.97	8.55 ± 4.63	
		300	1.1 ± 0.9	0.1 ± 0.1	39.7 ± 10.3	21.0 ± 5.58	
		2	6.9 ± 2.3	1.4 ± 1.0	95.6 ± 84.4	464 ± 125	
PCO371 (mg kg ⁻¹)	p.o.	6	4.9 ± 0.6	1.3 ± 0.6	216 ± 103	1,590 ± 890	
		18	4.7 ± 0.7	3.7 ± 3.8	1,630 ± 1,740	9,210 ± 8,080	

Pharmacokinetic parameters of PCO371 and hPTH(1–84) in TPTX rats. Rats were treated with a single subcutaneous injection of hPTH(1–84) or a single oral administration of PCO371. Blood samples were collected at 3, 10, 15, 30, and 45 min and at 1, 2, and 4 h for hPTH(1–84) or at 15 and 30 min, and 1, 2, 4, 8, and 24 h for PCO371, and pharmacokinetics parameters were determined. Data are represented as the mean \pm s.d. of one experiment (n=3 for PCO371, n=5 for hPTH(1–84)).