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Abstract 14 

Mining large datasets using machine learning approaches often leads to models that 15 

are hard to interpret and not amenable to the generation of hypotheses that can be 16 

experimentally tested. We present ‘Logic Optimization for Binary Input to Continuous 17 

Output’ (LOBICO), a computational approach that infers small and easily interpretable logic 18 

models of binary input features that explain a continuous output variable. Applying LOBICO 19 

to a large cancer cell line panel, we find that logic combinations of multiple mutations are 20 

more predictive of drug response than single gene predictors. Importantly, we show that the 21 

use of the continuous information leads to robust and more accurate logic models. LOBICO 22 

implements the ability to uncover logic models around predefined operating points in terms 23 

of sensitivity and specificity. As such, it represents an important step towards practical 24 

application of interpretable logic models. 25 
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Supplementary Information 26 

Supplementary Note 1 – Validation on the CTRP dataset 27 

We aimed to validate the logic models inferred by LOBICO on our cell line panel by 28 

applying these logic models to the drug response data of another cell line panel: the Cancer 29 

Therapeutic Response Portal version 2 (CTRP) 1.  30 

CTRP data was obtained from the supplementary information files of the 31 

corresponding main publication, available online on the Cancer Discovery journal web-site 32 

at: http://cancerdiscovery.aacrjournals.org/content/early/2015/10/14/2159-8290.CD-15-33 

0235/suppl/DC1 (Supplemental Tables S1 – S7, file: 145780_2_supp_3058746_nrhtdz.xlsx). 34 

From these files, identifiers of screened cell lines and compounds were extracted and 35 

mapped to the cell lines and compound identifiers of our study (from now called GDSC for 36 

Genomics of Drug Sensitivity in Cancer). In total, there were 47 overlapping drugs between 37 

GDSC and CTRP. For CTRP, the drug response indicator is the AUC, i.e. the area under the 38 

drug/cell-line dose response curve.  IC50 values were not available for the CTRP study. 39 

Across GDSC and CTRP there are 344 cell lines available in both panels, and 370 cell 40 

lines only available in GDSC. We explored two scenarios that both involved a training cohort 41 

and a validation cohort: 1) Train:GDSC344-Validate:CTRP344 LOBICO models were trained 42 

on GDSC data of the 344 cell lines (GDSC344) and validated on CTRP data of the same set of 43 

344 cell lines (CTRP344), and 2) Train:GDSC370-Validate:CTRP344 LOBICO models were 44 

trained on GDSC data of the 370 cell lines (GDSC370) and validated on CTRP data of the 45 

independent set of 344 cell lines (CTRP344). See Supplementary Figure 2 for an overview of 46 

these datasets. 47 

For each of the two scenarios, we ran LOBICO across the 47 compounds on GDSC 48 

using the same settings as for the original analysis. For each drug we selected the best model 49 

according to cross-validation (CV) and applied that model to the cell lines dividing them into 50 

a group that is predicted to be sensitive and a group that is predicted to be resistant. Then, 51 

we performed a t-test comparing these two groups both for the GDSC IC50s as well as for 52 

the CTRP AUCs.  We also performed a t-test for the best single predictor model. The t-tests 53 

were only performed when the groups consisted of at least 5 cell lines. This led to 37 and 39 54 

drugs for scenarios 1 (Train:GDSC344-Validate:CTRP344) and scenario 2 (Train:GDSC370-55 

Validate:CTRP344), respectively, that we could test within this framework.  56 
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For scenario 1 (Train:GDSC344-Validate:CTRP344) the best performing models on 57 

GDSC validated on CTRP with high statistical significance (Supplementary Figure 3). Overall, 58 

the p-values for the t-tests on the GDSC IC50s and CTRP AUCs for the 37 models were 59 

substantially correlated (Supplementary Figure 4, Pearson  correlation: 0.94, p = 2.17x10-18 , 60 

Spearman correlation: 0.31, p = 0.06). Note that lower Spearman correlation indicates that 61 

the correlation is mostly driven by the strong models in GDSC and also showed strong 62 

validation in CTRP.  63 

Selection of significant t-test p-values using a strict p-value threshold of 0.01/37 (a 64 

Bonferroni corrected p-value of 0.01) showed significant overlap between GDSC and CTRP 65 

(Fisher exact test, p =  1.3x10-3). 66 

Using a somewhat loose threshold of 1/37 (a family-wise error rate of 1) we 67 

identified that 18 of the 37 (49%) drugs led to statistically significant models in the GDSC 68 

training cohort, i.e. for these models the cell lines predicted to be sensitive and resistant 69 

showed differential drug response using the t-test. 5 of these 18 models (28%) also showed 70 

statistical significance in the CTRP344 validation cohort. Importantly, we found that in many 71 

cases multi-predictor models outperformed single predictor models (65% for the training 72 

cohort and 51% for the validation cohort). See Table 2 for on overview. 73 

For scenario 2 (Train:GDSC370-Validate:CTRP344) we found that the two best 74 

performing models on GDSC validated with high statistical significance in CTRP 75 

(Supplementary Figure 5). Yet, many other good models on GDSC did not lead to a strong 76 

prediction of drug response in CTRP; this was the case both for the multi-predictor models 77 

and single predictor models inferred from GDSC370. Overall, the p-values for the t-tests on 78 

the GDSC IC50s and CTRP AUCs for the 39 models were correlated (Supplementary Figure 6, 79 

Pearson  correlation: 0.84, p = 3.3x10-18). This correlation is mostly driven by the top 2 as 80 

evidenced by the much lower Spearman correlation of 0.17, p = 0.31.  81 

Related to this, selection of significant t-test p-values using the strict p-value 82 

threshold of 0.01/39 (a Bonferroni corrected p-value of 0.01) showed only a moderately 83 

significant overlap between GDSC and CTRP (Fisher exact test, p =  0.06).   84 

Using the more loose threshold of 1/46 for the training cohort and 1/39 for the 85 

validation cohort (a family-wise error rate of 1) we identified that 25 of the 46 (54%) drugs 86 

led to statistically significant models in the GDSC training cohort, i.e. for these models the 87 

cell lines predicted to be sensitive and resistant showed differential drug response using the 88 
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t-test. 5 of these 25 models (20%) also showed statistical significance in the CTRP344 89 

validation cohort. Again, we found that in many cases multi-predictor models outperformed 90 

single predictor models (74% for the training cohort and 31% for the validation cohort). Of 91 

the 5 validated models, 3 were multi-predictor models. Again, see Table 2 for on overview. 92 

A comparison of scenario 1 and 2 shows that for the independent validation cohort 93 

(scenario 2), fewer of the multi-predictor models inferred on the training cohort are more 94 

predictive than the best single predictor model (31% in scenario 2 vs. 51% in scenario 1, and 95 

60% for statistically significant models in scenario 2 vs. 80% in scenario 1). This is an 96 

indication that, for a considerable number of some drugs, the multi-predictor LOBICO 97 

models inferred on one set of cell lines do not generalize to another set of cell lines. Yet, 98 

overall these results are encouraging, also given that the sets of 370 and 344 cell lines are 99 

substantially different in terms of tissue types and mutation landscape (Supplementary 100 

Figure 2).  101 

Supplementary Note 2 – Robustness across CV folds 102 

We investigated the robustness of the logic models across the ten CV training folds 103 

for each of the 142 drugs. The logic models for a drug were inferred using the model 104 

complexity (defined by K and M) selected by CV for that drug in the standard setting, i.e. 105 

with the sample-specific weights and t=0.05. The use of the continuous output resulted in a 106 

smaller variation in the FI scores across the CV folds (Supplementary Figure 8a). Particularly, 107 

the FI scores for the logic models across the CV folds had an average Pearson correlation 108 

coefficient larger than 0.75 for 113 drugs (80%), and 40 drugs (28%) had a correlation larger 109 

than 0.95. In contrast, for the logic models based on binarized data, there were 89 drugs 110 

(63%) had a correlation larger than 0.75 and 35 (25%) had a correlation larger than 0.95.  111 

In comparison to changing the binarization threshold (Figure 3a), we observed that 112 

logic models inferred from the randomly sampled subsets, i.e. the CV folds, showed more 113 

variability in the FI scores, and thus a smaller correlation amongst the CV folds. We 114 

hypothesized that the inclusion or exclusion of samples, especially those far away from the 115 

binarization threshold, can have a large effect on the optimization function (Equation 1), and 116 

therefore a large effect on the inferred optimal logic model and the resulting FI scores. To 117 

test this hypothesis, we compared the similarity between CV folds with the similarity of the 118 
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FI scores derived from the logic models trained on these CV folds. Specifically, for each of the 119 

142 drugs separately, we computed: 120 

1. for each pair of the CV training folds, say a  and b , the similarity between the 121 

CV folds a  and b  in the following manner:  122 

a. We took w , the 1×N  continuous vector with weights for each of the 123 

N  samples. w  is the absolute difference between the IC50s and the 124 

binarization threshold, normalized per class  (Equation 14). 125 

b. We created aw  and bw , where aw  is identical to w , except that all 126 

samples that are not part of the training set of a  are replaced by 0, 127 

and similarly for bw . 128 

c. As a metric of the similarility between CV folds a  and b , we computed 129 

the Pearson correlation coefficient between vectors aw  and bw . 130 

2. for each pair of the CV training folds, as a metric of the similarility of the FI 131 

scores between the two members a  and b , the Pearson correlation 132 

coefficient between the FI score vectors derived from the logic models trained 133 

on CV folds a  and b . 134 

With the 142 drugs and 10-fold CV strategy, this resulted in  6390
2

10
142 =








×  135 

pairwise correlation scores for the similarity in the weight vectors and 6390  pairwise 136 

correlation scores for the similarity in the FI scores. We observed a clear relationship 137 

between these correlation scores (Supplementary Figure 8b). Particularly, pairs of CV folds 138 

with a small correlation between the weight vectors often had a small correlation between 139 

the FI scores. We observed that in about 5% of the cases the correlation between the weight 140 

vectors was quite low, i.e. the correlation coefficient was smaller than 0.7. These are cases, 141 

where the two CV folds include (and exclude) different samples with extreme IC50s, i.e. 142 

those far away from the binarization threshold. These ‘important’ samples have large 143 

weights in the weight vector, and when set to 0 in one of the folds, but not the other, lead to 144 

the low correlation scores between the folds. It is thus not surprising that the logic models 145 

inferred on these distinct CV folds lead to different FI scores. 146 
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This analysis confirmed our hypothesis that the larger variation in FI scores observed 147 

across CV folds is due to the inclusion or exclusion of samples with large weights, i.e. those 148 

far away from the binarization threshold.  149 

Supplementary Note 3 – Subsampling analysis  150 

  Specifically, we randomly sampled from all 714 cell lines 90% to 1% of the cell lines 151 

in 13 steps, i.e. 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 15%, 10%, 5%, 2%, 1%, and 152 

repeated this 10 times. Then, for each case we ran LOBICO across all 142 drugs using the 153 

original settings. We analyzed the CV errors and the FI scores across the repeats and 154 

compared the results to the setting when we use all (100%) of the cell lines. Based on the CV 155 

errors, FI scores and the permutation test (Methods section), we employed the following 5 156 

criteria to identify ‘robust’ and ‘predictive’ models. All criteria must be met in order to call a 157 

model robust and predictive. 158 

1. The number of sensitive cell lines must be larger than 10 – This is prerequisite for 159 

running LOBICO using 10-fold CV and is also the minimum number of cell lines in 160 

the positive (sensitive class). In our cell line panel, for most drugs, the bulk of cell 161 

lines are not affected, and only a small percentage (5-15% typically) end up in the 162 

class of sensitive cell lines. When subsampling to 50% (~300 cell lines) still 135 163 

(95%) of the models can be run. When sampling 20% and 10% of the cell lines 164 

(~125 and 65 cell lines resp.) LOBICO models can only be run for 77 (54%) and 23 165 

(16%) of the models. See Supplementary Figure 9a. 166 

2. The CV error must be smaller than 0.4 – The statistical cutoff of FDR<1% and 167 

p<0.01 that we used to identify statistically significant logic models using the 168 

permutation test coincided with a CV error of approximately 0.4 (see Figure 2). 169 

Therefore, we used this cutoff to identify predictive models. Without 170 

subsampling, i.e. using all cell lines, 72 (51%) of the models are predictive. This 171 

percentage remains more or less constant when subsampling. See 172 

Supplementary Figure 9b. 173 

3. The error across the complete dataset must be smaller than 0.4 – The optimal 174 

logic model for each of the subsampling rates and repeats was applied to all cell 175 

lines after which the error across the complete cohort was computed. We 176 

required this error to be smaller than 0.4 in which case the logic model inferred 177 
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using a subset of the samples generalizes over the complete dataset. We 178 

observed that the although CV-error remains constant, the error on the complete 179 

dataset increases with a smaller subsampling frequency. This is an indication that 180 

when using a smaller set of cell lines the inferred logic models do a good job of 181 

explaining the drug response for those cell lines, but these models do not 182 

generalize across a larger panel. For example, when sampling 10% of the cell lines 183 

(~65 cell lines) the percentage of predictive models drops to ~30%. See 184 

Supplementary Figure 9c. 185 

4. The Pearson correlation of FI scores amongst the CV folds must be higher than 0.7 186 

– We observed that the Pearson correlation coefficients of the similarity of FI 187 

scores across the 10 CV folds on the complete dataset were higher than 0.7 for 188 

most drugs (Supplementary Figure 8). Therefore, we used this cutoff to identify 189 

robust models in the subsampling analysis. Without subsampling, i.e. using all cell 190 

lines, 124 (87%) of the models are robust according to that definition. This 191 

percentage remains more or less constant when subsampling. See 192 

Supplementary Figure 9d. 193 

5. The Pearson correlation of FI scores between the subsampled and complete 194 

dataset must be higher than 0.7 – The FI scores obtained for the logic models for 195 

each of the subsampling rates and repeats were correlated with the FI scores 196 

from the logic models inferred across the complete cohort. We required this 197 

correlation to be larger than 0.7 in which case the logic models inferred using a 198 

subset of the samples are highly similar to the original logic model based on all 199 

samples. We observed that correlation of these FI scores decreased quickly with a 200 

smaller subsampling frequency. This is an indication that when using a smaller set 201 

of cell lines the inferred logic models are different from the original model. For 202 

example, when sampling 50% and 20% of the cell lines (~300 and 125 cell lines 203 

resp.) 55 (41%) and 32 (28%) logic models met this criterion. See Supplementary 204 

Figure 9e. 205 

Overall, we observed that subsampling had a substantial influence on performance and 206 

robustness as defined by our criteria. Specifically, whereas for 51% of the drugs LOBICO 207 

inferred logic models that are robust and predictive when using all cell lines, this number 208 

decreased to 25% of the drugs when using 50% of the cell lines (around 300 cell lines). With 209 
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a subsampling frequency of 10% (around 60 cell lines) only 4 (18%) of the drugs had a robust 210 

and predictive model. Perhaps not surprising, these 4 drugs were amongst the ones with the 211 

lowest CV-error on the complete dataset.   212 

In conclusion, LOBICO can also effectively be run on smaller sets of cell lines, but in our panel 213 

there was only a relatively small number of drugs for which robust and predictive models 214 

were found with much smaller sets of cell lines. The subsampling analysis led to two 215 

important insights: First, it is important that the classes in the dataset are not strongly 216 

unbalanced; if one of the two classes is too small this leads to non-robust models or even 217 

the inability to run LOBICO using CV.  Second, only for the highly predictive models, i.e. those 218 

with a small CV error, did we find robust and predictive models when using a small set of cell 219 

lines. Thus, for smaller sets of cell lines strong effect sizes are necessary to reach 220 

significance. This is something that can potentially be tested with univariate tests before 221 

running LOBICO. 222 

Supplementary Note 4 – LOBICO on a yeast cross phenotyped for 223 

sporulation efficiency  224 

We re-analyzed the genetic linking map of a cross of two natural yeast strains, a 225 

strain isolated from the bark of an oak tree that sporulates at 99% efficiency, and a strain 226 

originating from a wine barrel that sporulates at only 3.5% 2. The genetic linkage map 227 

consists of 225 loci genotyped in 374 segregants. For each of the 374 recombinant offspring, 228 

the sporulation efficiency was measured as a percentage between 0 and 100. Gerke et al. 2 229 

used composite interval mapping based on a stepwise regression model to find loci that 230 

significantly cosegregated with variation in sporulation efficiency, leading to 5 significant 231 

loci, L7-9, L10-14, L13-6, L7-17 and L11-2 (Table 1 in 2). Next, a second stepwise regression 232 

was used to select significant predictors from the five loci and all 2 and 3-way interaction 233 

terms involving these five loci. The final model included three significant 2-way interaction 234 

effects and one 3-way interaction effect. All these interactions were comprised of 235 

combinations of the three most significant individual loci, i.e. L7-9, L10-14 and L13-6 (Table 236 

S2 in 2). 237 

We applied LOBICO to this dataset to evaluate which (logical) interaction effects 238 

would be uncovered. The genotype information was straightforwardly transformed into 239 

binary predictor variables: Alleles from the oak strain (wine strain) were set to 1 (0), 240 
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resulting in a truth table with 225=n  loci and 374=p  segregants. The sporulation 241 

phenotype data was binarized by applying a threshold of 50%. Samples were weighted using 242 

the distance to this threshold. No specificity and sensitivity constraints were applied. We 243 

employed the eight model complexities also used for the cell line panel analysis, i.e. all 244 

combinations of K  and M  with 4≤⋅MK . 245 

The largest single effect found in Gerke et al., loci L7-9, is also the best single 246 

predictor uncovered by LOBICO (Supplementary Figure 11). The two-input AND model found 247 

by LOBICO consisted of loci L7-9 and L10-14. This interaction, which is also one of the 2-way 248 

interaction effects found in Gerke et al. has a much higher specificity and precision than the 249 

single locus model, although a smaller recall. Many of the offspring with the highest 250 

sporulation efficiency have both the L7-9 and the L10-14 locus from the oak strain. The best 251 

model according to CV is a 2-by-2 model, which contains the same three loci as in the 252 

interaction effects found in Gerke et al., i.e.  L7-9, L10-14 and L13-6. (Actually, the LOBICO 2-253 

by-2 model contained L13-7 instead of L13-6; they are highly correlated. The fourth feature 254 

in the 2-by-2 is L7-11, which is highly correlated to L7-9.) Thus, LOBICO finds interactions 255 

between the same three loci as the regression model employed by Gerke et al..  256 

It is important to point out that LOBICO uncovered these interactions using the 257 

complete dataset of 225 loci, and not by first filtering on individual features as was done in 258 

Gerke et al..  Surely, the (biological) interpretation of the logic model and the additive linear 259 

model is quite different. We would argue that the logic model is more intuitive and sensible 260 

than the linear model. 261 

Supplementary Note 5 – Explanation of the Boolean Function 262 

Synthesis Problem and proof that LOBICO is NP-complete 263 

The Boolean Function Synthesis Problem (BFSP) is a particular type of Boolean 264 

Satisfiability Problem, where the goal is to find an algebraic sum-of-products expression for 265 

an incompletely specified Boolean function { } { }1,01,0: →Φ n . The sum-of-products 266 

expression is also called a disjunctive normal form (DNF), i.e. a disjunction of conjunctions. 267 

Each Boolean function can be expression in DNF. An element of the domain of Φ  is called a 268 

minterm of Φ . The set of minterms for which Φ  evaluates to 1 (resp. 0) is called the 269 

set-ON  (resp. set-OFF ). An incompletely specified Boolean function is one for which 270 
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n2set-OFFset-ON <+ . Supplementary Figure 17 displays an incompletely specified 271 

Boolean function with 10=n  input variables, 1021 ,...,, xxx  and an output variable y .  272 

The number of rows in the Boolean truth table is given by p  (273 

set-OFFset-ON +=p ), and is 40 in this case ( 10240 << ). Note that in most biology 274 

applications, Φ  is incompletely specified. The sought after algebraic expression is a Boolean 275 

DNF expression that evaluates to 1 for all minterms in the set-ON ( set-OFF ) and to 0 for all 276 

minterms in the set-OFF . Formally, the problem is as follows: Given an set-ON  and an 277 

set-OFF  of minterms that characterize a Boolean function Φ , find a DNF of Φ  with 278 

maximally K  disjunctive terms having each maximally M  variables. The corresponding 279 

decision problem is NP-complete 3.  280 

The decision version of LOBICO is as follows: Given inputs X , y , w , K , M  and a 281 

parameter , does there exist a logic function Θ̂  expressed in DNF( K , M ), i.e. a DNF having 282 

at most K  disjunctive terms and M  literals, such that the weighted sum of incorrectly 283 

inferred samples as described in Equation 1 is less than or equal to ε ? Cleary, the problem is 284 

in NP. It is easily shown that this problem is also NP-complete by the following polynomial-285 

time reduction from BFSP: Given an instance of BFSP we construct an instance for LOBICO by 286 

deriving X  from the minterms, y from the set-ON  and set-OFF  and by setting w  to 1, i.e. 287 

nwn ∀=1 .  Now, BFSP can be satisfied if and only if LOBICO has a solution with an error of 288 

0=ε . Since the BFSP decision problem is NP-complete, the LOBICO decision problem is also 289 

NP-complete. 290 

Supplementary Note 6 – Comparison with logic regression 291 

Logic regression (LR) 4,5 is a generalized regression methodology that can be applied 292 

to data with binary predictors, although continuous predictors are also allowed. The goal of 293 

LR is to find linearly weighted logic combinations of the original predictors that explain a 294 

continuous response variable or class label. We configured the implementation of LR, i.e. the 295 

R-package ‘logreg’, such that it infers logic models with a predefined model complexity. 296 

Specifically, logreg has a scoring function for classification using sample-specific weights, 297 

which we used to give it the same objective function as LOBICO (Equation 1). Also, logreg 298 
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can be configured to output a single logic model (a tree) with predefined logical operators 299 

and size. (See below for experimental details.) 300 

We ran LR for each of the 142 drugs in the cancer cell line panel using the model 301 

complexity (defined by K and M) selected by CV for the associated drug when using LOBICO. 302 

LR was run on the same computers (Intel(R) Xeon(R) CPU, E5645, 2.40GHz, 6 cores) as 303 

LOBICO and was given the same amount of CPU time (Supplementary Figure 18a). Then, we 304 

evaluated the logic formulas inferred by LR. Specifically, we looked at the Jaccard similarity 305 

of the selected predictors in the inferred LOBICO and LR models. (In computing the Jaccard 306 

similarity negated terms, e.g. ¬TP53, are treated as separate predictors from their positive 307 

equivalents.) For models with K=1 and/or M=1, a Jaccard similarity of 1 indicates that the 308 

exact same logic formula was found. For K=2 and M=2 (the 2x2 models) this is not 309 

necessarily the case, but we were not able to restrict logreg to output a DNF with K=2 and 310 

M=2 anyway. For example, for the drug ‘MG-132’ LOBICO inferred the 2x2 ‘(¬MYC & RB1) | 311 

(¬PIK3CA & ¬TP53)’, whereas LR inferred ‘(((¬TP53) or (RB1 or NOTCH1)) and (¬PIK3CA))’. 312 

The LR model is clearly not a DNF with K=2 and M=2.  313 

Overall, LR found the same (optimal) logic formulas as LOBICO (Supplementary 314 

Figure 18b). The main exception is the 2x2 model (K=2, M=2), but this is because of the 315 

reason mentioned above. For the 4-input OR models (K=4, M=1) we observed four cases 316 

where the logic formulas differed between LOBICO and LR. Upon further inspection, we 317 

found that in these cases the formula inferred by LR had the same (optimal) error as the 318 

LOBICO solution. These LR solutions were present in LOBICO’s solution pool, i.e. they were 319 

part of the set of (sub-)optimal solutions output by LOBICO. (See experimental details 320 

below.) 321 

In conclusion, when logreg parameters are properly set, LR can find the optimal 322 

solution when given the same amount of time that was necessary for LOBICO to find the 323 

optimal solution on the cancer cell line dataset. Potentially, LR finds this solution faster than 324 

LOBICO on this dataset. It is however important to point out that LR cannot guarantee that 325 

the obtained solution is optimal, and it is known that ILP solvers spend a long time proving 326 

that the found solution is indeed optimal. In future work, we will investigate the 327 

performance of LR and LOBICO on other (larger) datasets, and assess how the two methods 328 

can be used in parallel to find optimal solutions faster. For example, we will investigate 329 

whether LR can be used to identify initial starting models for LOBICO. 330 
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Importantly, LR cannot incorporate statistical performance constraints, such as 331 

sensitivity and specificity (Equations 10 - 13), which we assert is the preferred and, in 332 

practice, most relevant scenario for LOBICO inferences. Additionally, in contrast to LR, 333 

LOBICO can output the pool of (sub-)optimal solutions, which we used to measure feature 334 

importance.  335 

Experimental details: LR was run using the R-packing logreg (version 1.5.8). We 336 

used simulated annealing as this search algorithm gave the best results. We followed the 337 

logreg’s documentation to set the upper and lower temperature of the annealing chain 338 

based on experiments with the cancer cell line panel. The number of iterations was set, such 339 

that the total CPU time spent on solving the problem was comparable to the CPU time that 340 

LOBICO needed to find the optimal solution (Supplementary Figure 18a). The simulated 341 

annealing parameters were set as follows (R-code): 342 

myanneal <- logreg.anneal.control(start = 1, end = -5, iter = 343 
T*200000, update = T*20000) 344 

To infer a LR model with the same model complexity as LOBICO, we made sure that 345 

for 2-, 3- and 4-input AND models only AND operators were allowed. Similarly, for 2-, 3- and 346 

4-input OR models only OR operators were allowed. For 2x2 models we allowed both AND 347 

and OR operators. The parameters of the logic ‘tree’ shape were set as follows (R-code): 348 

if (K>M) mytreecontrol <- logreg.tree.control(opers=3) else 349 
mytreecontrol <- logreg.tree.control(opers=2) 350 

if (K==2&M==2) mytreecontrol <- logreg.tree.control(opers=1) 351 

 LR was run to output one logic tree (ntrees=1), where the maximum number of 352 

leaves was set to K x M (nleaves=K*M). In the R-code below Y is y , X is X  and W is w  as 353 

used in the Methods Section and Equation 1. LR was run as follows (R-code):   354 

q<-logreg(resp=Y, bin=X, wgt=W, type=1, select=1, ntrees=1, 355 
nleaves=K*M,anneal.control = myanneal, tree.control = mytreecontrol) 356 

Supplementary Note 7 – Comparison with sparse linear regression 357 

and Random Forests 358 

We compared the LOBICO models obtained on the cancer cell line panel with Elastic 359 

Net 6, a sparse linear regression model, and with Random Forests regression 7, a non-linear 360 

regression model. Specifically, for the 25 drugs with the lowest CV error in the original 361 

analysis, we compared the model-specific FI scores (of the model complexity selected by CV) 362 
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with the regression weights inferred by Elastic Net (EN) and the importance scores inferred 363 

by Random Forests (RF).  364 

We observed a large concordance between LOBICO’s FI scores and the EN regression 365 

weights (Supplementary Figure 12a). In the EN models, the large majority (63%) of all 366 

regression weights across the 60 features and 25 drugs were 0. Importantly, all of the 367 

important features according to LOBICO (FI>0.05) had a non-zero regression weight in EN. 368 

Moreover, the smallest EN regression weight for which the corresponding LOBICO FI was 369 

larger than 0.05, was 0.2752 (blue line in Supplementary Figure 12a), which was in the tail of 370 

the EN weights. 371 

Similarly for RF, we observed a high degree of correlation between LOBICO’s FI scores 372 

and the RF importance scores (Supplementary Figure 12b). The important features 373 

according to LOBICO (FI>0.05) also had a high RF importance score. The smallest RF 374 

importance score for which the corresponding LOBICO FI was larger than 0.05, was 0.014, 375 

which marked the 82% percentile of the RF importance scores. 376 

We note that it is not possible to do a direct comparison in terms of predictive 377 

performance, because LOBICO and EN/RF use different error measures. That is, LOBICO’s 378 

error is the weighted sum of incorrectly inferred samples, where the weight is the distance 379 

from a cell line’s IC50 to the discretization boundary - an L1 norm for misclassified samples. 380 

This error is different from the L2 norm (least squares) or L1 norm across all samples used in 381 

(RF) regression models. At the same time, LOBICO’s goal is not to be better than other 382 

methods in terms of prediction performance, but instead to create interpretable models 383 

with good performance. 384 

Experimental details: For EN, we used the MATLAB ‘lasso’ function with an alpha 385 

(mix between L2 and L1 penalty) of 0.5, 10-fold CV and sample weights w , the 1×N  386 

continuous vector with weights for each of the N  samples (Equation 14). For RF, we 387 

employed the Random Forests implementation for MATLAB v0.02 downloaded from 388 

http://code.google.com/p/randomforest-matlab/. The RF regression models were run with 389 

1000 trees each and default settings for the other parameters were used. The reported 390 

importance scores represent the mean decrease in accuracy. To accommodate the different 391 

sample weights, we created (for each drug) a dataset of 10,000 samples, which were 392 

randomly drawn with replacement from the original dataset, where the probability of being 393 

drawn was proportional to the sample weights in w .   394 



14 
 

Citations 395 

1 Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity 396 
dataset. Cancer discovery 5, 1210-1223 (2015). 397 

2 Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions between transcription factors cause 398 
natural variation in yeast. Science 323, 498 (2009). 399 

3 Gimpel, J. F. A method of producing a Boolean function having an arbitrarily prescribed prime 400 
implicant table. Electronic Computers, IEEE Transactions on, 485-488 (1965). 401 

4 Ruczinski, I., Kooperberg, C. & LeBlanc, M. Logic regression. Journal of Computational and 402 
Graphical Statistics 12, 475-511 (2003). 403 

5 Kooperberg, C. & Ruczinski, I. Identifying interacting SNPs using Monte Carlo logic regression. 404 
Genetic epidemiology 28, 157-170 (2005). 405 

6 Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Journal of the 406 
Royal Statistical Society: Series B (Statistical Methodology) 67, 301-320 (2005). 407 

7 Breiman, L. Random forests. Machine learning 45, 5-32 (2001). 408 
 409 
 410 

 411 

 412 

  413 



15 
 

Supplementary Figures 414 

  415 



16 
 

 416 

 417 
 418 
Supplementary Figure 1 | Multi-predictor models outperform single predictor models 419 
Scatter plot with the continuous F-statistic for single predictor models (x-axis) and the best 420 
(lowest CV error) multi-predictor model (y-axis). Each point represents one of the 142 drugs. 421 
The continuous F-statistic is the defined as the harmonic mean of the continuous recall and 422 
continuous precision. By analogy to Equations 12 and 13, the continuous recall and 423 

continuous precision are defined as 
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continuous F-statistic uses the sample-specific weights that LOBICO uses in its optimization 425 
and is therefore a better performance measure than the standard F-statistic. Similarly, to the 426 
CV error depicted in Figure 2, the continuous F-statistic was computed on the inferred class 427 
labels of the samples in the test sets. 428 
 429 
  430 
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 431 

 432 
 433 
Supplementary Figure 2 | Overview of the training and validation cohorts of the GDSC and 434 
CTRP  435 
Bar graphs showing the distribution of tissue types (left) and mutation frequency of the ten 436 
most frequently mutated genes (right) for the 344 cell lines available in both the GDSC and 437 
CTRP (GDSC/CTRP344) (top) and for the 370 cell lines only available in GDSC (GDSC370) 438 
(bottom). 439 
  440 
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 441 
 442 
Supplementary Figure 3 | Ordered t-test p-values for GDSC and CTRP for scenario 1 - 443 
Train:GDSC344-Validate:CTRP344 444 
LOBICO models were trained on GDSC data of the 344 cell lines (GDSC344) and validated on 445 
CTRP data of the same set of 344 cell lines (CTRP344). The scatter plot depicts the -log10 p-446 
values for t-tests that quantify the difference between cell lines predicted to be sensitive and 447 
resistant according to LOBICO. In case the best model is a multi-predictor model, the -log10 448 
p-value for the best single predictor model is also depicted, and the single-predictor formula 449 
is stated in parentheses behind the formula of the multi-predictor model. In case the single-450 
predictor model led to a lower p-value, yet according to CV the multi-predictor was better, 451 
the formula of the multi-predictor model is stated between parantheses. The 37 drugs are 452 
sorted based on the t-test p-value derived from the GDSC344 IC50s. P-values are considered 453 
significant at p<0.027 (1/37). 454 
  455 
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 456 
 457 
 458 
Supplementary Figure 4 | Comparison of t-test p-values for GDSC and CTRP for scenario 1 - 459 
Train:GDSC344-Validate:CTRP344  460 
LOBICO models were trained on GDSC data of the 370 cell lines (GDSC344) and validated on 461 
CTRP data of the same set of 344 cell lines (CTRP344). The scatter plot depicts the -log10 p-462 
values for t-tests that quantify the difference between cell lines predicted to be sensitive and 463 
resistant according to LOBICO. The x-axis depicts p-values for the difference between these 464 
two groups based on the IC50s within GDSC344. The y-axis depicts p-values for the 465 
difference between these two groups based on the AUCs within CTRP344. Drugs with a p-466 
value lower than 10-5 are annotated. 467 
  468 
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 469 
 470 
Supplementary Figure 5 | Ordered t-test p-values for GDSC and CTRP for scenario 2 - 471 
Train:GDSC370-Validate:CTRP344 472 
LOBICO models were trained on GDSC data of the 370 cell lines (GDSC370) and validated on 473 
CTRP data of the independent set of 344 cell lines (CTRP344). The scatter plot depicts the -474 
log10 p-values for t-tests that quantify the difference between cell lines predicted to be 475 
sensitive and resistant according to LOBICO. In case the best model is a multi-predictor 476 
model, the -log10 p-value for the best single predictor model is also depicted, and the single-477 
predictor formula is stated in parentheses behind the formula of the multi-predictor model. 478 
In case the single-predictor model led to a lower p-value, yet according to CV the multi-479 
predictor was better, the formula of the multi-predictor model is stated between 480 
parantheses. The 39 drugs are sorted based on the t-test p-value derived from the GDSC370 481 
IC50s. P-values are considered significant at p<0.026 (1/39). 482 
  483 
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 484 
 485 
Supplementary Figure 6 | Comparison of t-test p-values for GDSC and CTRP for scenario 2 - 486 
Train:GDSC370-Validate:CTRP344  487 
LOBICO models were trained on GDSC data of the 370 cell lines (GDSC370) and validated on 488 
CTRP data of the independent set of 344 cell lines (CTRP344). The x-axis depicts p-values for 489 
the difference between these two groups based on the IC50s within GDSC370. The y-axis 490 
depicts p-values for the difference between these two groups based on the AUCs within 491 
CTRP344. Drugs with a p-value lower than 10-5 are annotated. 492 

493 
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 494 
Supplementary Figure 7 | Essential gene mutation features for explaining drug response. 495 
Of the 72 statistically significant logic models at FDR<1% and p<0.01, we selected those for 496 
which at least one gene mutation feature had a FI score of 0.1 or higher. The statistical 497 
cutoff of FDR<1% and p<0.01 that we used to identify statistically significant logic models 498 
coincided with a CV error of approximately 0.4 (see Figure 2). Since the FI score for a feature 499 
is the increase in error when the feature is left out of the inferred logic model, and the 500 
randomly expected CV error is 0.5, we classified gene mutation features with a FI score 501 
larger than 0.1 as ‘essential’ features for explaining the drug response. This heatmap 502 
visualizes the FI score of those features with the drugs on the rows and the features on the 503 
columns. The number in parentheses behind the gene labels indicates the number of drugs 504 
for which these genes had an FI score larger than 0.1.  These results show that most gene 505 
mutations are essential for not more than one drug, but that BRAF (6), CDKN2A (19) and 506 
TP53 (11) play an important role for many of the drugs in our panel.    507 
 508 
 509 
 510 
 511 
 512 
 513 
  514 
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 515 
 516 
Supplementary Figure 8 | Robustness across CV folds 517 
a) Scatter plot with the average Pearson correlation coefficients of the similarity of FI scores 518 
across the 10 CV folds for inferred logic models without (x-axis) and with (y-axis) the sample-519 
specific weights. Each point represents one of the 142 drugs. The correlation scores are 520 
computed using the model-complexity-specific FI scores. The grey bars on top and to the 521 
right of the scatter plot represent histograms of these correlation scores for models without 522 
and with the sample-specific weights, respectively. b) Boxplot comparing the pairwise 523 
correlation of weight vectors between CV folds (x-axis) with the pairwise correlations of FI 524 
scores between the same CV folds (y-axis). The pairwise correlation of weight vectors were 525 
binned by rounding the correlation to the nearest decimal. The number of correlations per 526 
box is indicated below the box. 527 
  528 
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 529 
Supplementary Figure 9 | Subsampling analysis to identify robust logic models with fewer 530 
cell lines 531 
LOBICO models were run on randomly selected sets of cell lines for an array of subsampling 532 
frequencies (x-axis). The subsampling frequency and interquartile range of the number cell 533 
lines associated with the subsampling frequency is found in the bottom of the figure. From 534 
top to bottom: a) The percentage of drugs for which LOBICO models could be run, i.e. for 535 
which the number of sensitive cell lines was 10 or greater. Percentile values show variation 536 
across the repeats. Absolute numbers and percentages are stated in the top of the plot. b) 537 
The CV-error. Percentile values show variation across the repeats and across drugs. Average 538 
number and percentage of drugs with a CV-error lower than the threshold of 0.4 are stated 539 
in the top of the plot. Note that the percentages are based on the number of drugs that can 540 
be run for a particular subsampling frequency (a), not based on all 142 drugs. This is also the 541 
case for c), d), e) and f). c) The error across the complete dataset based on the logic models 542 
inferred from the subsampled datasets. Percentile values show variation across the repeats 543 
and across drugs. Average number and percentage of drugs with an error lower than the 544 
threshold of 0.4 are stated in the top of the plot. d) The Pearson correlation among the FI 545 
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scores across the CV folds. Percentile values show variation across the repeats and across 546 
drugs. Average number and percentage of drugs with a FI score correlation larger than the 547 
threshold of 0.7 are stated in the top of the plot. e) The Pearson correlation between the FI 548 
scores of the logic models from the subsampled datasets and the complete dataset. 549 
Percentile values show variation across the repeats and across drugs. Average number and 550 
percentage of drugs with a FI score correlation higher than the threshold of 0.7 are stated in 551 
the top of the plot. f) The percentage of robust and predictive models, i.e. those that meet 552 
all criteria. Percentile values show variation across the repeats. Absolute numbers and 553 
percentages are stated in the top of the plot. 554 
    555 
  556 
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 558 
 559 
Supplementary Figure 10 | Feature importance scores for ‘rule in’ and ‘rule out’ solutions 560 
FI scores of 6 MEK/RAF, 2 PI3K and 2 AURKA/B inhibitors (rows) for high specificity (‘rule in’) 561 
solutions (left) and high sensitivity (‘rule out’) solutions (right). High specificity solutions 562 
were defined as solutions with FPR<10%. Conversely, high sensitivity solutions were defined 563 
as solutions with TPR>90%. We distinguished between positive terms, indicating mutations 564 
(red) and negated terms, indicating wild-type (blue). 565 
  566 
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 568 
 569 
 570 
Supplementary Figure 11 | LOBICO results of the yeast cross phenotyped for sporulation 571 
efficiency 572 
Standard LOBICO visualization of the uncovered logic models for the yeast cross dataset 573 
(Supplementary Note 4). See Supplementary Data 1 for an explanation of the visualization. 574 
  575 



28 
 

 576 

 577 
 578 
Supplementary Figure 12 | Comparison of feature importance scores between LOBICO, 579 
Elastic Net and Random Forests 580 
a) Scatter plot comparing LOBICO’s FI scores with EN’s absolute regression weights. These 581 
scores and weights are derived from inferred models of the 25 drugs with the lowest CV 582 
error in the LOBICO analysis (Supplementary Note 6). The red line depicts the FI score of 583 
0.05; features with a FI>0.05 are considered important predictors. The blue depicts the 584 
minimal EN regression weight for which the corresponding LOBICO FI was larger than 0.05. 585 
b) Similar to a), except LOBICO’s FI scores are compared to RF’s importance scores. 586 
  587 
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 589 
 590 
Supplementary Figure 13 | Four-step-procedure to binarize IC50s for Nutlin-3a 591 
a) Histogram plot for the distribution of IC50s for the drug Nutlin−3a. b) Histogram plot for 592 
the upsampled distribution c) Visualization of an empirical model (obtained through density 593 
estimation) of the upsampled IC50s (depicted in blue). θ  was computed using rule i. (See 594 
Methods Section for details.) d) Visualization of the model of resistant cell lines (depicted in 595 
black), from which the binarization threshold b  (depicted in orange) is derived. 596 
  597 
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 598 

 599 
 600 
Supplementary Figure 14 | Four-step-procedure to binarize IC50s for MK−2206 601 
Similar to Supplementary Figure 13, except showing the procedure for drug MK−2206, and 602 
the use of rule ii to find θ . 603 
  604 
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 605 

606 
  607 
 608 
Supplementary Figure 15 | Four-step-procedure to binarize IC50s for Erlotinib 609 
Similar to Supplementary Figure 13, except showing the procedure for drug Erlotinib, and 610 
the use of rule iii to find θ . 611 
  612 
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 613 

 614 
 615 
Supplementary Figure 16 | Time needed to find optimal solution 616 

Boxplot of CPU time (y-axis) necessary to find the optimal solution as a function of 617 

the model complexity (x-axis). Each box is comprised of 142 values, i.e. the time necessary 618 

for CPLEX to find the optimal solution with the indicated model complexity for each of the 619 

142 drugs. These experiments were performed on a computer cluster, where each ILP was 620 

run on one node (Intel(R) Xeon(R) CPU, E5645, 2.40GHz, 6 cores) at a time.  621 

  622 
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 624 
 625 
Supplementary Figure 17 | Example Boolean truth table 626 

Boolean truth table (black=1, white=0) with 10 input variables 1021 ,...,, xxx  and 627 

output variable y . The DNF expression with 2=K  and 3=M  for the truth table depicted is 628 

below the table. 629 

  630 
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 632 
 633 
Supplementary Figure 18| Comparison of solution time and uncovered logic models 634 
between LOBICO and logic regression 635 

a) Scatter plot comparing the CPU time needed for LOBICO to find the optimal 636 

solution (x-axis) and the CPU time given to LR to find the best solution (y-axis). Each of the 637 

142 drugs is represented by a point. The magenta line is y=x. b) Plot of the Jaccard similarity 638 

between the LR and LOBICO solutions. Each of the 142 drugs is represented by a point. The 639 

points are alternately colored in blue and red for visibility. The drugs are grouped based on 640 

the model complexity (x-axis) for which the LOBICO and LR models were inferred. 641 

  642 



35 
 

Supplementary Data Explanation 643 

Supplementary Data 1 | LOBICO visualization of the inferred logic models for all 142 drugs 644 
PDF with a visualization of the LOBICO results for each drug (pages 8-149). The first 7 pages 645 
provide a visual explanation of the visualization. 646 
 647 
Supplementary Data 2 | Drug information 648 
Tab separated Excel table containing information about the 142 drugs. Specifically, (from left 649 
to right in the table), information about the drugs (ID, name and target), binarization 650 
thresholds, ground truth mapping to the gene mutation features, model performance 651 
statistics of the inferred logic models, and  aggregated feature importance scores for the 652 
gene mutation features in the inferred logic models. 653 
 654 
Supplementary Data 3 | 25 ROC models visual 655 
PDF with visualizations of LOBICO solutions in the ROC space for each of 25 drugs with the 656 
lowest CV error in the original analysis. Blue crosses indicate the true positive rate (TPR) and 657 
false positive rate (FPR) at which the solution was found. The logic formula of the solutions is 658 
printed next to the blue crosses. The color of the genes in a formula indicate their FI. Colors 659 
range from black (moderately important) to bright red (highly important). For comparison, 660 
the best single predictor solutions are visualized in green. The inlay depicts the histogram of 661 
IC50s of the drug together with the binarization threshold. 662 
The PDF consists of 50 pages; each of the 25 drugs is represented by two visualizations: one 663 
using the standard (binary) definitions sensitivity (or TPR) and specificity (or 1-FPR), and one 664 
using the weighted definitions of sensitivity and specificity (see Equations 12 and 13). These 665 
visualizations are similar to Figure 4a. The visualizations are generated automatically; text 666 
strings are partially overlapping in some cases. 667 
 668 
Supplementary Data 4 | Cell line information 669 
Tab separated Excel table containing information about the 714 cell lines. Specifically, (from 670 
left to right in the table), information about the cell lines (ID, name and description), the 671 
binary mutation status of the 60 gene mutation features, and the IC50s for each of the 142 672 
drugs. 673 

 674 
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5 10 15 20 25 30 35

Nutlin−3a [p53−MDM2 interaction] ~ERBB2  & ~TP53  (~TP53)
PLX4720 [RAF] BRAF  (BRAF&~KRAS&~MAP2K4)

BIBW2992 [EGFR :  HER2] EGFR  | ERBB2  | JAK2  | SMAD4  (ERBB2)
AZD6482 [PI3Kb] ~BRAF  & ~KRAS  & ~NF1  & ~NRAS  (PTEN)

Obatoclax Mesylate [BCL2 family] BRAF  | MYC  | NRAS  | VHL  (BRAF)
Mitomycin C [DNA crosslinker] ~ERBB2  & PIK3CA   |  CDKN2A  & RB1  (PIK3CA)
Bosutinib [SRC :  ABL :  TEC] CDKN2A 

AZD−2281 [PARP1/2] EWS_FLI1   |  BRAF  & CDKN2A  (BRAF)
Docetaxel [Microtubules] CDKN2A 

BMS−754807 [IGF1R] KDM6A  | KRAS  | NRAS  | SMAD4  (KRAS)
JQ12 [HDAC] PIK3CA  (~EGFR&~KRAS&~NF1)

QS11 [ARFGAP] CDKN2A  & TP53   |  PIK3CA  & ~RB1  (PIK3CA)
Temsirolimus [mTOR] ERBB2  | KDR  | NRAS  | PTEN  (PTEN)

CHIR−99021 [GSK3B] CDKN2A 
AZD8055 [mTORC1/2] ~CDKN2A  (~CDKN2A&~KRAS&~NF1&~RB1)

Gemcitabine [] CDKN2A 
KU−55933 [ATM (IC50 13 nM) (ATR >>10 mM)] MSH2  | STK11  (STK11)

Erlotinib [EGFR] ~BRAF  & ~EGFR  & ~KRAS  & TP53  (TP53)
PAC−1 [Caspase 3 activator] ~CDKN2A  & KRAS  (KRAS)

Pazopanib [VEGFR :  PDGFRA :  PDGFRB :  KIT] GNAS  | PDGFRA  | PTEN  (~KRAS)
Lapatinib [EGFR :  ERBB2] ~JAK2  & ~KRAS  & ~SMARCA4  & TP53  (TP53)
TW 37 [BCL−2 :  BCL−XL] BRAF  | CTNNB1  | RB1  | STK11  (RB1)

Etoposide [] ~NF1  & RB1   |  CDKN2A  & ~KRAS  (CDKN2A)
Gefitinib [EGFR] CDKN2A  & ~KRAS   |  EGFR  & ~KRAS  (~KRAS)

Methotrexate [Dihydrofolate reductase (DHFR)] MYC  (CDKN2a(p14)|MYC|BCR_ABL)
JQ1 [BRD4] BRAF  | PDGFRA  | RB1  | VHL  (~KRAS)

MG−132 [Proteosome] ~KRAS  & TP53   |  BRAF  & ~FLCN  (CDKN2A)
Camptothecin [DNA topoisomerase I] NRAS  | PTEN  | EWS_FLI1  (NRAS)

Bexarotene [Retinioic acid X family agonist] CDKN2A  (PIK3CA&~TP53|CDKN2A&MYC)
JNJ−26854165 [MDM2] CDKN2A  & PTEN   |  ~KRAS  & ~TP53  (~TP53)

Vorinostat [HDAC inhibitor Class I :  IIa :  IIb :  IV] NRAS  (APC|NRAS|SMO|BCR_ABL)
NVP−BEZ235 [PI3K Class 1 and mTORC1/2] PTEN  (FBXW7|JAK2|PTEN)

MK−2206 [AKT1/2] MAP2K4  | MSH2  | MYC  | PIK3CA  (PIK3CA)
GDC0941 [PI3K (class 1)] PIK3CA  (PIK3CA|STK11)

Cytarabine [Inhibits DNA synthesis] JAK2  | NRAS  | PDGFRA  | SMO  (CDKN2A)
Bleomycin [] ~TP53  (~NF1&RB1|~PTEN&~TP53)

Doxorubicin [DNA] CDKN2A  | PIK3CA  (CDKN2A)

Drug [Target] Logic formula of best modelTraining set: GDSC344   −   Validation set: CTRP344

−10log p−value

GDSC344 (sig. p−value)
GDSC344 (not sig. p−value)
CTRP344 (sig. p−value)
CTRP344 (not sig. p−value)
multi−predictor model
single predictor model
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5 10 15 20 25

Nutlin−3a [p53−MDM2 interaction] ~RB1  & ~TP53  (~TP53)
PLX4720 [RAF] BRAF 

Pazopanib [VEGFR :  PDGFRA :  PDGFRB :  KIT] ~BRAF  & ~RB1  & ~TP53  (~TP53)
Obatoclax Mesylate [BCL2 family] FBXW7  | NRAS  (FBXW7)

Bosutinib [SRC :  ABL :  TEC] ~MET  & BCR_ABL   |  FBXW7  & ~NRAS  (FBXW7)
AZD−2281 [PARP1/2] FBXW7  | MYC  | ~TP53  | EWS_FLI1  (~TP53)

CHIR−99021 [GSK3B] CDKN2A  | VHL  | MLL_AFF1  (CDKN2A)
INCB−18424 [] ~BRAF  & ~KRAS  & ~NRAS  & ~TP53  (~TP53)

Cytarabine [Inhibits DNA synthesis] CDKN2A  (CDKN2A&~EGFR)
Lapatinib [EGFR :  ERBB2] CDKN2A  | EGFR  | ERBB2  | SMAD4  (ERBB2)

Mitomycin C [DNA crosslinker] CDKN2A 
BIBW2992 [EGFR :  HER2] ~MYC  & ~NRAS  & TP53  & ~EWS_FLI1  (TP53)

Paclitaxel [Microtubules] CDKN2A  & TP53  (CDKN2A)
CAL−101 [PI3Kd] NOTCH1  | ~TP53  (~TP53)

MG−132 [Proteosome] CDKN2A  & ~RB1  (CDKN2A)
MK−2206 [AKT1/2] ~BRAF  & PTEN   |  ~KRAS  & PIK3CA  (PTEN)

Erlotinib [EGFR] CDKN2A  | PIK3CA  | SMAD4  (CDKN2A)
Doxorubicin [DNA] CDKN2A  | CTNNB1  | FLT3  | EWS_FLI1  (~TP53)

Sunitinib [PDGFRA :  PDGFRB :  KDR :  KIT :  FLT3] CDKN2A  & ~TP53   |  FLT3  & ~TP53  (~TP53)
PAC−1 [Caspase 3 activator] FBXW7  | NRAS  | ETV6_RUNX1  (CDKN2A)

Bleomycin [] CDKN2A 
AZD6482 [PI3Kb] CDKN2A  & ~FBXW7  & ~MYC  (CDKN2A)

Docetaxel [Microtubules] CDKN2a(p14)  | NF1  | NF2  | EWS_FLI1  (NF1)
JQ12 [HDAC] ~RB1  & ~TP53   |  CDKN2A  & ~STK11  (CDKN2A)

NVP−BEZ235 [PI3K Class 1 and mTORC1/2] FGFR3  | NOTCH1  | NRAS  (TP53)
AZD8055 [mTORC1/2] NOTCH1  | ~TP53  (~TP53)

KIN001−167/ZSTK474 [PI3Ka] NOTCH1  | ~TP53  (~TP53)
Axitinib [PDGFR :  KIT :  VEGFR] MAP2K4  | ~TP53  | BCR_ABL  (~TP53)

JQ1 [BRD4] ~TP53 
AZD7762 [Chk 1/2] ~CTNNB1  & ~NRAS  & ~PTEN  & ~TP53  (~TP53)

JNJ−26854165 [MDM2] ~TP53 
Vorinostat [HDAC inhibitor Class I :  IIa :  IIb :  IV] FBXW7  (EZH2|FBXW7|FLT3|NRAS)

Gemcitabine [] ~RB1  & ~TP53   |  EWS_FLI1  (~TP53)
Gefitinib [EGFR] EGFR  | MAP2K4  (~NRAS)

Bexarotene [Retinioic acid X family agonist] BRAF  (BRAF&~CDKN2A)
GDC0941 [PI3K (class 1)] NRAS  (NOTCH1|NRAS)

Temsirolimus [mTOR] EZH2  | FBXW7  | NRAS  (CDKN2A)
TW 37 [BCL−2 :  BCL−XL] ~RB1  (~APC&~CDKN2A&~PTEN&~RB1)

QS11 [ARFGAP] ~TP53  | EWS_FLI1  (~TP53)
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