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I. Supplementary Notes

Dependence of the algorithm on the number of division

We chose quadrant division for theta and gamma oscillations because the frame size obtained
by this division is generally consistent with the optimal size that represents the spectral
characteristics spread over the speech signals. The frame size obtained by dividing theta band
(4~10 Hz) oscillations or low-gamma band (25~35 Hz) oscillations into quadrants ranges
from 25 ms to 60 ms or 5 ms to 10 ms, respectively. These ranges are consistent with the
ranges from previous speech recognition studies that were considered to be optimal for
achieving a high recognition performance'. The use of two divisions produces a frame size
that ranges from 50 ms to 120 ms (for theta band oscillation) or 10 ms to 20 ms (for low-
gamma band oscillation), which is relatively large and can smear the temporal change of
spectrum within the phoneme and between two phoneme boundaries. The use of eight
divisions or denser divisions produces a relatively short frame size that ranges from 12.5 ms
to 30 ms (for theta band oscillation) and 2.5 ms and 5 ms (for low-gamma band oscillation).
This division can achieve excellent recognition performance for clean speech. However, this
short frame size can cause an accumulation of unnecessarily overlapping features and
insertion errors as the noise level increases”. Previous studies indicated that the recognition
performance is limited when the density of speech segmentation exceeds a certain level,
which indicates that excessive speech segmentation is unnecessary’. Thus, we chose a
quadrant division of theta and low-gamma oscillation as an optimal division size to capture

various temporal changes of spectrum within speech signals.
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Algorithm’s recognition performance under different boundary condition

We used the boundary separation conditions ([-180°, -90°], [-90°, 0°], [0°, 90°], [90°, 180°])
because these conditions are prevalent in neuroscience studies that investigated the role of
phase information in neuronal oscillations *’. We have explored how the algorithm performs
during phase re-parametrization of the boundaries. In this experiment, we considered equally
spaced quadrant boundaries and shifted them clockwise by 20 degrees to create five different
boundary conditions: ([-180°, -90°], [-90°, 0°], [0°, 90°], [90°, 180°]), ([-160°, -70°], [-70°,
20°], [20°, 110°], [110°, -160°]), ([-140°, -50°], [-50°, 40°], [40°, 130°], [130°, -140°]), ([-
120°, -30°], [-30°, 60°], [60°, 150°], [150°, -120°]), ([-100°, -10°], [-10°, 80°], [80°, 170°],
[170°, -100°]). We tested the algorithm performance under various noise levels. The result
showed no significant differences between boundary conditions (Fig. S1). This result
indicates that recognition performance is more related to the frequency of oscillatory

reference and the thresholding parameter for detecting consonant regions.

Algorithm’s recognition performance in the absence of a thresholding

We tested the algorithm performance in the absence of a threshold for various noise levels.
We compared the recognition performance among the FFSR, nested oscillation (NVFS; theta-
low gamma nested), and single frequency band oscillations (once with theta band oscillation
and once with low-gamma band oscillation, which were employed as a primary oscillatory
reference and a secondary oscillatory reference, respectively, in our study). We plotted the
recognition accuracy (Fig. S2(a)) and the number of frames that were employed to segment
consonant and vowel regions by each segmentation scheme (Fig. S2(b)). When speech is not

strongly corrupted by noise, nested oscillation and gamma-band oscillation provides similar
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recognition performance. This high performance can be explained by the relatively large
number of frames that were employed by these two segmentation schemes to capture
consonant and transition regions. As the noise increases, however, the performance of
gamma-band oscillation significantly decreases compared with nested oscillation. This
finding is attributed to the unnecessary number of frames that capture the vowel region,
which eventually add redundant (noisy) information and cause insertion errors in the system,
which reduces the recognition performance *. Considering the computational cost of speech
recognition, gamma-band oscillation employs a larger number of frames than nested
oscillation, which is computationally inefficient regarding their recognition performance. The
theta-band oscillation indicated poor recognition performance because an insufficient number
of frames is applied to segment consonant and transition regions, which creates difficulties in
distinguishing different consonant types. As a result, a thresholding procedure is necessary to

achieve high recognition accuracy and computational efficiency.
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/sal: Fricative consonant+Vowel
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Cc /ma/: Nasal consonant+Vowel
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Supplementary Figure S3. Noise robustness of NVFS based speech segmentation on
various SNR levels. NVFS scheme is applied to various syllable unit speech, which are
composed of different consonant type: (a) stop consonant, (b) fricative consonant, and (c)
nasal consonant. For all syllable samples, frame boundaries are decided by modulation rate of
its envelope, which is short for fast modulation rate region (consonant and transition region)
and relatively long for slow modulation rate region (vowel region). Frame boundaries are
kept nearly constant over all SNR levels, showing robustness of NVFS based speech

segmentation.
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