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I. Supplementary Notes 24 

Dependence of the algorithm on the number of division 25 

We chose quadrant division for theta and gamma oscillations because the frame size obtained 26 

by this division is generally consistent with the optimal size that represents the spectral 27 

characteristics spread over the speech signals. The frame size obtained by dividing theta band 28 

(4~10 Hz) oscillations or low-gamma band (25~35 Hz) oscillations into quadrants ranges 29 

from 25 ms to 60 ms or 5 ms to 10 ms, respectively. These ranges are consistent with the 30 

ranges from previous speech recognition studies that were considered to be optimal for 31 

achieving a high recognition performance1. The use of two divisions produces a frame size 32 

that ranges from 50 ms to 120 ms (for theta band oscillation) or 10 ms to 20 ms (for low-33 

gamma band oscillation), which is relatively large and can smear the temporal change of 34 

spectrum within the phoneme and between two phoneme boundaries. The use of eight 35 

divisions or denser divisions produces a relatively short frame size that ranges from 12.5 ms 36 

to 30 ms (for theta band oscillation) and 2.5 ms and 5 ms (for low-gamma band oscillation). 37 

This division can achieve excellent recognition performance for clean speech. However, this 38 

short frame size can cause an accumulation of unnecessarily overlapping features and 39 

insertion errors as the noise level increases2. Previous studies indicated that the recognition 40 

performance is limited when the density of speech segmentation exceeds a certain level, 41 

which indicates that excessive speech segmentation is unnecessary3. Thus, we chose a 42 

quadrant division of theta and low-gamma oscillation as an optimal division size to capture 43 

various temporal changes of spectrum within speech signals.  44 

 45 
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Algorithm’s recognition performance under different boundary condition 46 

We used the boundary separation conditions ([-180°, -90°], [-90°, 0°], [0°, 90°], [90°, 180°]) 47 

because these conditions are prevalent in neuroscience studies that investigated the role of 48 

phase information in neuronal oscillations 4-7. We have explored how the algorithm performs 49 

during phase re-parametrization of the boundaries. In this experiment, we considered equally 50 

spaced quadrant boundaries and shifted them clockwise by 20 degrees to create five different 51 

boundary conditions: ([-180°, -90°], [-90°, 0°], [0°, 90°], [90°, 180°]), ([-160°, -70°], [-70°, 52 

20°], [20°, 110°], [110°, -160°]), ([-140°, -50°], [-50°, 40°], [40°, 130°], [130°, -140°]), ([-53 

120°, -30°], [-30°, 60°], [60°, 150°], [150°, -120°]), ([-100°, -10°], [-10°, 80°], [80°, 170°], 54 

[170°, -100°]). We tested the algorithm performance under various noise levels. The result 55 

showed no significant differences between boundary conditions (Fig. S1). This result 56 

indicates that recognition performance is more related to the frequency of oscillatory 57 

reference and the thresholding parameter for detecting consonant regions.  58 

 59 

Algorithm’s recognition performance in the absence of a thresholding 60 

We tested the algorithm performance in the absence of a threshold for various noise levels. 61 

We compared the recognition performance among the FFSR, nested oscillation (NVFS; theta-62 

low gamma nested), and single frequency band oscillations (once with theta band oscillation 63 

and once with low-gamma band oscillation, which were employed as a primary oscillatory 64 

reference and a secondary oscillatory reference, respectively, in our study). We plotted the 65 

recognition accuracy (Fig. S2(a)) and the number of frames that were employed to segment 66 

consonant and vowel regions by each segmentation scheme (Fig. S2(b)). When speech is not 67 

strongly corrupted by noise, nested oscillation and gamma-band oscillation provides similar 68 
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recognition performance. This high performance can be explained by the relatively large 69 

number of frames that were employed by these two segmentation schemes to capture 70 

consonant and transition regions. As the noise increases, however, the performance of 71 

gamma-band oscillation significantly decreases compared with nested oscillation. This 72 

finding is attributed to the unnecessary number of frames that capture the vowel region, 73 

which eventually add redundant (noisy) information and cause insertion errors in the system, 74 

which reduces the recognition performance 2. Considering the computational cost of speech 75 

recognition, gamma-band oscillation employs a larger number of frames than nested 76 

oscillation, which is computationally inefficient regarding their recognition performance. The 77 

theta-band oscillation indicated poor recognition performance because an insufficient number 78 

of frames is applied to segment consonant and transition regions, which creates difficulties in 79 

distinguishing different consonant types. As a result, a thresholding procedure is necessary to 80 

achieve high recognition accuracy and computational efficiency. 81 

 82 
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