A multi-center study benchmarks software tools for label-free proteome quantification

Supplementary Information

Pedro Navarro, Jörg Kuharev, Ludovic C Gillet, Oliver M. Bernhardt, Brendan MacLean, Hannes L. Röst, Stephen A. Tate, Chih-Chiang Tsou, Lukas Reiter, Ute Distler, George Rosenberger, Yasset Perez-Riverol, Alexey I. Nesvizhskii, Ruedi Aebersold, Stefan Tenzer

Contents

Sup	plementary Tables	3
1	Precision and accuracy of relative quantification.	4
2	Metrics summary	13
3	Number of identified peptides and proteins	20
4	Average R^2 regression values of between technical replicates $\ldots \ldots \ldots$	23
5	Configuration parameters for all software tools	26
6	Analysis of the dynamic ranges on peptide and protein level	33
7	SWATH isolation windows setups	36
8	Ion Libraries Statistics	37
9	log_2 ratios shift corrections	39
Sup	plementary Figures	42
1	Schematic overview of the datasets acquired and analyzed in this study	43
2	Simulated quantification data	44
3	Signal-to-noise ratios for all datasets.	46
4	Precursor intensity correlation between technical replicates	47
5	Coefficients of Variance (CVs) between technical replicates for human pro-	
	teins and peptides	48
6	Precursor intensity correlation between the different datasets	55
7	LFQbench peptide level benchmarks	66
8	LFQbench protein level benchmarks.	73
9	LFQbench protein level benchmarks for single-hit proteins for all instru-	
	ment/workflow combinations.	82
10	Percentage of false negative human proteins (human proteins detected in	
	only one of the samples) without replication rate filtering	87
11	Box-and-whisker plots of log_2 ratio distributions in different intensity tertiles	
	for human proteins	89
12	Box-and-whisker plots of log_2 ratio distributions in different intensity tertiles	
	for yeast proteins.	94
13	Box-and-whisker plots of log_2 ratio distributions in different intensity tertiles	
	for E.coli proteins.	99
14	LFQbench protein level benchmarks for built-in protein level reports	104
15	Retention time differences and correlation of reported peak intensities	
	between all software tools for the first iteration.	107
16	Comparative analysis of fragment intensity rankings between DIA-Umpire	
. –	and the library.	109
17	Number of incomplete cases	110
18	Percentage of false negative human proteins (human proteins detected in	
	only one of the samples) in the second iteration with replication rate filtering.	117

19	Number of quantified peptides per protein	119
20	Peptide overlap between the five software tools using a dedicated library	
	with peptides identified initially only by DIA-Umpire	126
21	Retention time differences and correlation of reported peak intensities	
	between all software tools for extractions of a dedicated library with peptides	
	identified only by DIA-Umpire	127
22	Overlap of quantified peptides between DIA-Umpire and the library based	
	tools	129
23	LFQbench peptide and protein level benchmarks using Skyline's user rec-	
	ommended values	130
24	Isolation ranges used in Skyline	132
25	Linear models of intensity scales (CIS)	135
Ste	p-by-Step Analyses	140
1	OpenSWATH	141
2	SWATH 2.0	143
3	Skyline	145
4	Spectronaut	149
5	DIA-Umpire	153

Supplementary Tables

Supplementary Table 1. Precision and accuracy of relative quantification.

Precision (standard deviation between technical replicates) and accuracy (absolute median deviation from expected $log_2(A/B)$ values) on peptide and protein level for each tertile (1st: lowest intensity (0%-33.3%), 2nd: medium intensity (33.3%-66.7%) and 3rd: highest intensity (66.7%-100%)). The asterisks at the second iteration panel of HYE124 stand for a significative improvement compared to the first iteration.

Precision and accuracy of the different software tools are compared to each other within the same species (color code: worst value in full red and best value in full green).

The following pages show the precision and accuracy of peptides and proteins for:

- Supplementary Table 1.A: sample set HYE124, TTOF5600_32fix, iteration 1 & 2
- Supplementary Table 1.B: sample set HYE124, TTOF5600_64var, iteration 1 & 2
- Supplementary Table 1.C: sample set HYE124, TTOF6600_32fix, iteration 1 & 2
- Supplementary Table 1.D: sample set HYE124, TTOF6600 64var, iteration 1 & 2
- Supplementary Table 1.E: sample set HYE110, TTOF6600_32fix
- Supplementary Table 1.F: sample set HYE110, TTOF6600 32var
- Supplementary Table 1.G: sample set HYE110, TTOF6600 64fix
- Supplementary Table 1.H: sample set HYE110, TTOF6600_64fix

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.305	0.448	0.311	0.270	0.562	0.472	0.271*	0.363	0.307	0.508*
des	Ë	2nd.	0.226	0.286	0.270	0.221	0.362	0.335	0.214*	0.312	0.233	0.367
	Ŧ	3rd.	0.214	0.231	0.230	0.212	0.335	0.267	0.221*	0.248	0.197*	0.288*
	ï	1st.	0.430	0.629	0.383	0.464	0.672	0.577	0.277*	0.464	0.496	0.664
Ĕ	eas	2nd.	0.326	0.434	0.371	0.405	0.414	0.452	0.260*	0.429	0.387	0.358*
ě	۶	3rd.	0.390	0.404	0.414	0.445	0.393	0.455	0.331*	0.582	0.429	0.405
щ	=	1st.	0.524	0.878	0.733	0.772	0.702	0.837	0.557*	0.893	0.796	0.696
	ပိ	2nd.	0.525	0.641	0.504	0.526	0.690	0.657	0.365*	0.558	0.557	0.430*
	ш	3rd.	0.453	0.440	0.388	0.410	0.539	0.459	0.341*	0.459	0.392	0.401*
	an	1st.	0.233	0.271	0.268	0.225	0.356	0.274	0.302	0.311	0.258	0.350
	Ë	2nd.	0.207	0.160	0.220	0.177	0.296	0.239	0.235	0.240	0.180	0.236*
	로	3rd.	0.137	0.180	0.128	0.159	0.216	0.142	0.208	0.150	0.141*	0.246
Ë.	ä	1st.	0.458	0.393	0.475	0.458	0.419	0.425	0.436	0.495	0.475	0.530
te	eas	2nd.	0.386	0.282	0.438	0.490	0.387	0.430	0.319	0.365*	0.537	0.433
5	7	3rd.	0.431	0.350	0.443	0.367	0.329	0.442	0.466	0.492	0.393	0.326
	-	1st.	0.701	0.632	0.795	0.956	0.657	0.842	0.576	0.863	1.042	0.539
	ပိ	2nd.	0.468	0.456	0.518	0.544	0.441	0.527	0.489	0.668	0.666	0.560
	ш	3rd.	0.349	0.330	0.346	0.238	0.350	0.318	0.259*	0.375	0.290	0.507

Accuracy of relative quantification

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	u	1st.	0.014	0.030	0.025	0.011	0.068	0.061	0.018	0.021	0.014	0.062
	Ĕ	2nd.	0.006	0.006	0.007	0.013	0.006	0.014	0.003	0.024*	0.012	0.013
<i>(</i> 0).	Ŧ	3rd.	0.005	0.010	0.012	0.003	0.033	0.017*	0.009	0.004	0.000	0.026
ě	it	1st.	0.386	0.007	0.232	0.278	0.002	0.002	0.088*	0.074	0.055	0.115*
Ĕ	eas	2nd.	0.442	0.129	0.251	0.342	0.100	0.111	0.104	0.116	0.199	0.167*
e d	۶	3rd.	0.266	0.111	0.142	0.190	0.164	0.076	0.100	0.111	0.125	0.198*
ш	-	1st.	0.936	0.535	0.832	0.800	0.492	0.367*	0.326*	0.487*	0.359*	0.603
	ပိ	2nd.	0.802	0.302	0.510	0.634	0.310	0.185*	0.266	0.200*	0.357*	0.393
	ш	3rd.	0.480	0.252	0.284	0.399	0.315	0.149*	0.237	0.271*	0.263*	0.360
	ne	1st.	0.008	0.021	0.006	0.007	0.036	0.008	0.022	0.011	0.007	0.011
	Ĕ	2nd.	0.012	0.012	0.005	0.013	0.008	0.007	0.003	0.030	0.010	0.014
	ヹ	3rd.	0.006	0.003	0.001	0.006	0.009	0.000	0.003	0.021	0.012	0.010
ĩ.	ĩt	1st.	0.329	0.070	0.159	0.258	0.006	0.010	0.013	0.051	0.074	0.052
te	eas	2nd.	0.376	0.171	0.196	0.326	0.010	0.107	0.094	0.091	0.209	0.030
2	۶	3rd.	0.221	0.123	0.123	0.162	0.066	0.072	0.111	0.113	0.096	0.138
-	=	1st.	0.919	0.649	0.785	0.716	0.141	0.393*	0.107*	0.456*	0.365*	0.232
	õ	2nd.	0.713	0.489	0.338	0.527	0.058	0.203*	0.201*	0.195*	0.342*	0.197
	ш	3rd.	0.478	0.286	0.300	0.369	0.164	0.184*	0.209*	0.322	0.254*	0.106

Supplementary Table 1.A: Precision and accuracy in HYE124, TTOF5600_32fix.

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	u	1st.	0.306	0.472	0.320	0.301	0.587	0.437	0.272 *	0.414	0.362	0.522 *
	Ĕ	2nd.	0.218	0.266	0.256	0.212	0.401	0.301	0.214 *	0.289	0.230	0.366*
	Ŧ	3rd.	0.232	0.273	0.249	0.180	0.293	0.243	0.176 *	0.248	0.192	0.271 *
Jes -	Ħ	1st.	0.367	0.710	0.414	0.455	0.774	0.543	0.319*	0.524	0.492	0.575*
Ĕ	eas	2nd.	0.304	0.445	0.381	0.382	0.462	0.442	0.266 *	0.464	0.348*	0.361*
e d	۶	3rd.	0.326	0.477	0.422	0.395	0.373	0.382	0.296*	0.573	0.377*	0.293*
	Ŧ	1st.	0.549	0.953	0.763	0.720	0.825	0.770	0.624 *	0.819	0.708	0.712*
	õ	2nd.	0.452	0.737	0.523	0.429	0.716	0.534	0.319*	0.498	0.496	0.539*
	ш	3rd.	0.372	0.457	0.349	0.301	0.582	0.390	0.287*	0.352	0.331	0.393*
	an	1st.	0.159	0.192	0.229	0.182	0.440	0.218	0.212	0.246	0.210	0.431
	Ĕ	2nd.	0.155	0.166	0.163	0.134	0.280	0.182	0.173	0.233	0.123*	0.284
	Ŧ	3rd.	0.125	0.101	0.125	0.103	0.209	0.136	0.125	0.141	0.121	0.211
ũ.	Ħ	1st.	0.309	0.378	0.432	0.367	0.591	0.372	0.429	0.456	0.382	0.474 *
te	eas	2nd.	0.271	0.298	0.353	0.346	0.458	0.267	0.321	0.416	0.336	0.367*
ž	۶	3rd.	0.244	0.355	0.379	0.307	0.261	0.253	0.272 *	0.434	0.375	0.272
<u> </u>	=	1st.	0.548	0.625	0.634	0.602	0.742	0.528	0.570	0.701	0.655	0.613
	ပိ	2nd.	0.318	0.605	0.553	0.445	0.610	0.433	0.419*	0.599	0.600	0.527
	ш	3rd.	0.292	0.347	0.287	0.206	0.378	0.255	0.246 *	0.326	0.196	0.338

Accuracy of relative quantification

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.005	0.010	0.010	0.026	0.063	0.021	0.005	0.054	0.030	0.045
	Ë	2nd.	0.004	0.002	0.008	0.005	0.009	0.010	0.000	0.018	0.004	0.011
<i>(</i> 0 -	Ŧ	3rd.	0.001	0.003	0.000	0.009	0.026	0.003	0.002	0.033*	0.009	0.025
les –	ït	1st.	0.305	0.068	0.230	0.185	0.088	0.012	0.104*	0.114	0.069	0.205*
Ĕ	eas	2nd.	0.325	0.096	0.253	0.220	0.187	0.070	0.095	0.068	0.060	0.198
ě.	7	3rd.	0.173	0.086	0.130	0.163	0.194	0.056	0.075	0.071	0.082	0.225*
.	=	1st.	0.765	0.427	0.857	0.646	0.607	0.320*	0.326	0.721*	0.209*	0.625
	õ	2nd.	0.635	0.159	0.493	0.444	0.413	0.124*	0.240	0.193*	0.166*	0.415
	ш	3rd.	0.362	0.214	0.286	0.331	0.391	0.135*	0.225	0.082*	0.189*	0.443
	an	1st.	0.004	0.007	0.003	0.016	0.043	0.012	0.013	0.077	0.007	0.016
	Ë	2nd.	0.009	0.011	0.004	0.001	0.004	0.003	0.014	0.005	0.002	0.010
	Ŧ	3rd.	0.010	0.002	0.001	0.006	0.023	0.007	0.002	0.038*	0.002	0.014
ins	ït	1st.	0.297	0.068	0.185	0.211	0.085	0.049	0.049	0.029	0.003	0.019
fe	eas	2nd.	0.312	0.142	0.219	0.202	0.088	0.097	0.059	0.038	0.073	0.048
Ĕ.	7	3rd.	0.146	0.090	0.115	0.139	0.130	0.059	0.082	0.098	0.082	0.123
	il	1st.	0.712	0.563	0.782	0.557	0.336	0.280*	0.246*	0.517*	0.191*	0.300
	õ	2nd.	0.527	0.367	0.460	0.380	0.203	0.118*	0.161*	0.154*	0.178*	0.227
	ш	3rd.	0.344	0.246	0.285	0.307	0.231	0.161*	0.206*	0.117*	0.201*	0.239

Supplementary Table 1.B: Precision and accuracy in HYE124, TTOF5600_64var.

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.338	1.180	0.316	0.307	0.666	0.511	0.325*	0.403	0.377	0.583*
	Ë	2nd.	0.279	0.388	0.288	0.268	0.449	0.329	0.274*	0.316	0.294	0.400*
	Ŧ	3rd.	0.280	0.286	0.255	0.231	0.347	0.294	0.230*	0.271	0.220*	0.339
je j	ï	1st.	0.439	0.903	0.373	0.458	0.765	0.631	0.300*	0.462	0.492	0.691*
Ĕ	eas	2nd.	0.344	0.629	0.376	0.436	0.492	0.481	0.274*	0.425	0.400*	0.419*
ě	۶	3rd.	0.438	0.527	0.462	0.556	0.383	0.447	0.318*	0.536	0.450*	0.375
ш	=	1st.	0.652	1.309	0.822	0.878	0.941	0.961	0.600*	0.807	0.803*	0.894
	ပိ	2nd.	0.629	0.702	0.632	0.636	0.688	0.801	0.384*	0.644	0.624	0.447*
	ш	3rd.	0.529	0.445	0.446	0.441	0.491	0.515	0.303*	0.405*	0.414*	0.393*
	n	1st.	0.189	0.457	0.223	0.176	0.400	0.225	0.263*	0.246	0.243	0.421
	Ĕ	2nd.	0.180	0.189	0.168	0.153	0.293	0.191	0.189	0.213	0.156	0.294
	Ŧ	3rd.	0.136	0.153	0.160	0.131	0.239	0.142	0.148	0.122*	0.143	0.243
Ĩ.	Ħ	1st.	0.392	0.451	0.536	0.456	0.667	0.470	0.442	0.459*	0.507	0.557*
ote	eas	2nd.	0.332	0.400	0.394	0.477	0.446	0.455	0.338*	0.407	0.424*	0.418
ž	۶	3rd.	0.394	0.444	0.474	0.490	0.289	0.362	0.413	0.482	0.475	0.341
	ii	1st.	0.732	0.657	0.805	0.839	0.782	0.916	0.753	0.772	0.902	0.711
	ő	2nd.	0.528	0.480	0.590	0.598	0.707	0.594	0.411	0.681	0.670	0.661
	ш	3rd.	0.325	0.307	0.277	0.407	0.591	0.349	0.249*	0.284	0.392	0.584

Accuracy of relative quantification

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.007	0.074	0.001	0.018	0.059	0.012	0.003*	0.031	0.028	0.052
	Ë	2nd.	0.010	0.020	0.002	0.001	0.012	0.008	0.003	0.000	0.001	0.015
6	Ŧ	3rd.	0.008	0.010	0.001	0.007	0.022	0.000*	0.003	0.012*	0.012*	0.019
ë	Ħ	1st.	0.324	0.058	0.129	0.202	0.078	0.049	0.003*	0.003	0.001	0.015*
Ť	eas	2nd.	0.354	0.064	0.154	0.238	0.024	0.040	0.023	0.074	0.140	0.056*
ě	۶	3rd.	0.177	0.028	0.038	0.116	0.058	0.008	0.023	0.066*	0.081	0.049
	=	1st.	0.856	0.438	0.651	0.835	0.283	0.274*	0.196*	0.474*	0.408*	0.258
	õ	2nd.	0.711	0.181	0.383	0.537	0.141	0.143*	0.121*	0.267*	0.346*	0.186
	ш	3rd.	0.328	0.085	0.133	0.246	0.109	0.022*	0.057*	0.131	0.150*	0.105
	n	1st.	0.014	0.001	0.001	0.006	0.045	0.018	0.000	0.021	0.011	0.017
	Ĕ	2nd.	0.007	0.005	0.006	0.001	0.009	0.003	0.010	0.005	0.001	0.005
	Ŧ	3rd.	0.013	0.006	0.006	0.002	0.015	0.004	0.004	0.001	0.006	0.000
Ľ.	Ħ	1st.	0.291	0.052	0.059	0.202	0.221	0.001	0.206	0.024	0.046	0.282
ote	eas	2nd.	0.317	0.108	0.103	0.240	0.143	0.078	0.070	0.093	0.174	0.158
ž	۶	3rd.	0.114	0.012	0.013	0.065	0.030	0.030	0.041	0.046*	0.043	0.050
-	=	1st.	0.779	0.505	0.616	0.749	0.045	0.355*	0.027*	0.431*	0.312*	0.174
	ပိ	2nd.	0.619	0.414	0.296	0.448	0.234	0.136*	0.040*	0.294	0.260*	0.302
	ш	3rd.	0.338	0.164	0.124	0.217	0.089	0.071*	0.016*	0.176	0.127*	0.143

Supplementary Table 1.C: Precision and accuracy in HYE124, TTOF6600_32fix.

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	u	1st.	0.329	0.411	0.318	0.309	0.690	0.427	0.299 *	0.380	0.405	0.589 *
	Ĕ	2nd.	0.248	0.307	0.255	0.246	0.470	0.293	0.245 *	0.260	0.262	0.430 *
<i>(</i> 0	Ŧ	3rd.	0.245	0.259	0.257	0.210	0.397	0.282	0.233 *	0.259	0.206	0.349 *
ě.	Ħ	1st.	0.395	0.576	0.376	0.496	0.865	0.537	0.295 *	0.458	0.502	0.708 *
Ĕ	eas	2nd.	0.317	0.356	0.393	0.393	0.499	0.398	0.275 *	0.395	0.385	0.447 *
ě	۶	3rd.	0.347	0.439	0.474	0.478	0.518	0.370	0.306 *	0.401 *	0.403 *	0.456 *
ш.	=	1st.	0.582	0.847	0.760	0.848	1.137	0.789	0.607 *	0.750	0.784 *	1.045 *
	õ	2nd.	0.493	0.632	0.580	0.540	0.837	0.601	0.323 *	0.529 *	0.551	0.559 *
	ш	3rd.	0.419	0.451	0.423	0.363	0.546	0.418	0.335*	0.380*	0.349 *	0.375 *
	u	1st.	0.166	0.167	0.185	0.147	0.414	0.186	0.192	0.171 *	0.164	0.431
	Ĕ	2nd.	0.162	0.144	0.159	0.107	0.328	0.156	0.148	0.140*	0.113	0.327
	Ŧ	3rd.	0.169	0.129	0.160	0.106	0.273	0.149*	0.130	0.148*	0.116	0.274
Ĩ.	Ħ	1st.	0.289	0.306	0.361	0.333	0.597	0.319	0.343	0.322*	0.358	0.560
te	eas	2nd.	0.273	0.266	0.362	0.361	0.333	0.319	0.350	0.295*	0.309 *	0.361
5	۶	3rd.	0.303	0.429	0.397	0.361	0.627	0.349	0.309*	0.406	0.320 *	0.483*
<u> </u>	=	1st.	0.443	0.652	0.619	0.755	0.914	0.615	0.600	0.658	0.734	0.728*
	õ	2nd.	0.397	0.438	0.555	0.508	0.736	0.445	0.465	0.490*	0.487	0.554 *
	ш	3rd.	0.344	0.464	0.393	0.325	0.368	0.312	0.314 *	0.329	0.311	0.483

Accuracy of relative quantification

					Iteration 1					Iteration 2		
		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	n	1st.	0.016	0.011	0.010	0.018	0.046	0.012	0.007	0.018*	0.028	0.043
	Ĕ	2nd.	0.000	0.002	0.003	0.001	0.010	0.001	0.003	0.005	0.001	0.008
	Ŧ	3rd.	0.009	0.006	0.008	0.010	0.015	0.005	0.005	0.011	0.011	0.014
je	it	1st.	0.264	0.036	0.184	0.171	0.067	0.020	0.029*	0.041	0.046	0.010*
ğ	eas	2nd.	0.244	0.018	0.130	0.136	0.054	0.021	0.000	0.052	0.011	0.066*
e	۶	3rd.	0.039	0.035	0.005	0.048	0.061	0.065	0.048	0.021	0.004	0.063
ш.	-	1st.	0.776	0.354	0.839	0.752	0.230	0.296*	0.244*	0.445*	0.317*	0.263
	ပိ	2nd.	0.561	0.110	0.423	0.353	0.164	0.041*	0.099	0.167*	0.117*	0.187
	ш	3rd.	0.135	0.023	0.074	0.132	0.153	0.047*	0.002*	0.054*	0.043*	0.162
	an	1st.	0.014	0.016	0.020	0.010	0.002	0.017	0.010	0.022	0.010	0.016
	Ë	2nd.	0.000	0.001	0.000	0.002	0.005	0.005	0.002	0.004	0.000	0.003
	Ŧ	3rd.	0.009	0.006	0.008	0.006	0.006	0.008	0.005	0.009	0.006	0.003
in	st	1st.	0.312	0.044	0.162	0.163	0.145	0.037	0.056	0.077	0.004	0.126
te	eas	2nd.	0.201	0.029	0.119	0.114	0.047	0.002	0.043	0.041	0.027	0.072
2	۶	3rd.	0.008	0.041	0.028	0.022	0.013	0.058	0.058	0.028	0.002	0.038
	=	1st.	0.675	0.487	0.736	0.616	0.046	0.233*	0.107*	0.394*	0.133*	0.142
	õ	2nd.	0.498	0.271	0.463	0.334	0.048	0.095*	0.059*	0.182*	0.120*	0.115
	ш	3rd.	0.128	0.044	0.076	0.109	0.057	0.015*	0.025*	0.075	0.031*	0.051

Supplementary Table 1.D: Precision and accuracy in HYE124, TTOF6600_64var.

Precision of relative	quantification
------------------------------	----------------

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.553	0.354	0.598	0.444	0.579
	Ĕ	2nd.	0.427	0.324	0.444	0.340	0.444
6	Ŧ	3rd.	0.404	0.297	0.399	0.331	0.407
je	ĭ	1st.	1.027	0.821	1.046	0.937	1.240
ğ	eas	2nd.	1.149	1.125	1.461	1.197	0.996
Je L	×	3rd.	1.776	1.592	2.206	1.793	1.396
	li	1st.	1.219	1.172	1.675	1.339	1.273
	õ	2nd.	0.774	0.690	0.841	0.689	0.569
	ш	3rd.	0.611	0.479	0.638	0.551	0.656
	an	1st.	0.313	0.321	0.423	0.293	0.501
	Ë	2nd.	0.287	0.300	0.318	0.226	0.393
~	Ŧ	3rd.	0.256	0.207	0.240	0.242	0.353
Ĩŋ	st	1st.	0.812	0.644	0.939	0.906	0.783
ote	eas	2nd.	1.239	0.946	1.208	1.186	1.238
5	≻	3rd.	1.786	1.399	1.775	1.538	1.050
-	il	1st.	1.069	0.922	1.433	1.194	1.129
	ŏ	2nd.	0.506	0.468	0.712	0.692	0.633
	ш	3rd.	0.421	0.413	0.343	0.387	0.695

Accuracy of relative quantification

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.065	0.045	0.047	0.041	0.056
6	Ĕ	2nd.	0.009	0.005	0.040	0.014	0.000
	Ŧ	3rd.	0.033	0.035	0.007	0.011	0.051
je	st	1st.	0.000	0.177	0.043	0.252	0.435
ğ	eas	2nd.	0.007	0.067	0.027	0.347	0.201
e	≻	3rd.	0.238	0.227	0.135	0.029	0.179
ш	il	1st.	0.697	0.527	0.750	0.815	0.642
	ပိ	2nd.	0.089	0.124	0.035	0.376	0.177
	ш	3rd.	0.216	0.234	0.167	0.004	0.064
	an	1st.	0.001	0.028	0.023	0.009	0.055
	Ĕ	2nd.	0.001	0.019	0.045	0.008	0.002
<i>(</i> 0	Ŧ	3rd.	0.002	0.003	0.031	0.000	0.036
ing	st	1st.	0.096	0.393	0.000	0.189	0.829
ote	eas	2nd.	0.053	0.082	0.034	0.301	0.479
5	≻	3rd.	0.179	0.034	0.442	0.073	0.069
	ij	1st.	0.427	0.149	0.604	0.608	0.174
	ŏ	2nd.	0.003	0.216	0.124	0.317	0.627
	ш	3rd.	0.284	0.312	0.198	0.086	0.619

Supplementary Table 1.E: Precision and accuracy in HYE110, TTOF6600_32fix.

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.533	0.360	0.493	0.448	0.545
Peptides	Ĕ	2nd.	0.407	0.313	0.393	0.369	0.439
6	Ę	3rd.	0.378	0.331	0.432	0.340	0.408
Jes	ŭ	1st.	0.854	0.856	1.048	0.874	1.379
otic	eas	2nd.	1.174	1.195	1.108	1.125	1.134
- Pep	≻	3rd.	1.610	1.733	1.933	1.821	1.474
	il	1st.	1.065	1.150	1.567	1.319	1.414
	ပိ	2nd.	0.711	0.640	0.809	0.643	0.661
	ш	3rd.	0.616	0.454	0.588	0.586	0.972
	an	1st.	0.285	0.286	0.315	0.285	0.486
	Ĩ	2nd.	0.235	0.252	0.224	0.202	0.389
<i>(</i> 0	Ŧ	3rd.	0.250	0.280	0.389	0.289	0.373
İ İ İ	ŝt	1st.	0.652	0.708	0.854	0.847	0.855
ote	eas	2nd.	0.983	0.617	0.988	1.103	1.081
5	×	3rd.	1.514	1.649	1.677	1.613	0.986
	ii	1st.	0.906	0.623	1.489	1.074	0.936
	ပိ	2nd.	0.409	0.560	0.739	0.695	0.511
	ш	3rd.	0.478	0.332	0.524	0.374	0.914

Accuracy of relative quantification

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.065	0.034	0.036	0.047	0.057
les	Ĩ	2nd.	0.010	0.004	0.010	0.006	0.005
	Ъ	3rd.	0.025	0.021	0.009	0.022	0.037
	ŝt	1st.	0.055	0.132	0.082	0.137	0.420
ğ	eas	2nd.	0.068	0.076	0.121	0.221	0.180
e F	۶	3rd.	0.143	0.208	0.191	0.060	0.129
ш.	ii	1st.	0.568	0.489	0.578	0.644	0.642
	ပို	2nd.	0.133	0.120	0.129	0.246	0.221
	ш	3rd.	0.192	0.154	0.150	0.064	0.026
	an	1st.	0.023	0.017	0.010	0.018	0.082
	Ë	2nd.	0.001	0.010	0.016	0.001	0.040
	Ŧ	3rd.	0.010	0.005	0.019	0.009	0.011
ing.	st	1st.	0.001	0.008	0.162	0.100	0.584
ote	eas	2nd.	0.131	0.265	0.069	0.269	0.196
2 C	≻	3rd.	0.043	0.609	0.024	0.126	0.212
	i	1st.	0.401	0.149	0.227	0.410	0.093
	ပိ	2nd.	0.072	0.040	0.127	0.204	0.416
	ш	3rd.	0.246	0.254	0.101	0.124	0.386

Supplementary Table 1.F: Precision and accuracy in HYE110, TTOF6600_32var.

Precision of relativ	e quantification
-----------------------------	------------------

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.493	0.356	0.561	0.636	0.545
	Ĕ	2nd.	0.385	0.320	0.445	0.430	0.443
6	Ŧ	3rd.	0.376	0.335	0.413	0.396	0.446
je	ŭ	1st.	0.791	0.814	1.175	1.141	1.201
otic	eas	2nd.	0.961	1.206	1.397	1.583	0.787
- Pep	۶	3rd.	1.602	1.671	2.144	2.250	1.254
	iI	1st.	1.025	1.116	1.553	1.752	0.929
	ပိ	2nd.	0.551	0.585	0.850	0.669	0.643
	ш	3rd.	0.565	0.498	0.637	0.579	0.612
	an	1st.	0.277	0.250	0.343	0.373	0.448
	Ĩ	2nd.	0.266	0.259	0.332	0.273	0.390
<i>(</i>)	Ŧ	3rd.	0.205	0.199	0.257	0.302	0.454
<u>ü</u>	ĭ	1st.	0.612	0.742	0.997	1.120	0.838
ote	eas	2nd.	1.065	0.714	1.273	1.455	0.663
Ľ.	≻	3rd.	1.502	1.472	1.786	2.176	1.091
	ij	1st.	1.004	0.800	1.428	1.498	0.910
	ŏ	2nd.	0.483	0.442	0.904	0.505	0.621
	ш	3rd.	0.445	0.413	0.361	0.318	0.728

Accuracy of relative quantification

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.062	0.047	0.091	0.224	0.086
les	Ĩ	2nd.	0.001	0.006	0.004	0.013	0.002
	Τ	3rd.	0.038	0.042	0.041	0.101	0.057
	ĭ	1st.	0.110	0.225	0.019	0.500	0.447
ğ	eas	2nd.	0.010	0.022	0.317	0.123	0.336
er	۶	3rd.	0.151	0.154	0.138	0.126	0.280
ш	ij	1st.	0.579	0.556	0.675	0.415	0.904
	ပိ	2nd.	0.114	0.230	0.303	0.148	0.380
	ш	3rd.	0.208	0.174	0.419	0.334	0.124
	an	1st.	0.026	0.022	0.059	0.110	0.069
	Ĩ	2nd.	0.001	0.012	0.001	0.011	0.004
	Τ	3rd.	0.017	0.021	0.024	0.041	0.056
<u>n</u>	ĭ	1st.	0.003	0.015	0.342	0.183	0.354
te	eas	2nd.	0.028	0.132	0.206	0.133	0.289
2 2	≻	3rd.	0.017	0.145	1.123	0.064	0.079
<u> </u>	ij	1st.	0.230	0.157	0.116	0.393	0.116
	ပိ	2nd.	0.002	0.038	0.362	0.142	0.246
	ш	3rd.	0.286	0.268	0.386	0.327	0.511

Supplementary Table 1.G: Precision and accuracy in HYE110, TTOF6600_64fix.

Precision of relative	quantification
------------------------------	----------------

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.480	0.369	0.536	0.578	0.556
	Ë	2nd.	0.371	0.289	0.397	0.396	0.418
6	Ŧ	3rd.	0.316	0.300	0.373	0.293	0.376
je	ĭ	1st.	0.723	0.868	1.066	1.005	1.127
otic	eas	2nd.	0.684	1.000	1.220	1.307	0.961
er er	≻	3rd.	1.200	1.605	2.060	1.926	1.304
Δ.	ili	1st.	0.890	1.209	1.468	1.733	1.241
	ပိ	2nd.	0.607	0.462	0.809	0.732	0.608
	ш	3rd.	0.468	0.426	0.554	0.498	0.619
	an	1st.	0.246	0.229	0.309	0.278	0.490
	Ë	2nd.	0.249	0.197	0.209	0.216	0.373
<i>(</i> 0	Ŧ	3rd.	0.258	0.270	0.223	0.204	0.330
<u>in</u>	st	1st.	0.482	0.780	0.770	0.761	0.813
te	eas	2nd.	0.671	0.744	1.019	1.124	0.599
5	×	3rd.	1.126	1.087	1.847	1.923	1.361
	ij	1st.	0.738	1.249	1.266	1.226	0.991
	ပိ	2nd.	0.443	0.414	0.993	0.558	0.727
	ш	3rd.	0.333	0.375	0.500	0.346	0.621

Accuracy of relative quantification

		Intensity tertile	OpenSWATH	SWATH 2.0	Skyline	Spectronaut	DIAumpire
	an	1st.	0.027	0.014	0.026	0.066	0.038
S.	Ĩ	2nd.	0.005	0.001	0.016	0.011	0.002
	Ŧ	3rd.	0.010	0.010	0.005	0.018	0.027
je	ĭ	1st.	0.063	0.273	0.013	0.554	0.339
ğ	eas	2nd.	0.013	0.017	0.247	0.248	0.253
er l	≻	3rd.	0.256	0.227	0.248	0.229	0.227
ш	ii	1st.	0.443	0.509	0.532	0.098	0.702
	ပိ	2nd.	0.083	0.173	0.300	0.217	0.380
	ш	3rd.	0.163	0.095	0.266	0.193	0.161
	an	1st.	0.002	0.002	0.008	0.001	0.040
	Ë	2nd.	0.013	0.003	0.002	0.005	0.007
<i>(</i> 0	Ŧ	3rd.	0.007	0.005	0.008	0.001	0.030
ins	st	1st.	0.049	0.014	0.376	0.397	0.344
ote	eas	2nd.	0.041	0.089	0.195	0.039	0.451
Dr.	≻	3rd.	0.323	0.282	0.076	0.250	0.064
	i	1st.	0.294	0.291	0.153	0.085	0.086
	ပိ	2nd.	0.039	0.041	0.286	0.092	0.189
	ш	3rd.	0.207	0.207	0.216	0.205	0.521

Supplementary Table 1.H: Precision and accuracy in HYE110, TTOF6600_64var.

Supplementary Table 2. Metrics summary

Number of protein and peptide identifications, number of valid quantification ratios, and calculated raw and AUQC values for separation between (yeast vs. human) and (E.coli vs. human). AUQC values are also displayed as the arctangent hyperbolics (arctanh) for an easier interpretation of the values. The arctanh reflects that the difficulty of improving the AUQC value is not linear. AUQC values of the different software tools were compared to each other (color code: worst value in full red and best value in full green).

The following pages show the metrics summary for:

- Supplementary Table 2.A: sample set HYE124, TTOF5600_32fix, iteration 1 & 2
- Supplementary Table 2.B: sample set HYE124, TTOF5600_64var, iteration 1 & 2
- Supplementary Table 2.C: sample set HYE124, TTOF6600_32fix, iteration 1 & 2
- Supplementary Table 2.D: sample set HYE124, TTOF6600_64var, iteration 1 & 2
- Supplementary Table 2.E: sample set HYE110, TTOF6600_32fix
- Supplementary Table 2.F: sample set HYE110, TTOF6600 32var
- Supplementary Table 2.G: sample set HYE110, TTOF6600_64fix
- Supplementary Table 2.H: sample set HYE110, TTOF6600_64fix

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli- Human	Overlap Yeast Human (arctanh)	· Overlap E.coli· Human (arctanh)
	OpenSWATH	5%	26,225	19,611	0.94	0.96	1.73	1.97
les	SWATH2.0	6%	17,988	17,988	0.94	0.96	1.76	1.95
tic	Skyline	7%	25,090	16,502	0.94	0.95	1.74	1.82
bep	Spectronaut	6%	30,361	21,037	0.94	0.95	1.72	1.82
<u> </u>	DIA-Umpire	10%	12,584	10,668	0.95	0.99	1.79	2.58
	OpenSWATH	4%	3,296	2,764	0.92	0.95	1.58	1.82
	SWATH2.0	4%	2,671	2,671	0.96	0.98	1.94	2.29
ins	SWATH2.0 (built-in)	5%	4,213	4,213	0.93	0.95	1.66	1.80
orote	Skyline	6%	2,872	2,359	0.95	0.96	1.82	1.91
	Spectronaut	4%	3,379	2,829	0.94	0.95	1.78	1.79
_	DIA-Umpire	9%	1,668	1,495	0.97	1.00	2.11	3.34
	DIA-Umpire (built-in)	12%	2,244	2,079	0.95	0.99	1.86	2.59

Iteration	2
-----------	---

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli- Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	9%	26,767	20,029	0.93	0.96	1.70	1.97
Jes	SWATH2.0	4%	17,962	10,997	0.98	0.98	2.21	2.35
ţi	Skyline	7%	26,341	17,116	0.95	0.96	1.80	1.89
Jec	Spectronaut	6%	30,052	20,497	0.96	0.97	1.92	2.06
	DIA-Umpire	10%	12,598	8,978	0.94	0.99	1.70	2.57
	OpenSWATH	6%	3,339	2,817	0.95	0.96	1.78	2.01
	SWATH2.0	5%	2,125	1,680	0.97	0.99	2.18	2.93
ins	SWATH2.0 (built-in)							
ote	Skyline	6%	2,878	2,399	0.95	0.97	1.83	2.07
brd	Spectronaut	4%	3,332	2,748	0.95	0.96	1.84	1.95
_	DIA-Umpire	10%	1,566	1,264	0.98	1.00	2.26	4.26
	DIA-Umpire (built-in)							

Supplementary Table 2.A: Metrics summary in HYE124, TTOF5600_32fix.

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	5%	34,154	26,992	0.96	0.98	1.96	2.31
des	SWATH2.0	6%	27,750	27,750	0.95	0.96	1.83	1.96
beptic	Skyline	7%	35,508	26,267	0.94	0.95	1.72	1.81
	Spectronaut	7%	34,335	25,012	0.95	0.97	1.87	2.03
-	DIA-Umpire	11%	15,346	12,499	0.93	0.97	1.65	2.09
	OpenSWATH	4%	4,056	3,518	0.98	0.98	2.27	2.35
	SWATH2.0	4%	3,651	3,651	0.98	0.98	2.20	2.32
ins	SWATH2.0 (built-in)	5%	5,448	5,448	0.95	0.95	1.86	1.88
ote	Skyline	5%	3,931	3,420	0.96	0.96	1.96	2.00
pro	Spectronaut	4%	3,751	3,209	0.96	0.98	1.99	2.38
	DIA-Umpire	10%	1,880	1,643	0.96	0.98	2.01	2.43
	DIA-Umpire (built-in)	12%	2,588	2,357	0.94	0.97	1.72	2.12

Iteration 2

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
des	OpenSWATH	8%	34,476	27,290	0.95	0.98	1.88	2.25
	SWATH2.0	5%	27,701	18,444	0.98	0.98	2.33	2.33
ţi	Skyline	9%	34,206	24,455	0.94	0.97	1.72	2.03
be	Spectronaut	7%	33,598	24,038	0.97	0.98	2.07	2.25
	DIA-Umpire	10%	15,235	10,656	0.94	0.98	1.76	2.35
	OpenSWATH	5%	4,086	3,545	0.98	0.99	2.38	2.62
	SWATH2.0	4%	3,119	2,593	0.98	0.98	2.20	2.39
ins	SWATH2.0 (built-in)							
ote	Skyline	6%	3,629	3,148	0.96	0.97	1.94	2.06
pro	Spectronaut	4%	3,669	3,120	0.97	0.98	2.12	2.32
	DIA-Umpire	10%	1,781	1,445	0.97	0.99	2.11	2.73
	DIA-Umpire (built-in)							

Supplementary Table 2.B: Metrics summary in HYE124, TTOF5600_64var.

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	8%	34,851	28,392	0.95	0.96	1.79	1.94
des	SWATH2.0	9%	23,904	23,904	0.87	0.93	1.33	1.67
otic	Skyline	8%	32,042	23,201	0.95	0.95	1.88	1.79
bel	Spectronaut	5%	38,974	31,250	0.94	0.94	1.71	1.73
	DIA-Umpire	14%	25,042	20,013	0.95	0.98	1.81	2.19
	OpenSWATH	7%	4,030	3,617	0.95	0.97	1.87	2.03
	SWATH2.0	7%	3,269	3,269	0.95	0.98	1.82	2.44
ins	SWATH2.0 (built-in)	8%	4,959	4,959	0.91	0.95	1.54	1.81
te	Skyline	8%	3,582	3,044	0.96	0.97	1.96	2.07
pro	Spectronaut	3%	4,293	3,799	0.95	0.95	1.78	1.85
	DIA-Umpire	12%	2,852	2,517	0.97	0.99	2.15	2.72
	DIA-Umpire (built-in)	13%	3,643	3,344	0.96	0.98	1.91	2.40

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	10%	35,110	28,548	0.95	0.96	1.79	1.99
des	SWATH2.0	7%	23,883	14,020	0.98	0.99	2.36	2.47
, ji	Skyline	10%	37,299	29,036	0.95	0.96	1.86	1.96
bel	Spectronaut	5%	38,443	29,934	0.95	0.97	1.88	2.10
	DIA-Umpire	13%	24,872	17,404	0.95	0.98	1.88	2.33
	OpenSWATH	8%	4,035	3,624	0.96	0.97	1.99	2.11
	SWATH2.0	8%	2,656	2,141	0.98	0.99	2.34	2.51
ins	SWATH2.0 (built-in)							
ote	Skyline	9%	4,046	3,613	0.96	0.96	1.91	2.00
brd	Spectronaut	3%	4,226	3,704	0.95	0.97	1.86	2.05
	DIA-Umpire	12%	2,729	2,250	0.98	1.00	2.35	3.72
	DIA-Umpire (built-in)							

Supplementary Table 2.C: Metrics summary in HYE124, TTOF6600_32fix.

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast- Human (arctanh)	Overlap E.coli- Human (arctanh)
	OpenSWATH	6%	40,726	36,098	0.97	0.98	2.12	2.24
des	SWATH2.0	7%	35,517	35,517	0.97	0.97	2.14	2.11
sti	Skyline	7%	40,804	34,103	0.96	0.95	1.91	1.85
Jec	Spectronaut	6%	42,439	37,120	0.96	0.96	1.97	1.90
	DIA-Umpire	13%	36,332	28,785	0.94	0.96	1.74	1.98
	OpenSWATH	5%	4,632	4,343	0.98	0.99	2.30	2.56
	SWATH2.0	6%	4,323	4,323	0.98	0.98	2.37	2.36
ins	SWATH2.0 (built-in)	6%	6,178	6,178	0.98	0.97	2.23	2.03
ote	Skyline	6%	4,518	4,140	0.97	0.97	2.03	2.15
pro	Spectronaut	3%	4,692	4,346	0.97	0.97	2.13	2.18
	DIA-Umpire	12%	3,795	3,379	0.97	0.98	2.12	2.30
	DIA-Umpire (built-in)	13%	4,849	4,489	0.95	0.96	1.78	1.94

Iteration 2

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli- Human	Overlap Yeast Human (arctanh)	Overlap E.coli- Human (arctanh)
	OpenSWATH	8%	40,728	35,944	0.97	0.98	2.10	2.26
des	SWATH2.0	6%	35,489	26,303	0.99	0.99	2.49	2.52
stic	Skyline	7%	42,517	37,977	0.97	0.97	2.13	2.14
bel	Spectronaut	6%	42,325	36,292	0.97	0.98	2.11	2.26
	DIA-Umpire	13%	36,249	25,677	0.95	0.97	1.82	2.18
	OpenSWATH	6%	4,636	4,352	0.99	0.99	2.51	2.60
	SWATH2.0	6%	3,946	3,371	0.98	0.99	2.42	2.56
ins	SWATH2.0 (built-in)							
ote	Skyline	5%	4,692	4,456	0.98	0.98	2.37	2.43
pro	Spectronaut	3%	4,675	4,300	0.98	0.99	2.31	2.50
	DIA-Umpire	12%	3,673	3,111	0.97	0.99	2.13	2.85
	DIA-Umpire (built-in)							

Supplementary Table 2.D: Metrics summary in HYE124, TTOF6600_64var.

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	15%	30,848	16,788	0.94	0.98	1.77	2.21
des	SWATH2.0	13%	20,742	9,685	0.95	0.98	1.79	2.21
ţi	Skyline	17%	27,236	13,430	0.91	0.95	1.51	1.78
bet	Spectronaut	7%	35,576	18,858	0.93	0.97	1.65	2.04
	DIA-Umpire	15%	25,209	11,836	0.95	0.97	1.88	2.15
	OpenSWATH	13%	3,700	2,382	0.94	0.99	1.74	2.72
ins	SWATH2.0	13%	2,421	1,431	0.97	0.99	2.13	2.87
te	Skyline	16%	2,878	1,886	0.93	0.96	1.68	1.98
brd	Spectronaut	5%	3,955	2,512	0.94	0.98	1.75	2.21
	DIA-Umpire	16%	2,696	1,602	0.99	0.99	2.47	2.63

Supplementary Table 2.E: Metrics summary in HYE110, TTOF6600_32fix.

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	9%	33,462	18,848	0.96	0.99	1.89	2.46
des	SWATH2.0	5%	24,151	11,706	0.94	0.98	1.74	2.21
ţ	Skyline	8%	31,761	16,933	0.94	0.96	1.76	1.98
bet	Spectronaut	6%	36,771	19,796	0.94	0.97	1.74	2.10
	DIA-Umpire	11%	28,221	13,534	0.94	0.98	1.77	2.20
	OpenSWATH	6%	3,988	2,585	0.98	0.99	2.21	2.75
ins	SWATH2.0	5%	2,840	1,721	0.95	1.00	1.80	4.85
prote	Skyline	6%	3,461	2,321	0.96	0.98	1.92	2.24
	Spectronaut	4%	4,100	2,636	0.95	0.98	1.88	2.28
	DIA-Umpire	11%	3,032	1,844	0.98	1.00	2.40	3.18

Supplementary Table 2.F: Metrics summary in HYE110, TTOF6600_32var.

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	11%	32,479	17,774	0.97	0.99	2.03	2.45
les	SWATH2.0	8%	24,268	11,804	0.95	0.98	1.81	2.23
jti	Skyline	14%	28,937	14,567	0.92	0.97	1.59	2.03
je	Spectronaut	12%	33,297	16,931	0.89	0.96	1.43	1.93
	DIA-Umpire	12%	28,781	13,295	0.96	0.98	2.00	2.36
	OpenSWATH	10%	3,844	2,467	0.98	0.99	2.30	2.50
ins	SWATH2.0	9%	2,813	1,714	0.98	1.00	2.19	3.25
orotei	Skyline	12%	3,019	2,009	0.94	0.98	1.72	2.20
	Spectronaut	9%	3,653	2,332	0.91	0.98	1.51	2.22
	DIA-Umpire	13%	3,010	1,820	0.98	1.00	2.38	3.11

Supplementary Table 2.G: Metrics summary in HYE110, TTOF6600_64fix.

		Median CV of Human	Identifications	Valid quantification ratios	Overlap Yeast-Human	Overlap E.coli Human	Overlap Yeast Human (arctanh)	Overlap E.coli Human (arctanh)
	OpenSWATH	8%	37,133	21,721	0.98	0.99	2.34	2.79
des	SWATH2.0	6%	29,483	15,224	0.95	0.98	1.85	2.31
J.	Skyline	10%	35,014	19,786	0.94	0.97	1.70	2.09
bel	Spectronaut	8%	37,242	20,139	0.93	0.97	1.68	2.09
	DIA-Umpire	12%	37,167	17,238	0.96	0.98	1.92	2.26
	OpenSWATH	6%	4,307	2,881	0.99	1.00	2.50	3.09
ins	SWATH2.0	5%	3,438	2,151	0.99	0.99	2.51	2.65
prote	Skyline	7%	3,787	2,631	0.95	0.97	1.83	2.09
	Spectronaut	4%	4,115	2,672	0.95	0.99	1.85	2.55
	DIA-Umpire	13%	3,641	2,233	0.97	1.00	2.11	3.80

Supplementary Table 2.H: Metrics summary in HYE110, TTOF6600_64var.

Supplementary Table 3. Number of identified peptides and proteins

Numbers of peptides and proteins identified by each software tool in the samples HYE124 (iteration 1 and 2) and HYE110 across the different datasets are listed. The number of proteins is estimated after protein filters were applied at the FSWE module (first module of LFQbench): a protein must have a quantification value in at least two replicates of at least one of the samples (A or B). The change from 32 windows to 64 windows is estimated by taking the highest number of each of the respective modes (either fixed or variable).

The following pages show the numbers of identified peptides and proteins for:

- Supplementary Table 3.A: sample set HYE124 iteration 1 and 2
- Supplementary Table 3.B: sample set HYE110

				Iterat	ion 1		
			peptides			proteins	
		32fix	64var	change	32fix	64var	change
	5600	26,225	34,154	30%	3,296	4,056	23%
OpenSWATH	6600	34,851	40,726	17%	4,030	4,632	15%
	change	33%	19%		22%	14%	
	5600	17,988	27,750	54%	2,671	3,651	37%
SWATH 2.0	6600	23,904	35,517	49%	3,269	4,323	32%
	change	33%	28%		22%	18%	
	5600	25,090	35,508	42%	2,872	3,931	37%
Skyline	6600	32,042	40,804	27%	3,582	4,518	26%
	change	28%	15%		25%	15%	
	5600	30,361	34,335	13%	3,379	3,751	11%
Spectronaut	6600	38,974	42,439	9%	4,293	4,692	9%
	change	28%	24%		27%	25%	
	5600	12,584	15,346	22%	1,668	1,880	13%
DIA-Umpire	6600	25,042	36,332	45%	2,852	3,795	33%
	change	99%	137%		71%	102%	

				lterat	ion 2		
			peptides			proteins	
		32fix	64var	change	32fix	64var	change
	5600	26,767	34,476	29%	3,339	4,086	22%
OpenSWATH	6600	35,110	40,728	16%	4,035	4,636	15%
	change	31%	18%		21%	13%	
	5600	17,962	27,701	54%	2,125	3,119	47%
SWATH 2.0	6600	23,883	35,489	49%	2,656	3,946	49%
	change	33%	28%		25%	27%	
	5600	26,341	34,206	30%	2,878	3,629	26%
Skyline	6600	37,299	42,517	14%	4,046	4,692	16%
	change	42%	24%		41%	29%	
	5600	30,052	33,598	12%	3,332	3,669	10%
Spectronaut	6600	38,443	42,325	10%	4,226	4,675	11%
	change	28%	26%		27%	27%	
	5600	12,598	15,235	21%	1,566	1,781	14%
DIA-Umpire	6600	24,872	36,249	46%	2,729	3,673	35%
	change	97%	138%		74%	106%	

Supplementary Table 3.A: Number of peptides and proteins identified in HYE124.

			peptides			proteins	
			change	change		change	change
		#	(fix vs var)	(32 vs 64)	#	(fix vs var)	(32 vs 64)
	32fix	30,848	8%		3,700	2%	
	32var	33,462	070	11%	3,988	070	8%
OpenSwATH	64fix	32,479	1/10/	11/0	3,844	1.7%	070
	64var	37,133	1470		4,307	1270	
	32fix	20,742	16%		2,421	17%	
	32var	24,151	1070	22%	2,840	1770	21%
5WATT 2.0	64fix	24,268	21%	2270	2,813	22%	21/0
	64var	29,483			3,438	2270	
	32fix	27,236	17%	%10%	2,878	20%	9%
Skyling	32var	31,761	1770		3,461		
Skyline	64fix	28,937	21%		3,019	25%	
	64var	35,014	21/0		3,787	2370	
	32fix	35,576	3%		3,955	1%	
Spectropaut	32var	36,771	570	1%	4,100	470	0%
Spectronaut	64fix	33,297	12%	T10	3,653	13%	076
	64var	37,242	1270		4,115	1370	
	32fix	25,209	1.7%		2,696	1.7%	
DIA Umpiro	32var	28,221	1270	27%	3,032	1270	20%
DIA-Ompire	64fix	28,781	29%	5270	3,010	21%	2070
	64var	37,167	2370		3,641	∠⊥/0	

Supplementary Table 3.B: Number of peptides and proteins identified in HYE110.

Supplementary Table 4. Average R^2 regression values of between technical replicates

The quality of the single measurements was assessed by pairing technical replicates of the different samples (i.e.: A_1 vs A_2 , A_1 vs A_3 , and A_2 vs A_3) and estimate their correlation. The following tables display the average and standard deviation of R^2 of A vs A, A vs B, and B vs B pairs. Note that quantifications of A and B should only correlate for human proteins, and thus lower values of R^2 for A vs B are reported.

The following pages show the Average \mathbb{R}^2 regression values of technical replicates pairing for:

- Supplementary Table 4.A: sample set HYE124 iteration 1 and 2
- Supplementary Table 4.B: sample set HYE110

OpenSWATH

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE124_TTOF5600_32fix	0.983	0.00430	0.693	0.00732	0.987	0.00115
HYE124_TTOF5600_64var	0.981	0.00728	0.704	0.01105	0.969	0.00359
HYE124_TTOF6600_32fix	0.966	0.01735	0.686	0.02684	0.931	0.02806
HYE124_TTOF6600_64var	0.988	0.00340	0.716	0.00841	0.989	0.00391

Skyline

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE124_TTOF5600_32fix	0.986	0.00456	0.764	0.00399	0.991	0.002132
HYE124_TTOF5600_64var	0.990	0.00192	0.759	0.00372	0.987	0.002047
HYE124_TTOF6600_32fix	0.987	0.00157	0.771	0.00427	0.991	0.000971
HYE124_TTOF6600_64var	0.909	0.06484	0.702	0.05421	0.983	0.013755

Spectronaut

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE124_TTOF5600_32fix	0.931	0.054651	0.791	0.04927	0.978	0.01679
HYE124_TTOF5600_64var	0.995	0.000259	0.735	0.11007	0.851	0.12259
HYE124_TTOF6600_32fix	0.991	0.003228	0.787	0.00771	0.982	0.01094
HYE124_TTOF6600_64var	0.995	0.002177	0.799	0.00759	0.997	0.00144

SWATH 2.0

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE124_TTOF5600_32fix	0.918	0.04608	0.713	0.0330	0.946	0.01466
HYE124_TTOF5600_64var	0.985	0.00615	0.751	0.0110	0.979	0.00627
HYE124_TTOF6600_32fix	0.833	0.10626	0.655	0.0690	0.861	0.05089
HYE124_TTOF6600_64var	0.833	0.07657	0.672	0.0863	0.912	0.06577

DIA-Umpire

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE124_TTOF5600_32fix	0.929	0.00768	0.772	0.0124	0.950	0.0247
HYE124_TTOF5600_64var	0.934	0.03512	0.749	0.0222	0.956	0.0021
HYE124_TTOF6600_32fix	0.943	0.03079	0.766	0.0171	0.941	0.0264
HYE124_TTOF6600_64var	0.939	0.01481	0.768	0.0145	0.942	0.0190

Supplementary Table 4.A: R^2 regression values of technical replicates in HYE124.

OpenSWATH

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE110_TTOF6600_32fix	0.994	0.00260	0.549	0.1409	0.987	0.003706
HYE110_TTOF6600_32var	0.996	0.00161	0.756	0.0198	0.969	0.024200
HYE110_TTOF6600_64fix	0.989	0.00752	0.748	0.0347	0.997	0.000247
HYE110_TTOF6600_64var	0.994	0.00218	0.513	0.0329	0.993	0.000682

Skyline

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE110_TTOF6600_32fix	0.862	0.11449	0.663	0.0973	0.968	0.020531
HYE110_TTOF6600_32var	0.988	0.00872	0.729	0.0597	0.886	0.083625
HYE110_TTOF6600_64fix	0.896	0.06159	0.740	0.0723	0.997	0.000516
HYE110_TTOF6600_64var	0.944	0.03799	0.405	0.0225	0.990	0.001988

Spectronaut

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE110_TTOF6600_32fix	0.845	0.130729	0.660	0.10114	0.854	0.123848
HYE110_TTOF6600_32var	0.999	0.000419	0.806	0.00926	0.999	0.000471
HYE110_TTOF6600_64fix	0.993	0.005015	0.852	0.00638	0.997	0.001602
HYE110_TTOF6600_64var	0.992	0.002992	0.478	0.00398	0.995	0.002471

SWATH 2.0

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE110_TTOF6600_32fix	0.684	0.2680	0.471	0.1369	0.841	0.1342
HYE110_TTOF6600_32var	0.883	0.1004	0.676	0.0864	0.841	0.1308
HYE110_TTOF6600_64fix	0.964	0.0282	0.720	0.0804	0.853	0.1160
HYE110_TTOF6600_64var	0.946	0.0433	0.358	0.0254	0.960	0.0238

DIA-Umpire

	avg_R2_AA	avg_R2_error_AA	avg_R2_AB	avg_R2_error_AB	avg_R2_BB	avg_R2_error_BB
HYE110_TTOF6600_32fix	0.962	0.0097	0.606	0.0658	0.850	0.0933
HYE110_TTOF6600_32var	0.895	0.1135	0.626	0.0984	0.812	0.1102
HYE110_TTOF6600_64fix	0.891	0.1130	0.507	0.1010	0.720	0.1033
HYE110_TTOF6600_64var	0.896	0.0433	0.551	0.0445	0.903	0.0447

Supplementary Table 4.B: R^2 regression values of technical replicates in HYE110.

Supplementary Table 5. Configuration parameters for all software tools

Detailed configuration parameters for all software tools investigated.

The following pages show the configuration parameters for:

- Supplementary Table 5.A: Most common parameters for library-based tools
- Supplementary Table 5.B: parameters of OpenSWATH
- Supplementary Table 5.C: parameters of SWATH2.0
- Supplementary Table 5.D: parameters of Skyline
- Supplementary Table 5.E: parameters of Spectronaut
- Supplementary Table 5.F: parameters of DIA-Umpire

	Library-based Software tools critical parameters setup						
				Iteration 1			
		m/z window	Resolving Power	XIC extraction window (minut	es) # transitions	FDR threshold	I Q-Value threshold
	OpenSWATH	50	-	10	6	0.01	
	PeakView	50	-	10	6	0.01	-
	Skyline	-	40000	10	3	-	0.01
TripleTOF 5600	Spectronaut	(dynamically estimated)	(dynamically estimated)	(dynamically estimated)	6	-	0.01
inpictor soco				Iteration 2			
		m/z window	Resolving Power	XIC extraction window (minut	es) # transitions	FDR threshold	Q-Value threshold
	OpenSWATH	50	-	10	6	0.01	
	PeakView	50	-	10	6	0.01	-
	Skyline	-	60000	10	3	-	0.01
	Spectronaut	(dynamically estimated)	(dynamically estimated)	(dynamically estimated)	6	-	0.01
				Iteration 1			
		m/z window	Resolving Power	XIC extraction window (minut	es) # transitions	FDR threshold	I Q-Value threshold
	OpenSWATH	30	-	10	6	0.01	
	PeakView	30	-	10	6	0.01	-
	Skyline	-	66660	10	3	-	0.01
TripleTOE 6600	Spectronaut	(dynamically estimated)	(dynamically estimated)	(dynamically estimated)	6	-	0.01
				Iteration 2			
		m/z window	Resolving Power	XIC extraction window (minut	es) # transitions	FDR threshold	I Q-Value threshold
	OpenSWATH	30	-	10	6	0.01	
	PeakView	30	-	10	6	0.01	-
	Skyline	-	100000	10	3	-	0.01
	Spectronaut	(dynamically estimated)	(dynamically estimated)	(dynamically estimated)	6	-	0.01

Supplementary Table 5.A: Most common parameters for library-based tools.

OpenSWATH

	Iteration 2					
	TripleTOF	5600	Trip	leTOF 6600		
	32 windows	64 windows	32 windows	64 windows		
MIN_RSQ		0.9	95			
ALIGNER_DSCORE_CUTOFF		1				
WORKFLOW	openswath2015-05-22-15	4105 imsbtools/20140808 applicak	e@6059b97 msproteomicstools@	7527c7b openms@7c408dd		
ALIGNER_REALIGN_METHOD		low	ess			
WINDOW_UNIT		рр	m			
TRAML	traml32file*	traml64file*	traml32file*	traml64file*		
ALIGNER_TARGETFDR		0.0	01			
MIN_UPPER_EDGE_DIST		1	-			
ALIGNER_MAX_RT_DIFF		30				
IRTTRAML		/cluster/apps/imsbtools/stable	e/files/hroest_DIA_iRT.TraML			
MPR_MAINVAR		xx_swath_p	relim_score	1		
COMMENT	IRR_Lib_5600_32SW_BG_CORR					
MIN_COVERAGE		0.	6			
PARENT-DATA-SET-CODES		** corresponding internal c	odes in server for the files.			
RT_EXTRACTION_WINDOW		60	0			
MPR_VARS	library_corr yseries_score xcorr_coelution_weighted massdev_score norm_rt_score library_rmsd bseries_score intensity_score xcorr_coelution log_sn_score isotope_overlap_score massdev_score_weighted xcorr_shape_weighted isotope_correlation_score xcorr_shape					
ALIGNER_FRACSELECTED		0)			
EXTRACTION_WINDOW	50					
MPR_NUM_XVAL	10					
ALIGNER_METHOD		global_bes	st_overall			
DO_CHROMML_REQUANT		FAL	SE			

* traml32file traml64file	./ecolihumanyeast_concat_mayu_IRR_cons_openswath_32sw_curated_decoy.TraML ./ecolihumanyeast_concat_mayu_IRR_cons_openswath_64var_curated_decoy.TraML
**	
codes_5600_32w	20150211221143737-1038504, 20150210205123604-1038204, 20150211161643511-1038423, 20150211021822894-1038280, 20150211232943800-1038518, 20150210202322907-1038187, PDB-LGILLET-ECOLIHUMANYEASTCONCATMAYUIR-20150522131005
codes_5600_64w	20150212083943868-1038587, 20150212103343910-1038642, 20150212121843915-1038648, 20150212171344465-1038846, 20150211174243600-1038444, 20150211182443601-1038455, PDB-LGILLET-ECOLIHUMANYEASTCONCATMAYUIR-20150522122202
codes_6600_32w	20150213113244196-1039325, 20150224023055874-1042500, 20150213033545820-1039270, 20150213224644148-1039490, 20150224012055854-1042497, 20150213172344252-1039380, PDB-LGILLET-ECOLIHUMANYEASTCONCATMAYUIR-20150522131005
codes_6600_64w	20150223142355786-1042242, 20150221040854005-1041481, 20150218233953981-1040703, 20150221050954009-1041502, 20150223132455770-1042209, 20150221053954494-1041507, PDB-LGILLET-ECOLIHUMANYEASTCONCATMAYUIR-20150522122202

Supplementary Table 5.B: Parameters of OpenSWATH.

SWATH 2.0

Iteration 1					
	TripleTOF 5600	TripleTOF 6600			
Number of Peptides per Protein	2000				
Number of Transitions per Peptide	6				
Peptide Confidence Threshold % (0-99)	99				
False Discovery Rate Threshold % (0-100)	1				
Exclude Modified Peptides	unche	ecked			
Exclude Shared Peptides	unche	ecked			
Fix Rank	unche	ecked			
XIC Extraction Window (min)	10				
XIC width (ppm)	50 30				
XIC width (Da)	unche	ecked			

Iteration 2					
	TripleTOF 5600	TripleTOF 6600			
Number of Peptides per Protein	2000				
Number of Transitions per Peptide	6				
Peptide Confidence Threshold % (0-99)	99				
False Discovery Rate Threshold % (0-100)	1				
Exclude Modified Peptides	unche	ecked			
Exclude Shared Peptides	unche	ecked			
Fix Rank	unche	ecked			
XIC Extraction Window (min)	10				
XIC width (ppm)	50 30				
XIC width (Da)	unche	ecked			

Supplementary Table 5.C: Parameters of SWATH2.0.

Common Parameters to all iterations					
	Integro	ate all	checked		
		Enzyme	Trypsin [KR P]		
	Digestion	Max missed cleavages	0		
		Background proteome	None		
		use measured retention times when present	checked		
		Drift time predictor	3 None		
	Prediction	Use spectral library drift times when present	unchecked		
		Resolving nower	(blank)		
		Min length	7		
		Max length	36		
		Exclude N-terminal Aas	36		
	Filtor	Exclude potential ragged ends	unchecked		
	riitei	Exclude peptides containing	(blank)		
Pentide settings		Auto-select all matching peptides	checked		
r epilae settings		Pick peptides matching	Library		
		Rank peptides by	(blank)		
		Limit peptides per protein	(blank)		
	Library	Peptides	(blank)		
		Ctrustural modifications	Carbamidomethyl (C), Oxidation		
		Structural modifications	(NI)		
		Max neutral losses	5		
		Isotone label type	heavy		
			Label: 13C(6)15N(2)(C-term K)		
	Modifications	Isotope modifications	Label: 13C(6)15N(4)(C-term R)		
		Internal standard type	heavy		
		Precursor mass	Monoisotopic		
		Product ion mass	Monoisotopic		
		Collision energy	ABI 5500 Q Trap		
		Declustering potential	None		
		Optimization library	None		
	Prediction	Compensation voltage	None		
		Use optimization values when present	unchecked		
		Precursor charges	2, 3		
		lon charges	1, 2		
		Product ions - from	y, p		
		Productions - from	last ion - 1		
		Productions - to	(blank)		
	Filter	Product ions - Use DIA window for exclusion	checked		
		Auto-select all matching transitions	checked		
		Ion match tolerance	0.1		
		If a library spectrum is available, pick its most intense			
		ions	checked		
		Pick XX product ions	3		
		From filtered ion charges and types	unchecked		
		From filtered ion charges and types plus filtered			
	Library	product ions	unchecked		
		riom jitterea product ions	cnecked		
Transition settings		Max m/z	2000		
mansicion securitys		dynamic min product m/z	unchecked		
		Method match tolerance m/7	0,01		
		Firmware transition limit	(blank)		
	1	Firmware inclusion limit	(blank)		
	Instrument	Min time (min)	(blank)		
		Max time (min)	(blank)		
		MS1 filtering - Isotope peaks included	None		
		MS1 filtering - Precursor mass analyzer	(blank)		
		MS1 filtering - Peaks	(blank)		
		M51 filtering - Resolution (m/z)	(blank)		
		MS1 Jittering - Isotope labeling enrichment	(blank)		
		IVIS/IVIS JIITERING - ACQUISITION Method	DIA		
		Retention time filtering - use scape within VV estantes	IUF		
		MS/MS Ide	unchecked		
	Full-Scan	Retention time filtering - Use only scans within YY	unchecked		
		minutes of predicted RT	10		
		Include all matching scans	unchecked		
		annotations list	annotation_Qvalue		
		group comparisons list	(blank)		
		name	give any name to the model		
		Choose model	mProphet		
Document cetting	Annotations	Training - Use decoys	checked		
bocument settings	Group Comparisons	Training - Use second best peaks	unchecked		
		Integrate all peaks	checked		
	Only in	tegrate significant Q values	unchecked		
Reintegrate		Q value cutoff	(blank)		
-	A	dd q value annotation	checked		
	Over	rwrite manual integration	checked		

Skyline users iteration

Skyline

			TripleTOF 5600		TripleTOF 6600	
			32 windows	64 windows	32 windows	64 windows
File Import	Results	Raw type	raw (wiff file)			
Dontido cottingo	Prediction	Retention time predictor	TTOF_32w_iRT-C18	TTOF_64w_iRT-C18	TTOF_32w_iRT-C18	TTOF_64w_iRT-C18
Peptide settings	Library	Libraries	TTOF_32w-assay	TTOF_64w-assay	TTOF_32w-assay	TTOF_64w-assay
Transition sottings	Eull Scon	MS/MS filtering - Isolation scheme	SWATH_32fixed	SWATH_64windows	SWATH_32fixed	SWATH_64windows
Transition settings	MS/MS filtering - Resolving power		20000		33330	
Reintegrate		Reak scoring model	All values	are automatically assig	and when the model is train	ad .

			TripleTOF Sec	JU	TripleT	OF 6600
			32 windows	64 windows	32 windows	64 windows
File Import	Results	Raw type	raw (wiff file)			
Dontido cottingo	Prediction	Retention time predictor	TTOF_32w_iRT-C18	TTOF_64w_iRT-C18	TTOF_32w_iRT-C18	TTOF_64w_iRT-C18
Peptide settings	Library	Libraries	TTOF_32w-assay	TTOF_64w-assay	TTOF_32w-assay	TTOF_64w-assay
Transition cottings	Eull Scon	MS/MS filtering - Isolation scheme	SWATH_32fixed	SWATH_64windows	SWATH_32fixed	SWATH_64windows
Transition settings	MS/MS filtering - Resolving power		40000		66660	
Reintegrate	-	Peak scoring model	All values are automatically assigned when the model is trained			ned

Iteration 1

Iteration 2							
			TripleTOF 5	600	TripleT	OF 6600	
			32 windows	64 windows	32 windows	64 windows	
File Import	Results	Raw type	centroid (mzML file)				
Dontido cottings	Prediction	Retention time predictor	TTOF_32w_iRT-C18	TTOF_64w_iRT-C18	TTOF_32w_iRT-C18	TTOF_64w_iRT-C18	
Peptide settings	Library	Libraries	TTOF_32w-assay	TTOF_64w-assay	TTOF_32w-assay	TTOF_64w-assay	
Transition sottings	Full Scop	MS/MS filtering - Isolation scheme	SWATH_32fixed	SWATH_64windows	SWATH_32fixed	SWATH_64windows	
mansicion securigs	Full-Scall	MS/MS filtering - Resolving power	60000		100000		
Reintegrate		Peak scoring model	All value	es are automatically assig	ned when the model is train	ned	

Supplementary Table 5.D: Parameters of Skyline.

Spectronaut					
both ite	erations				
Peak Detection	XIC Extraction Window	Dynamic Window			
	Correction Factor	1			
Calibration	Force Calibration	FALSE			
Calibration	iRT Calibration Strategy	Non-Linear iRT Calibration			
	Dynamic Score Refinement	TRUE			
Identification	Pvalue Estimator	Normal Distribution Estimator			
	Include MS1 Scoring	TRUE			
	Interference Correction	TRUE			
Quantitation	Cross Run Normalization	TRUE			
	Normalization Base	Total Peak Area			
	Profiling Strategy	iRT Profiling			
	Profiling Row Selection	Minimum Qvalue Row Selection			
Workflow	Qvalue Threshold	0.01			
	Profiling Target Selection	Automatic Selection			
	Default Labeling Type Assumed	LABEL			
	Regulation Analysis	Student's T-Test			
	Quantity Base	MS2 Peak Area			
	Row Selection Strategy	Qvalue Based Row Selection			
Post Analysis	Row Filter	Sparse Profiles			
	Qvalue threshold	0.01			
	NA Recovery	unchecked			
	Peptide Grouping	Protein Grouping			
	Pipeline Report Schema	SWATHbenchmark (Normal)			
Reporting	Pipeline Report	Experiment			
	Generate SNE File	TRUE			

Supplementary Table 5.E: Parameters of Spectronaut.

DIA-Umpire						
			both ite	erations		
		TripleT	DF 5600	TripleT	DF 6600	
		32 windows	64 windows	32 windows	64 windows	
	RPmax		2	5		
	RFmax		30	00		
	CorrThreshold		0	.2		
	DeltaApex		0	.6		
	RTOverlap		0	.3		
	AdjustFragIntensity		TR	UE		
	BoostComplementaryIon		TR	UE		
	MS1PPM		3	0		
	MS2PPM		4	0		
	SN		1	.5		
Signal extraction	MS2SN		1	.5		
	MinMSIntensity	300	500	300	400	
	MinMSMSIntensity	30	50	30	40	
	MaxCurveRTRange	1.5				
	StartCharge	1				
	EndCharge	5				
	MS2StartCharge	2				
	MS2EndCharge		2	1		
	NoMissedScan	2	2	1	1	
	EstimateBG		FA	LSE		
	IsoPattern		0	.5		
	X! Tandem		tandem	n.param		
	PeptideProphet(X!Tandem)	"-(OpdEAP -PPM	-dreverse -p0	.1"	
Databasa saarsh	Comet		comet	.param		
Database search	PeptideProphet(Comet)	"-	OpdAP -PPM -	dreverse -p0.	1"	
	MSGF+		-s *.mz	XML -d		
	PeptideProphet(MSGF+)	"-(OpdEAP -PPM	-dreverse -p0	.1"	
	TopNFrag	6				
	TopNPep		6	5		
	Freq		0	.5		
Quantification	FilterWeight		G	W		
Quantification	MinWeight		0	.9		
	Peptide FDR		0.	01		
	Protein FDR		0.	01		
	ProbThreshold		0	.5		

Supplementary Table 5.F: Parameters of DIA-Umpire.

Supplementary Table 6. Analysis of the dynamic ranges on peptide and protein level

Dynamic ranges of peptide and protein quantification values are expressed as orders of magnitude and were estimated by using the intensity range between 1% and 99% percentiles of quantification values.

The following pages show the dynamic ranges for:

- Supplementary Table 6.A: sample set HYE124 iteration 1 and 2
- Supplementary Table 6.B: sample set HYE110

		TripleTOF 5600		TripleTOF 6600	
		Iteration 1	Iteration 2	Iteration 1	Iteration 2
32 windows	OpenSWATH	2.81	3.18	3.40	3.67
	SWATH2.0	3.03	2.92	3.57	3.23
	Skyline	2.94	2.96	3.53	3.40
	Spectronaut	3.29	3.60	3.75	3.93
	DIA-Umpire	3.14	3.05	3.69	3.64
64 windows	OpenSWATH	3.00	3.23	3.60	3.78
	SWATH2.0	3.22	3.06	3.83	3.73
	Skyline	3.13	3.09	3.77	3.73
	Spectronaut	3.31	3.47	3.90	4.04
	DIA-Umpire	3.18	3.10	3.78	3.72

Peptides

Proteins

		TripleTOF 5600		TripleTOF 6600	
		Iteration 1	Iteration 2	Iteration 1	Iteration 2
32 windows	OpenSWATH	2.02	2.45	2.54	2.79
	SWATH2.0	2.47	2.36	2.84	2.68
	Skyline	2.36	2.35	2.71	2.73
	Spectronaut	2.63	2.73	2.92	2.99
	DIA-Umpire	2.41	2.21	2.98	2.91
64 windows	OpenSWATH	2.37	2.58	2.93	3.15
	SWATH2.0	2.57	2.45	3.03	2.92
	Skyline	2.47	2.55	2.99	2.99
	Spectronaut	2.68	2.77	3.11	3.21
	DIA-Umpire	2.42	2.26	3.08	2.99

Supplementary Table 6.A: Dynamic ranges in HYE124.

	32 windows		64 windows	
	fixed	variable	fix	var
OpenSWATH	4.16	4.26	4.26	4.10
SWATH2.0	3.88	4.03	4.02	3.61
Skyline	3.90	4.05	4.14	3.78
Spectronaut	4.36	4.46	4.67	4.35
DIA-Umpire	3.58	3.67	3.84	3.78

Peptides

	Proteins			
	32 windows		64 windows	
	fixed	variable	fix	var
OpenSWATH	3.44	3.42	3.54	3.24
SWATH2.0	3.06	3.18	3.22	3.01
Skyline	3.02	3.16	3.25	3.07
Spectronaut	3.42	3.50	3.75	3.31
DIA-Umpire	2.89	2.86	3.00	2.99

Supplementary Table 6.B: Dynamic ranges in HYE110.
Supplementary Table 7. SWATH isolation windows setups

Isolation m/z ranges applied on each SWATH configuration handled in this study.

	32 fixed windows		32 \	32 variable windows			64 fixed windows			64 variable windows		
	mz.start	mz.end		mz.start	mz.end		mz.start	mz.end		mz.start	mz.end	
swath.1	399	425	swath.1	399.5	415.8	swath.1	399	412.5	swath.1	399.5	408.2	
swath.2	424	450	swath.2	414.8	429.7	swath.2	411.5	425	swath.2	407.2	415.8	
swath.3	449	475	swath.3	428.7	444.8	swath.3	424	437.5	swath.3	414.8	422.7	
swath.4	474	500	swath.4	443.8	458.7	swath.4	436.5	450	swath.4	421.7	429.7	
swath.5	499	525	swath.5	457.7	473.4	swath.5	449	462.5	swath.5	428.7	437.3	
swath.6	524	550	swath.6	472.4	485.4	swath.6	461.5	4/5	swath.6	436.3	444.8	
swath.7	549	575	swath.7	484.4	497.7	swath.7	474	487.5	swath.7	443.8	451.7	
swath 9	574	625	swath 9	490.7	511.2	swath 9	460.5	500	swath 9	450.7	456.7	
swath.10	624	650	swath.10	524.3	540.3	swath.10	511.5	525	swath.10	465.7	400.7	
swath.11	649	675	swath.11	539.3	554.5	swath.11	524	537.5	swath.11	472.4	478.3	
swath.12	674	700	swath.12	553.5	568.3	swath.12	536.5	550	swath.12	477.3	485.4	
swath.13	699	725	swath.13	567.3	582.3	swath.13	549	562.5	swath.13	484.4	491.2	
swath.14	724	750	swath.14	581.3	595.8	swath.14	561.5	575	swath.14	490.2	497.7	
swath.15	749	775	swath.15	594.8	608.9	swath.15	574	587.5	swath.15	496.7	504.3	
swath.16	774	800	swath.16	607.9	624.8	swath.16	586.5	600	swath.16	503.3	511.2	
swath.17	799	825	swath.17	623.8	640.8	swath.17	599	612.5	swath.17	510.2	518.2	
swath.18	824	850	swath.18	639.8	654.8	swath.18	611.5	625	swath.18	517.2	525.3	
swath.19	849	875	swath.19	653.8	670.3	swath.19	624	637.5	swath.19	524.3	533.3	
swath 21	800	900	swath 21	686.8	706.9	swath 21	649	662.5	swath 21	530.3	540.5	
swath 22	924	950	swath 22	705.9	726.2	swath 22	661 5	675	swath 22	545.8	554 5	
swath.23	949	975	swath.23	725.2	746.6	swath.23	674	687.5	swath.23	553.5	561.8	
swath.24	974	1000	swath.24	745.6	767.9	swath.24	686.5	700	swath.24	560.8	568.3	
swath.25	999	1025	swath.25	766.9	792.9	swath.25	699	712.5	swath.25	567.3	575.7	
swath.26	1024	1050	swath.26	791.9	820	swath.26	711.5	725	swath.26	574.7	582.3	
swath.27	1049	1075	swath.27	819	849.4	swath.27	724	737.5	swath.27	581.3	588.8	
swath.28	1074	1100	swath.28	848.4	884.4	swath.28	736.5	750	swath.28	587.8	595.8	
swath.29	1099	1125	swath.29	883.4	919	swath.29	749	762.5	swath.29	594.8	601.8	
swath.30	1124	1150	swath.30	918	9/1.6	swath.30	/61.5	7/5	swath.30	600.8	608.9	
swath 32	1149	11/5	swath 32	970.6	1200 5	swath 32	774	/8/.5	swath 32	607.9	624.8	
Swath.52	11/4	1200	Swath.52	1052	1200.5	swath 33	780.3	812 5	swath 33	673.8	632.2	
						swath.34	811.5	825	swath.34	631.2	640.8	
						swath.35	824	837.5	swath.35	639.8	647.9	
						swath.36	836.5	850	swath.36	646.9	654.8	
						swath.37	849	862.5	swath.37	653.8	661.5	
						swath.38	861.5	875	swath.38	660.5	670.3	
						swath.39	874	887.5	swath.39	669.3	678.8	
						swath.40	886.5	900	swath.40	677.8	687.8	
						swath.41	899	912.5	swath.41	686.8	706.0	
						swath 43	911.5	925	swath 43	705.9	700.9	
						swath 44	936 5	950	swath 44	705.5	726.2	
						swath.45	949	962.5	swath.45	725.2	737.4	
						swath.46	961.5	975	swath.46	736.4	746.6	
						swath.47	974	987.5	swath.47	745.6	757.5	
						swath.48	986.5	1000	swath.48	756.5	767.9	
						swath.49	999	1012.5	swath.49	766.9	779.5	
						swath.50	1011.5	1025	swath.50	778.5	792.9	
						swath.51	1024	1037.5	swath.51	/91.9	807	
						swath.52	1036.5	1050	swath.52	806	820	
						swath 54	1061 5	1002.5	swath 54	833.2	849.4	
						swath.55	1074	1087.5	swath 55	848.4	866	
						swath.56	1086.5	1100	swath.56	865	884.4	
						swath.57	1099	1112.5	swath.57	883.4	899.9	
						swath.58	1111.5	1125	swath.58	898.9	919	
						swath.59	1124	1137.5	swath.59	918	942.1	
						swath.60	1136.5	1150	swath.60	941.1	971.6	
						swath.61	1149	1162.5	swath.61	970.6	1006	
						swath.62	1161.5	1175	swath.62	1005	1053	
						swath.63	11/4	1200	swath.63	1052	1200 5	
						Swath.04	1100.5	1200	Swath.04	1103.0	1200.5	

Supplementary Table 7: Isolation m/z ranges applied on each swath configuration.

Supplementary Table 8. Ion Libraries Statistics

The library used by OpenSWATH, SWATH2.0, Skyline, and Spectronaut consists of identifications from separate, triplicate DDA acquisitions of samples from each species (human, yeast, and E.coli). A consensus of the search results of two different database search engines (Comet and Mascot) was used to build the ion library. Fragment ions with an m/z within the range of the SWATH precursor isolation window were excluded from the library due to interferences with unfragmented precursor ions. Since the different SWATH windows configurations (64 variable, 64 fixed, 32 variable, and 32 fixed) have different precursor isolation windows, a library for each mode (with different excluded ions) was built. The number of proteins counts all proteins present in the library including proteins that share their sequence with other proteins. Protein groups were defined by iProphet, and any reference to the number of proteins identified by a software tool is referred to protein groups.

Biognosys AG provided a dedicated library of Orbitrap/Fusion assays of human peptides including 6,826 peptides, which were exclusively detected by DIA-Umpire. The other 2,556 (a total of 9,382 peptides are present in the library) were excluded from the study.

	32	fixed	windows	assay	library	statistics
--	-----------	-------	---------	-------	---------	------------

Species	Proteins	Protein groups	Peptides	Precursors	Sequences	Transitions
ECOLI	1,564	1,594	12,753	13,304	12,514	79,824
HUMAN	$3,\!136$	$3,\!148$	16,405	$16,\!995$	16,353	$101,\!970$
YEAST	2,005	2,105	$14,\!272$	$14,\!885$	$14,\!172$	89,310
Total	6,705	$6,\!847$	$43,\!430$	$45,\!184$	43,039	$271,\!104$

32 variable windows assay library statistics

Species	Proteins	Protein groups	Peptides	Precursors	Sequences	Transitions
ECOLI	1,571	1,602	12,897	$13,\!448$	$12,\!656$	80,772
HUMAN	$3,\!153$	$3,\!191$	$16,\!621$	$17,\!219$	$16,\!569$	$104,\!112$
YEAST	2,017	2,128	14,569	15,186	$14,\!467$	$91,\!116$
Total	6,741	6,921	$44,\!087$	$45,\!853$	$43,\!692$	276,000

64 fixed windows assay library statistics

Species	Proteins	Protein groups	Peptides	Precursors	Sequences	Transitions
ECOLI	1,572	1,603	$12,\!938$	$13,\!490$	12,694	80,940
HUMAN	3,161	$3,\!199$	16,788	$17,\!387$	16,736	$104,\!364$
YEAST	2,020	2,131	$14,\!473$	15,093	$14,\!370$	$91,\!398$
Total	6,753	6,933	44,199	$45,\!970$	$43,\!800$	276,702

64 variable windows assay library statistics

Species	Proteins	Protein groups	Peptides	Precursors	Sequences	Transitions
ECOLI	1,575	1,605	12,999	$13,\!550$	12,754	81,300
HUMAN	$3,\!159$	$3,\!176$	16,755	$17,\!349$	16,703	104,094
YEAST	2,021	2,122	$14,\!540$	$15,\!153$	$14,\!440$	90,918
Total	6,755	6,903	$44,\!294$	$46,\!052$	$43,\!897$	$276,\!312$

DIA-Umpire dedicated assay library statistics

Species	Proteins	Protein groups	Peptides	Precursors	Sequences	Transitions
HUMAN	2,734	2,734	9,382	$14,\!007$	$7,\!641$	82,626

Supplementary Table 8: Ion Libraries Statistics.

Supplementary Table 9. log₂ ratios shift corrections

In order to correctly assess the accuracy of relative quantification it is necessary to shift all quantification values (expressed in log_2 ratios) to a reference. We estimate the reference as the average of all quantification values (in log_2 ratios) of the human proteins (or peptides). Since human proteins (and peptides) are expected to be in the same proportion in both samples, A and B, all quantitation values are shifted by subtracting the estimated reference value (average of human proteins or peptides). Note that by doing this shift the accuracy of the human peptides (or proteins) at the Supplementary Table 4 is artificially set to zero.

The following pages show the log_2 ratios shift corrections of quantified peptides and proteins for:

- Supplementary Table 9.A: sample set HYE124 iteration 1 and 2
- Supplementary Table 9.B: sample set HYE110

TripleTOF 5600 TripleTOF 6600 Iteration 1 Iteration 2 **Iteration 1 Iteration 2 OpenSWATH** -0.024 -0.005 0.066 0.048 32 windows SWATH2.0 -0.005 -0.003 0.069 0.056 0.056 Skyline -0.007 -0.031 0.063 Spectronaut -0.015 -0.006 -0.025 -0.012 **DIA-Umpire** 0.032 0.029 0.061 0.056 **OpenSWATH** -0.009 0.000 0.048 0.055 64 windows SWATH2.0 -0.006 -0.006 0.056 0.057 Skyline -0.004 0.064 0.053 0.047 Spectronaut -0.015 -0.006 -0.029 -0.019 **DIA-Umpire** 0.002 -0.005 0.066 0.063

Peptides

Proteins

		TripleT	DF 5600	TripleTOF 6600	
		Iteration 1	Iteration 2	Iteration 1	Iteration 2
	OpenSWATH	-0.025	-0.011	0.038	0.054
S	SWATH2.0	-0.005	0.002	0.052	0.049
Ň	SWATH2.0 (built-in)	-0.010	NA	0.056	NA
ind	Skyline	-0.012	-0.040	0.057	0.042
8	Spectronaut	-0.011	-0.010	-0.032	-0.019
(C)	DIA-Umpire	0.064	0.058	0.053	0.054
	DIA-Umpire (built-in)	0.088	NA	0.051	NA
	OpenSWATH	-0.003	0.003	0.045	0.049
S	SWATH2.0	-0.003	0.001	0.051	0.055
Ň	SWATH2.0 (built-in)	-0.007	NA	0.044	NA
ind	Skyline	0.003	0.066	0.050	0.049
64 w	Spectronaut	-0.017	-0.009	-0.033	-0.024
	DIA-Umpire	0.008	-0.001	0.056	0.049
	DIA-Umpire (built-in)	0.010	NA	0.055	NA

Supplementary Table 9.A: log₂ ratios shift corrections in HYE124.

	32 windows		64 wii	ndows
	fixed variable		fix	var
OpenSWATH	-0.092	-0.071	-0.127	0.035
SWATH2.0	-0.090	-0.072	-0.116	0.039
Skyline	-0.181	-0.102	-0.110	0.028
Spectronaut	0.005	-0.008	-0.037	-0.002
DIA-Umpire	-0.051	-0.068	-0.105	0.040

Peptides

Proteins

	32 windows fixed variable		64 wir	ndows
			fix	var
OpenSWATH	-0.124	-0.094	-0.159	0.026
SWATH2.0	-0.102	-0.091	-0.134	0.032
Skyline	-0.177	-0.118	-0.131	0.027
Spectronaut	-0.007	-0.026	-0.107	-0.020
DIA-Umpire	-0.081	-0.115	-0.152	0.028

Supplementary Table 9.B: log_2 ratios shift corrections in HYE110.

Supplementary Figures

Supplementary Figure 1. Schematic overview of the datasets acquired and analyzed in this study.

Supplementary Figure 1: Schematic overview of the datasets acquired and analyzed in this study.

Supplementary Figure 2. Simulated quantification data.

A LFQ data simulator is provided with LFQbench. This simulator helps to visualize how ideal or biased LFQ data look in LFQbench plots. Panel A shows an ideal (unbiased) simulated experiment. Panels B, C, and D show the same simulated experiment as in panel A with an increasing quantity of background signal (1-, 2-, and 3- times the minimum intensity detected in the dataset) added to all peptide signals.

LFQ data simulation was performed by simulating the log_2 ratios of 2000 human proteins (expected log_2 ratio = 0), 1500 yeast proteins (expected log_2 ratio = 1), and 1000 E.coli proteins (expected log_2 ratio = -2) from normal distributions centered at the expected log_2 ratios and standard deviations of $\sigma = 0.1$. For each protein, the number of peptides is simulated by a Poisson distribution with $\lambda = 6$ (with a minimum value of 1). The protein intensity is distributed among its peptides, for which ionization efficiencies were simulated by a standard normal distribution.

Three technical replicates for each peptide and sample were simulated by choosing three random values from a normal distribution centered at the peptide intensity value and $\sigma = 0.01$. A random noise factor was added to each peptide intensity using random values from a normal distribution of $\mu = 0$ and $\sigma = 2^{13}$. Finally, in order to simulate missing values, 1% of randomly chosen peptides from the total simulated peptide signals were removed.

Supplementary Figure 2: Simulated quantification data with perfect background substraction (A) and undercorrected background levels (B, C, D).

Supplementary Figure 3. Signal-to-noise ratios for all datasets.

Distribution of the signal-to-noise ratio of all detected peaks (FDR < 0.01) as detected in Spectronaut for samples HYE124 and HYE110. The sample HYE124 allows to compare both instruments (TripleTOF 5600 vs TripleTOF 6600), whereas the sample HYE110 allows to compare the four different SWATH modes tested (32 fixed windows, 32 variable windows, 64 fixed windows, and 64 variable windows). For both, 32 fixed windows and 64 variable windows setups, the TripleTOF 6600 platform displayed a higher median signal-to-noise ratio as compared to the TripleTOF 5600 platform. For each instrument platform, the calculated median signal-to-noise ratio was higher for the 64 window setup.

Supplementary Figure 3.A: Signal-to-Noise ratios for all datasets in HYE124 sample set.

Supplementary Figure 3.B: Signal-to-Noise ratios for all datasets in HYE110 sample set.

Supplementary Figure 4. Precursor intensity correlation between technical replicates.

Intensity signal correlations of detected precursors (FDR < 0.01) of technical replicates are exemplarily shown for A_1 vs A_3 and A_3 vs B_1 . The other possible pairs (e.g. A_1 vs A_2 , A_1 vs B_3) display a very similar pattern. For A_1 vs A_3 a linear regression trend line is shown in red and the average R^2 regression parameter (average of all possible pairs of sample A) is displayed below. A higher correlation is observed within technical replicates of the same sample (A_1 vs A_3), and the patterns of expression change of Yeast and E.coli are visible at the A_3 vs B_1 pairs.

Supplementary Figure 4: Precursor intensity correlation between technical replicates.

Supplementary Figure 5. Coefficients of Variance (CVs) between technical replicates for human proteins and peptides.

The following pages show the CVs between technical replicates for human proteins and peptides for:

- Supplementary Figure 5.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 5.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 5.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 5.D: HYE 124, TripleTOF 6600, 64var setup
- Supplementary Figure 5.E: HYE 110, TripleTOF 6600, 32fix setup
- Supplementary Figure 5.F: HYE 110, TripleTOF 6600, 32var setup
- Supplementary Figure 5.G: HYE 110, TripleTOF 6600, 64fix setup
- Supplementary Figure 5.H: HYE 110, TripleTOF 6600, 64var setup

Supplementary Figure 5.A: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 5.B: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 5.C: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 5.D: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 5.E: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 110, TripleTOF 6600, 32fix setup.

Supplementary Figure 5.F: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 110, TripleTOF 6600, 32var setup.

Supplementary Figure 5.G: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 110, TripleTOF 6600, 64fix setup.

Supplementary Figure 5.H: Coefficients of Variance (CVs) between technical replicates for human proteins and peptides for HYE 110, TripleTOF 6600, 64var setup.

Supplementary Figure 6. Precursor intensity correlation between the different datasets.

Datasets were compared pair-wise correlating total precursor intensities. Precursor intensities were calculated summing the intensity of all detected precursors (FDR < 0.01) within a dataset (i.e. across all technical replicates of both sample A and B).

The following pages show precursor intensity correlations between the different workflows for:

- Supplementary Figure 6.A: HYE124, OpenSWATH
- Supplementary Figure 6.B: HYE124, SWATH 2.0
- Supplementary Figure 6.C: HYE124, Skyline
- Supplementary Figure 6.D: HYE124, Spectronaut
- Supplementary Figure 6.E: HYE124, DIA-Umpire
- Supplementary Figure 6.F: HYE110, OpenSWATH
- Supplementary Figure 6.G: HYE110, SWATH 2.0
- Supplementary Figure 6.H: HYE110, Skyline
- Supplementary Figure 6.I: HYE110, Spectronaut
- Supplementary Figure 6.J: HYE110, DIA-Umpire

Supplementary Figure 6.A: Precursor intensity correlation between workflows for HYE124, OpenSWATH.

Supplementary Figure 6.B: Precursor intensity correlation between workflows for HYE124, SWATH 2.0.

Supplementary Figure 6.C: Precursor intensity correlation between workflows for HYE124, Skyline.

Supplementary Figure 6.D: Precursor intensity correlation between workflows for HYE124, Spectronaut.

Supplementary Figure 6.E: Precursor intensity correlation between workflows for HYE124, DIA-Umpire.

Supplementary Figure 6.F: Precursor intensity correlation between workflows for HYE110, OpenSWATH.

Supplementary Figure 6.G: Precursor intensity correlation between workflows for HYE110, SWATH 2.0.

Supplementary Figure 6.H: Precursor intensity correlation between workflows for HYE110, Skyline.

Supplementary Figure 6.I: Precursor intensity correlation between workflows for HYE110, Spectronaut.

Supplementary Figure 6.J: Precursor intensity correlation between workflows for HYE110, DIA-Umpire.

Supplementary Figure 7. LFQbench peptide level benchmarks.

Log-transformed ratios $(log_2(A/B))$ of peptides were plotted for each benchmarked software tool over the log-transformed scaled intensity of sample B. Dashed colored lines represent the expected $log_2(A/B)$ values for human, yeast, and E.coli peptides. Black dashed lines represent the local trend along the x-axis of experimental log-transformed ratios of each population (human, yeast, and E.coli). In case of sample HYE124, panel A shows both iterations for all software tools, and panel B shows the $log_2(A/B)$ of the averages between technical replicates of A and B for E.coli peptides in the lowest intensity tertile. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

Intensities reported by each software tool were scaled to SWATH 2.0 intensity scale using a linear model fixed in the origin. Intensities of multiply charged precursors were summed up, and averaged between technical replicates of each sample.

The following pages show LFQbench peptide level benchmarks for:

- Supplementary Figure 7.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 7.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 7.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 7.D: HYE 124, TripleTOF 6600, 64var setup
- Supplementary Figure 7.E: HYE 110, TripleTOF 6600, 32fix setup
- Supplementary Figure 7.F: HYE 110, TripleTOF 6600, 32var setup
- Supplementary Figure 7.G: HYE 110, TripleTOF 6600, 64fix setup
- Supplementary Figure 7.H: HYE 110, TripleTOF 6600, 64var setup

Supplementary Figure 7.A: LFQbench peptide level benchmarks for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 7.B: LFQbench peptide level benchmarks for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 7.C: LFQbench peptide level benchmarks for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 7.D: LFQbench peptide level benchmarks for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 7.E: LFQbench peptide level benchmarks for HYE 110, TripleTOF 6600, 32fix setup.

Supplementary Figure 7.F: LFQbench peptide level benchmarks for HYE 110, TripleTOF 6600, 32var setup.

Supplementary Figure 7.G: LFQbench peptide level benchmarks for HYE 110, TripleTOF 6600, 64fix setup.

Supplementary Figure 7.H: LFQbench peptide level benchmarks for HYE 110, TripleTOF 6600, 64var setup.

Supplementary Figure 8. LFQbench protein level benchmarks.

Log-transformed ratios $(log_2(A/B))$ of proteins were plotted for each benchmarked software tool over the log-transformed scaled intensity of sample B. Dashed colored lines represent the expected $log_2(A/B)$ values for human, yeast, and E.coli peptides. Black dashed lines represent the local trend along the x-axis of experimental log-transformed ratios of each population (human, yeast, and E.coli). In case of sample HYE124, panel A shows both iterations for all software tools, and panel B shows the $log_2(A/B)$ of the averages between technical replicates of A and B for E.coli peptides in the lowest intensity tertile. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

Intensities of multiply charged precursors were summed up, and averaged between technical replicates of each sample. Protein quantities were estimated in each technical replicate by the average of the most 3 intense peptides reported for each protein. Single hit proteins (a single peptide detected in a protein) and proteins detected in less than two injections in both samples A and B were discarded. The protein intensities of each software tool were then scaled to SWATH 2.0 intensity scale using a linear model fixed in the origin.

The following pages show LFQbench protein level benchmarks for:

- Supplementary Figure 8.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 8.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 8.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 8.D: HYE 124, TripleTOF 6600, 64var setup
- Supplementary Figure 8.E: HYE 110, TripleTOF 6600, 32fix setup
- Supplementary Figure 8.F: HYE 110, TripleTOF 6600, 32var setup
- Supplementary Figure 8.G: HYE 110, TripleTOF 6600, 64fix setup
- Supplementary Figure 8.H: HYE 110, TripleTOF 6600, 64var setup

Supplementary Figure 8.A: LFQbench protein level benchmarks for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 8.B: LFQbench protein level benchmarks for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 8.C: LFQbench protein level benchmarks for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 8.D: LFQbench protein level benchmarks for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 8.E: LFQbench protein level benchmarks for HYE 110, TripleTOF 6600, 32fix setup.

Supplementary Figure 8.F: LFQbench protein level benchmarks for HYE 110, TripleTOF 6600, 32var setup.

Supplementary Figure 8.G: LFQbench protein level benchmarks for HYE 110, TripleTOF 6600, 64fix setup.

Supplementary Figure 8.H: LFQbench protein level benchmarks for HYE 110, TripleTOF 6600, 64var setup.

Supplementary Figure 9. LFQbench protein level benchmarks for single-hit proteins for all instrument/workflow combinations.

Protein single hits are proteins identified by only one peptide, which are discarded by LFQbench.

Log-transformed ratios $(log_2(A/B))$ of proteins were plotted for each benchmarked software tool over the log-transformed scaled intensity of sample B. Dashed colored lines represent the expected $log_2(A/B)$ values for human, yeast, and E.coli peptides. Black dashed lines represent the local trend along the x-axis of experimental log-transformed ratios of each population (human, yeast, and E.coli). In case of sample HYE124, panel A shows both iterations for all software tools, and panel B shows the $log_2(A/B)$ of the averages between technical replicates of A and B for E.coli peptides in the lowest intensity tertile. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

Intensities of multiply charged precursors were summed up, and averaged between technical replicates of each sample. Protein quantities were estimated by the average intensity (three technical replicates) of the single peptide identified of the protein (single hit). The protein intensities of each software tool were then scaled to SWATH 2.0 intensity scale by using a linear model fixed in the origin.

The following pages show:

- Supplementary Figure 9.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 9.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 9.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 9.D: HYE 124, TripleTOF 6600, 64var setup

Supplementary Figure 9.A: LFQbench single-hits protein level benchmarks for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 9.B: LFQbench single-hits protein level benchmarks for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 9.C: LFQbench single-hits protein level benchmarks for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 9.D: LFQbench single-hits protein level benchmarks for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 10. Percentage of false negative human proteins (human proteins detected in only one of the samples) without replication rate filtering.

According to sample composition, human proteins should always be detectable in both samples (A and B). Human proteins that are false-negative in one of the samples (and thus falsely reported as "exclusively detected" in the other samples) are highly problematic from a biological perspective. The data indicate that requiring a protein to be quantified in at least two biological replicates (bar plots group by number of technical replicates – runs – the peptide or protein is detected in the other sample) reduces the false negative rate by up to 70%, depending on instrument, software and SWATH window setup.

Supplementary Figure 10: Percentage of false negative human proteins (human proteins detected in only one of the samples) without replication rate filtering.

Supplementary Figure 11. Box-and-whisker plots of log_2 ratio distributions in different intensity tertiles for human proteins.

The present figure displays the $log_2(A/B)$ of the averages between technical replicates of A and B for human proteins in the lowest intensity (0%-33.3%, top panel), medium (33.3%-66.7%) and highest (66.7%-100%) tertiles. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

The following pages show log_2 ratio distributions for:

- Supplementary Figure 11.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 11.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 11.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 11.D: HYE 124, TripleTOF 6600, 64var setup

Supplementary Figure 11.A: log_2 ratio distributions in different intensity tertiles for human proteins for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 11.B: log_2 ratio distributions in different intensity tertiles for human proteins for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 11.C: log_2 ratio distributions in different intensity tertiles for human proteins for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 11.D: log_2 ratio distributions in different intensity tertiles for human proteins for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 12. Box-and-whisker plots of log_2 ratio distributions in different intensity tertiles for yeast proteins.

The present figure displays the $log_2(A/B)$ of the averages between technical replicates of A and B for yeast proteins in the lowest intensity (0%-33.3%, top panel), medium (33.3%-66.7%) and highest (66.7%-100%) tertiles. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

The following pages show log_2 ratio distributions for:

- Supplementary Figure 12.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 12.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 12.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 12.D: HYE 124, TripleTOF 6600, 64var setup

Supplementary Figure 12.A: log_2 ratio distributions in different intensity tertiles for yeast proteins for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 12.B: log_2 ratio distributions in different intensity tertiles for yeast proteins for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 12.C: log_2 ratio distributions in different intensity tertiles for yeast proteins for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 12.D: log_2 ratio distributions in different intensity tertiles for yeast proteins for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 13. Box-and-whisker plots of log_2 ratio distributions in different intensity tertiles for E.coli proteins.

The present figure displays the $log_2(A/B)$ of the averages between technical replicates of A and B for E.coli proteins in the lowest intensity (0%-33.3%, top panel), medium (33.3%-66.7%) and highest (66.7%-100%) tertiles. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

The following pages show log_2 ratio distributions for:

- Supplementary Figure 13.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 13.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 13.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 13.D: HYE 124, TripleTOF 6600, 64var setup

Supplementary Figure 13.A: log_2 ratio distributions in different intensity tertiles for E.coli proteins for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 13.B: log_2 ratio distributions in different intensity tertiles for E.coli proteins for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 13.C: log_2 ratio distributions in different intensity tertiles for E.coli proteins for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 13.D: log_2 ratio distributions in different intensity tertiles for E.coli proteins for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 14. LFQbench protein level benchmarks for built-in protein level reports.

Protein quantities were estimated using built-in protein level quantification workflows in SWATH2.0 (panel A) and DIA-Umpire (panel B).

Log-transformed ratios $(log_2(A/B))$ of proteins were plotted for each benchmarked software tool over the log-transformed scaled intensity of sample B. Dashed colored lines represent the expected $log_2(A/B)$ values for human, yeast, and E.coli peptides. Black dashed lines represent the local trend along the x-axis of experimental log-transformed ratios of each population (human, yeast, and E.coli). In case of sample HYE124, panel A shows both iterations for all software tools, and panel B shows the $log_2(A/B)$ of the averages between technical replicates of A and B for E.coli peptides in the lowest intensity tertile. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

Intensities of multiply charged precursors were summed up, and averaged between technical replicates of each sample. Protein quantities were estimated in each technical replicate by the average of the most 3 intense peptides reported for each protein. Single hit proteins (a single peptide detected in a protein) and proteins detected in less than two injections in both samples A and B were discarded.

The following pages show LFQ bench protein level benchmarks based on built-in protein level reports for:

- Supplementary Figure 14.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 14.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 14.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 14.D: HYE 124, TripleTOF 6600, 64var setup

Supplementary Figure 14.A: LFQbench built-in protein level benchmarks for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 14.B: LFQbench built-in protein level benchmarks for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 14.C: LFQbench built-in protein level benchmarks for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 14.D: LFQbench built-in protein level benchmarks for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 15. Retention time differences and correlation of reported peak intensities between all software tools for the first iteration.

The present figure shows the retention time differences (upper right panels) and correlation of reported peak intensities (lower left panels) for the respective matching precursors between all software tools for the first iteration. Peak intensities and retention times reported by all software tools in HYE124 (64 variable windows) were compared pair-wise.

Outliers are plotted in the color of the outlier software tool (see color legend in the diagonal panels). Diagonal panels show the total number and percentage (to the total number of common detected peptides) of outliers of each respective software tool. Outliers have been defined as producing a standard deviation of the peak retention time greater than 0.2 minutes relative to all other software tools detecting that precursor, after removing ambiguous cases, in which more than one software tool produce a greater standard deviation in the peak retention time.

Supplementary Figure 15: Retention time differences (upper right panels) and correlation of reported peak intensities (lower left panels) between all software tools for the respective matching precursors for the first iteration of all tools.

Supplementary Figure 16. Comparative analysis of fragment intensity rankings between DIA-Umpire and the library.

For each fragment reported by DIA-Umpire the respective intensity ranking in the spectral library was determined. In the first iteration (left panel), 39% of the fragment ions reported by DIA-Umpire are not part of the library (grey). The agreement between the other DIA-Umpire's fragment ions and the spectral library is good (70% of the three most intense fragment ions of DIA-Umpire match with the three most intense fragment ions of the spectral library). After removing low mass fragments (<350 m/z) the percentage of unmatched ion fragments to the spectral library was reduced to 24%.

Supplementary Figure 16: Comparative analysis of fragment intensity ranking between DIA-Umpire and the library.

Supplementary Figure 17. Number of incomplete cases.

The percentage of the number of peptides or proteins with less than six quantification values among the six injections (three technical replicates by sample) is shown in the present figure. Of note, yeast and E.coli proteins reported more incomplete cases in HYE110 than in HYE124 due to its more challenging composition (1:10 ratios instead of 1:2 or 1:4 ratios).

The following pages show number of incomplete cases for:

- Supplementary Figure 17.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 17.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 17.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 17.D: HYE 124, TripleTOF 6600, 64var setup
- Supplementary Figure 17.E: HYE 110, TripleTOF 6600, 32fix setup
- Supplementary Figure 17.F: HYE 110, TripleTOF 6600, 32var setup
- Supplementary Figure 17.G: HYE 110, TripleTOF 6600, 64fix setup
- Supplementary Figure 17.H: HYE 110, TripleTOF 6600, 64var setup

Supplementary Figure 17.A: Number of incomplete cases for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 17.B: Number of incomplete cases for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 17.C: Number of incomplete cases for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 17.D: Number of incomplete cases for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 17.E: Number of incomplete cases for HYE 110, TripleTOF 6600, 32fix setup.

Supplementary Figure 17.F: Number of incomplete cases for HYE 110, TripleTOF 6600, 32var setup.

Supplementary Figure 17.G: Number of incomplete cases for HYE 110, TripleTOF 6600, 64fix setup.

Supplementary Figure 17.H: Number of incomplete cases for HYE 110, TripleTOF 6600, 64var setup.

Supplementary Figure 18. Percentage of false negative human proteins (human proteins detected in only one of the samples) in the second iteration with replication rate filtering.

According to sample composition, human proteins should always be detectable in both samples (A and B). Human proteins that are false-negative in one of the samples (and thus falsely reported as "exclusively detected" in the other samples) are highly problematic from a biological perspective. The data indicate that requiring a protein to be quantified in at least two biological replicates (bar plots group by number of technical replicates – runs – the peptide or protein is detected in the other sample) reduces the false negative rate by up to 70%, depending on instrument, software and SWATH window setup.

The plots show the percentage of false negative identifications after filtering those identifications, which were found in less than two technical replicates in both samples A and B (Supplementary Figure 12 shows unfiltered data).

Supplementary Figure 18: Percentage of false negative human proteins (human proteins detected in only one of the samples) in the second iteration with replication rate filtering.

Supplementary Figure 19. Number of quantified peptides per protein.

The following pages show the numbers of quantified peptides per protein for:

- Supplementary Figure 19.A: HYE 124, TripleTOF 5600, 32fix setup, iteration 1
- Supplementary Figure 19.B: HYE 124, TripleTOF 5600, 64var setup, iteration 1
- Supplementary Figure 19.C: HYE 124, TripleTOF 6600, 32fix setup, iteration 1
- Supplementary Figure 19.D: HYE 124, TripleTOF 6600, 64var setup, iteration 1
- Supplementary Figure 19.E: HYE 124, TripleTOF 5600, 32fix setup, iteration 2
- Supplementary Figure 19.F: HYE 124, TripleTOF 5600, 64var setup, iteration 2
- Supplementary Figure 19.G: HYE 124, TripleTOF 6600, 32fix setup, iteration 2
- Supplementary Figure 19.H: HYE 124, TripleTOF 6600, 64var setup, iteration 2
- Supplementary Figure 19.I: HYE 110, TripleTOF 6600, 32fix setup
- Supplementary Figure 19.J: HYE 110, TripleTOF 6600, 32var setup
- Supplementary Figure 19.K: HYE 110, TripleTOF 6600, 64fix setup
- Supplementary Figure 19.L: HYE 110, TripleTOF 6600, 64var setup

Supplementary Figure 19.A: Number of quantified peptides per protein for HYE 124, TripleTOF 5600, 32fix setup, iteration 1.

Supplementary Figure 19.B: Number of quantified peptides per protein for HYE 124, TripleTOF 5600, 64var setup, iteration 1.

Supplementary Figure 19.C: Number of quantified peptides per protein for HYE 124, TripleTOF 6600, 32fix setup, iteration 1.

Supplementary Figure 19.D: Number of quantified peptides per protein for HYE 124, TripleTOF 6600, 64var setup, iteration 1.

Supplementary Figure 19.E: Number of quantified peptides per protein for HYE 124, TripleTOF 5600, 32fix setup, iteration 1.

Supplementary Figure 19.F: Number of quantified peptides per protein for HYE 124, TripleTOF 5600, 64var setup, iteration 1.

Supplementary Figure 19.G: Number of quantified peptides per protein for HYE 124, TripleTOF 6600, 32fix setup, iteration 1.

Supplementary Figure 19.H: Number of quantified peptides per protein for HYE 124, TripleTOF 6600, 64var setup, iteration 1.

Supplementary Figure 19.I: Number of quantified peptides per protein for HYE 110, TripleTOF 6600, 32fix setup.

Supplementary Figure 19.J: Number of quantified peptides per protein for HYE 110, TripleTOF 6600, 32var setup.

Supplementary Figure 19.K: Number of quantified peptides per protein for HYE 110, TripleTOF 6600, 64fix setup.

Supplementary Figure 19.L: Number of quantified peptides per protein for HYE 110, TripleTOF 6600, 64var setup.

Supplementary Figure 20. Peptide overlap between the five software tools using a dedicated library with peptides identified initially only by DIA-Umpire.

A dedicated library (built with Orbitrap/Fusion assays) containing peptides exclusively detected by DIA-Umpire was interrogated using the four library-based software tools. Only unmodified peptides were considered to estimate the overlap with DIA-Umpire's exclusively identified peptides.

Notably, more than 99% of the 6,826 peptides in this library were detectable by at least two library-based tools.

Supplementary Figure 20: Peptide overlap between the five software tools using a dedicated library with peptides identified initially only by DIA-Umpire.

Supplementary Figure 21. Retention time differences and correlation of reported peak intensities between all software tools for extractions of a dedicated library with peptides identified only by DIA-Umpire.

The present figure shows the retention time differences (upper right panels) and correlation of reported peak intensities (lower left panels) between all software tools for extractions of a dedicated library with peptides identified only by DIA-Umpire. A dedicated library (built with Orbitrap/Fusion assays) containing peptides exclusively detected by DIA-Umpire was interrogated by using the four library-based software tools. Only unmodified peptides were considered to compare the peak retention times and intensities of all five software tools.

Retention time differences (upper right panels) and correlation of reported peak intensities (lower left panels) between all software tools for the respective matching precursors. Outliers are plotted in the color of the outlier software tool (see color legend in the diagonal panels). Diagonal panels show the total number and percentage (to the total number of common detected peptides) of outliers of each respective software tool. Outliers have been defined as producing a standard deviation of the peak retention time greater than 0.2 minutes relative to all other software tools detecting that precursor, after removing ambiguous cases, in which more than one software tool produce a greater standard deviation in the peak retention time.

Supplementary Figure 21: Retention time differences (upper right panels) and correlation of reported peak intensities (lower left panels) between all software tools for extractions of a dedicated library with peptides identified only by DIA-Umpire.

Supplementary Figure 22. Overlap of quantified peptides between DIA-Umpire and the library based tools.

The present figure shows the overlap of quantified peptides between DIA-Umpire and the library based tools in the lowest (A) middle (B) and highest (C) intensity tertiles. Peptide identifications were grouped in tertiles of total signal intensities (average of the intensities detected by all software tools for each peptide). The first tertile (lowest intensities) is the most dissimilar group and shows that both library-based tools and DIA-Umpire identify different peptides at the lower intensity range. The second and third tertiles show increasingly better agreement between DIA-Umpire and library-based software tools.

Supplementary Figure 22: Overlap of quantified peptides between DIA-Umpire and the library based tools in the lowest (A) middle (B) and highest (C) intensity tertile.

Supplementary Figure 23. LFQbench peptide and protein level benchmarks using Skyline's user recommended values.

Skyline's web page suggests to users a configuration parameter setting, which has also been evaluated in this study (LFQbench results shown in this figure), and afterwards optimized for the iteration 1.

Log-transformed ratios $(log_2(A/B))$ of proteins were plotted for each benchmarked software tool over the log-transformed scaled intensity of sample B. Dashed colored lines represent the expected $log_2(A/B)$ values for human, yeast, and E.coli peptides. Black dashed lines represent the local trend along the x-axis of experimental log-transformed ratios of each population (human, yeast, and E.coli). In case of sample HYE124, panel A shows both iterations for all software tools, and panel B shows the $log_2(A/B)$ of the averages between technical replicates of A and B for E.coli peptides in the lowest intensity tertile. Boxes represent 25% and 75% percentiles, whiskers cover data points between 1% and 99% percentiles.

Intensities of multiply charged precursors were summed up, and averaged between technical replicates of each sample. Protein quantities were estimated in each technical replicate by the average of the most 3 intense peptides reported for each protein. Single hit proteins (a single peptide detected in a protein) and proteins detected in less than two injections in both samples A and B were discarded.

Supplementary Figure 23: LFQbench peptide and protein level benchmarks using Skyline's user recommended values.

Supplementary Figure 24. Isolation ranges used in Skyline.

Isolation ranges used in Skyline (shaded in blue) shown over the extracted ion chromatogram of the y6 (z = 1) fragment ion of the peptide GTFIIDPAAVIR (choosen as an example).

The following pages show:

- Supplementary Figure 24.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 24.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 24.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 24.D: HYE 124, TripleTOF 6600, 64var setup

Supplementary Figure 24.A: Isolation ranges used in Skyline for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 24.B: Isolation ranges used in Skyline for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 24.C: Isolation ranges used in Skyline for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 24.D: Isolation ranges used in Skyline for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 25. Linear models of intensity scales (CIS).

Intensity values reported by each software tool were scaled to an intensity reference (SWATH 2.0 reports were used as reference). For each software tool peptide report, precursor intensities were paired with precursor intensities of the reference, and the 98th lowest percentile of the paired intensities was used to calculate a linear model (origin was set to 0) to estimate the intensity factor scale. This factor scale was then used to scale both peptide and protein reports of each evaluated software tool.

The following pages show linear models of intensity scales for:

- Supplementary Figure 25.A: HYE 124, TripleTOF 5600, 32fix setup
- Supplementary Figure 25.B: HYE 124, TripleTOF 5600, 64var setup
- Supplementary Figure 25.C: HYE 124, TripleTOF 6600, 32fix setup
- Supplementary Figure 25.D: HYE 124, TripleTOF 6600, 64var setup
- Supplementary Figure 25.E: HYE 110, TripleTOF 6600, 32fix setup
- Supplementary Figure 25.F: HYE 110, TripleTOF 6600, 32var setup
- Supplementary Figure 25.G: HYE 110, TripleTOF 6600, 64fix setup
- Supplementary Figure 25.H: HYE 110, TripleTOF 6600, 64var setup

Supplementary Figure 25.A: Linear models of intensity scales for HYE 124, TripleTOF 5600, 32fix setup.

Supplementary Figure 25.B: Linear models of intensity scales for HYE 124, TripleTOF 5600, 64var setup.

Supplementary Figure 25.C: Linear models of intensity scales for HYE 124, TripleTOF 6600, 32fix setup.

Supplementary Figure 25.D: Linear models of intensity scales for HYE 124, TripleTOF 6600, 64var setup.

Supplementary Figure 25.E: Linear models of intensity scales for HYE 110, TripleTOF 6600, 32fix setup.

Supplementary Figure 25.F: Linear models of intensity scales for HYE 110, TripleTOF 6600, 32var setup.

Supplementary Figure 25.G: Linear models of intensity scales for HYE 110, TripleTOF 6600, 64fix setup.

Supplementary Figure 25.H: Linear models of intensity scales for HYE 110, TripleTOF 6600, 64var setup.

Step-by-Step Analyses

1. OpenSWATH

This step-by-step describes how to analyse a dataset of SWATH files with OpenSWATH. It exemplarises how to process one dataset containing 6 files with generic names (filename_001, filename_002,..., filename_006). For a more detailed information about the different parameters of OpenSWATH, the user may be interested on reading an article posted in bioRxiv: http://dx.doi.org/10.1101/044552

1.1 Convert the provided csv file to TraML format for OpenSWATH

```
ConvertTSVToTraML \setminus
```

-in ecolihumanyeast_concat_mayu_IRR_cons_openswath_32sw-var_curated.csv $\$ -out ecolihumanyeast_concat_mayu_IRR_cons_openswath_32sw-var_curated.TraML

1.2 Append decoy assays to the TraML file for OpenSWATH

 $OpenSwathDecoyGenerator \setminus$

-in ecolihumanyeast_concat_mayu_IRR_cons_openswath_32sw-var_curated.TraML \

-out_ecolihumanyeast_concat_mayu_IRR_cons_openswath_32sw-var_curated_decoy.TraML \

-method pseudo-reverse \setminus

 $-append \$

-exclude_similar

1.3 Execute OpenSWATH workflow (iRT re-alignment, fragment ion chromatogram extraction, scoring)

```
-in /PATH/filename_001.mzXML.gz \
-tr /PATH/ecolihumanyeast_concat_mayu_IRR_cons_openswath_32sw-var_curated_decoy.TraML.csv \
-out_tsv /PATH/filename_001.tsv \
-tempDirectory /PATH/
-readOptions cacheWorkingInMemory \
-batchSize 1000
-Scoring: TransitionGroupPicker: background subtraction original \
-Scoring:stop\_report\_after\_feature -1 \setminus
-min\_upper\_edge\_dist 1 \setminus
- \operatorname{tr\_irt} /PATH/hroest_DIA_iRT.TraML \backslash
-extra_rt_extraction_window 100 \setminus
-\min_{rsq} 0.95 
-min_coverage 0.6 \setminus
-Scoring:Scores:use_dia_scores true \
-rt extraction window 600 \setminus
-mz\_extraction\_window 30 \setminus
-threads 4 \setminus
-ppm
```

(Repeat this step for every file of the dataset – in this example, 6 files)

1.4 Prepare the scores to be used for mProphet

```
mProphetScoreSelector.sh \
    /PATH/filename_001.tsv \
    xx_swath_prelim_score \
    bseries_score \
    intensity_score \
    isotope_correlation_score \
    isotope_overlap_score \
    library_corr \
    library_rmsd \
```

```
log_sn_score \
massdev_score \
massdev_score_weighted \
norm_rt_score \
xcorr_coelution \
xcorr_coelution_weighted \
xcorr_shape \
xcorr_shape_weighted \
yseries_score
```

(Repeat this step for every file of the dataset – in this example, 6 files)

1.5 Run the python implementation of mProphet

pyprophet \
 --ignore.invalid_score_columns \
 --target.dir=/PATH/PyProphet/ \
 --xeval.num_iter=10 \
 --d_score.cutoff=1 \
 /PATH/OpenSwathWorkflow/filename_001.tsv

(Repeat this step for every file of the dataset – in this example, 6 files)

1.6 Run the cross-run alignment procedure

```
feature\_alignment.py \setminus
    --file_format openswath \backslash
    --in \
        /PATH/filename_001_with_dscore_filtered.csv
/PATH/filename_002_with_dscore_filtered.csv
        /PATH/filename_003_with_dscore_filtered.csv
         /PATH/filename_004_with_dscore_filtered.csv
         / PATH/\,filename\_005\_with\_dscore\_filtered.\,csv
        /PATH/filename_006_with_dscore_filtered.csv \
    --out /PATH/feature_alignment.tsv \
    --out_meta /PATH/feature_alignment.yaml \
    ----tmpdir /PATH.tmpdir/
    --mst:useRTCorrection False \setminus
    ---method global_best_overall
    --max_rt_diff auto_3medianstdev \
    --frac_selected 0 \setminus
    --realign_method lowess_cython \
    --- disable_isotopic_grouping
```

2. SWATH 2.0

This step-by-step manual describes how to analyse SWATH-MS data with the SWATH 2.0 micro-app integrated in the software PeakView. SWATH 2.0 supports several input format files for the libraries; this step-by-step describes only the workflow used in this manuscript.

2.1 Library preparation

• Prepare an ion library in a plain text file, formatted as tab separated values. Each ion fragment of the library must be reported in a different row.

The following column values are necessary:

Column name	value
Q1	Precursor m/z
Q3	Fragment m/z
$RT_detected$	retention time in which peptide was detected in library
	generation
protein_name	any protein identificator
isotype	light or heavy (may be left in blank)
relative_intensity	normalized intensity of the fragment
$stripped_sequence$	peptide sequence without modifications
modification_sequence	peptide sequence including modifications in ProteinPilot
	format.
prec_z	charge state of the precursor ion
frg_type	fragment ion type (y, b, \dots)
$\mathrm{frg}_{\mathrm{z}}$	charge state of the fragment ion
frg_nr	number of amino acids of the fragment ion sequence
iRT	iRT values
uniprot_id	UniProt ID
decoy	is decoy? TRUE/FALSE
Ν	peptide ranking. Set all to 1
shared	Peptides shared in several proteins. Set to FALSE to use all
	peptides (LFQbench filter them)

• Retention time calibration peptides must be labeled as [RT-Cal protein] at the *protein_name*

2.2 Analysis in SWATH 2.0 micro-app

- Open the program *PeakView*.
- Choose: Quantitation -> SWATH Processing -> Import Ion Library
 - Browse for the ion library (remember to select at the bottom the filter for _Ion Library Text Files (*.txt)_)
 - Import settings: untick the option Do not import shared peptides. For label-free quantification, leave Sample Type as Unlabeled.
 - Select Samples: choose the directory containing .wiff files at the Source
- * You can drag and drop the samples you want to analyse from the *Available* frame to the *Selected* frame. You may also drag and drop file folders.
- At the main panel, there are four sub-panels, from top to bottom and from left to right: Proteins in library, Peptides in protein, composed extracted ion chromatograms of the fragment ions of the selected peptide, composed MS2 scan of the best peak selected by the algorithm (top, in blue), and relative intensity and m/z of the library fragment ions of the selected peptide.
- Click on *Processing Settings* at the top of the *Proteins in library* panel. Use the following parameters:
- Peptide filter

Parameter	value
Number of Peptides per Protein	2000
Number of Transitions per Peptide	6
Peptide Confidence Threshold $\%$ (0-99)	99
False Discovery Rate Threshold % (0-100)	1.0
Exclude Modified Peptides	unticked
Exclude Shared Peptides	unticked
Fix Rank	unticked

• XIC Options

Parameter	value
XIC Extraction Window (min)	10.0
XIC width (ppm)	50 for TripleTOF 5600, 30 for TripleTOF 6600
XIC width (Da)	unticked

• Once you have configured processing settings, click the *Process* button at the right side of the *Processing Settings* button.

- choose a name for saving the SWATH 2.0 session at the displayed dialog.

• **Report results**: when SWATH 2.0 finishes to process, export results by choosing at the main menu: Quantitation -> Export -> All

- choose a name for saving the report at the displayed dialog.

3. Skyline

There are many Skyline tutorials available at the Skyline's tutorial web page. This short step-by-step tutorial deals exclusively with the kind of DIA (SWATH-MS) analysis performed in this article, and it exemplarises how to analyse with Skyline a dataset acquired in a TripleTOF 6600 with the settings proposed for the second iteration.

The whole analysis is summarised in 9 steps:

- 1. Create a new blank document
- 2. Import transitions list
 - File -> Import -> Transition List... (select Skyline designed transition list: both openswath and peakview formats work fine)
- 3. Configure settings
 - Settings are descripted at the Supplementary Information Table 6. For convinience, they are also described at the end of this document.
- 4. Add decoys
 - Edit -> Refine -> Add Decoy peptides... -> Decoy generation method: Reverse sequence
- 5. Integrate All (for quantification)
 - Settings -> Integrate All
- 6. Remove precursors with less than 3 transitions
 - Edit -> Refine -> Advanced -> Min transitions per precursor: 3
- 7. Import wiff files into the Skyline document: File -> Import -> Results... -> Add single-injection replicates in files (Optimizing: None)
 - After selecting wiff files: do not remove common prefix.
- 8. Use mProphet model
 - Edit -> Refine -> Reintegrate (here: train the model and use all enabled features). Apply to all precursors, and tick the "report Q-value" and "Overwrite manual integration" options.
- 9. Save a report file
 - File -> Export -> Report... (use the designed report: SWATHbenchmark_long.skr)

3.1 Settings

Document Settings

• check "annotation_QValue"

Transition Settings

Full-Scan

MS1 filtering

• Isotope peaks included: None

MS/MS filtering

- Acquisition method: DIA
- Product mass analyzer: TOF
- Resolving power: 100,000
- Isolation scheme:
 - manually designed: use the mass ranges defined in Supplementary Table 8.

Retention time filtering

• Use only scans within "10" minutes of predicted RT.

Instrument

- min m/z : 50 m/z
- max m/z : 2000 m/z
- Method match tolerance m/z: 0.01 m/z
- Other parameters: left in blank or not ticked

Library

- Ion match tolerance: 0.1 m/z
- If a library spectrum is available, pick its most intense ions
- Pick: 6 product ions
 - from filtered ion charges and types

Filter

- Precursor charges: 2, 3
- Ion charges: 1, 2
- Ion types: y, b
- Product ions: from ion "3" to "last ion -1"
 - Special ions: none checked
 - Use DIA precursor window for exclusion: checked
- Auto-select all matching transitions: checked

Prediction

These parameters are less important in our case, since we are not doing using any transition prediction (we use a DDA library).

- Precursor mass: Monoisotopic
- Product ion mass: Monoisotopic
- Collision energy: ABI 5500 QTrap
- Declustering potential: None

• Optimization library: None

Peptide Settings

Digestion

- Enzyme: Trypsin [KR|P]
- Max missed cleavages: 0
- Background proteome: None

Prediction

- Retention time predictor:
 - Use the following standard peptides and iRT values:

Modified Sequence	iRT Value
ADVTPADFSEWSK	54.97
DGLDAASYYAPVR	43.28
GAGSSEPVTGLDAK	0.23
GTFIIDPAAVIR	86.72
GTFIIDPGGVIR	71.38
LFLQFGAQGSPFLK	98.09
LGGNEQVTR	-28.31
TPVISGGPYEYR	29.00
TPVITGAPYEYR	33.63
VEATFGVDESNAK	13.11
YILAGVENSK	22.38

- Measured peptides:
 - Add... -> A named spectral library : (select the spectral library you have previously generated)
- Time window: 3 min
- Drift time predictor: None

Filter

- Min length: 7
- Max length: 36
- Exclude N-terminal AAs: 36
- Auto-select all matching peptides: checked

Library

• built from corresponding file

• Pick peptides matching: Library

Modifications

- Structural modifications:
 - Carbamidomethyl (C) Fixed
 - Oxidation (M) Variable
- Max variable mods: 3
- Max neutral losses: 1
- Isotope label type: heavy
- Isotope modifications:
 - Label: 13C(6)15N(2)(C-term K)
 - Label: 13C(6)15N(4)(C-term R)
- Internal standard type: heavy

4. Spectronaut

A complete manual of Spectronaut is available on-line at the Bignosys web page:.

This step-by-step manual is focused exclusively on how to analyse SWATH-MS data with Spectronaut when you have already a library (in text format), and how to get a report for LFQbench.

4.1 Convert .wiff files to Spectronaut's raw format (.htrms)

Spectronaut can read .wiff files directly, but in order to reduce the analysis time, they may be converted to a Spectronaut's internal format (.htrms). This is strongly recommended if you need to perform several analyses over the same dataset.

- 1. Organise all .wiff files you want to convert into a single folder (Example: \wiff_files).
- 2. Start the program "Wiff to HTRMS Converter".
- 3. Select the tab Auto Conversion.
- 4. Select as *Input Directory* the folder containing the .wiff files (\wiff_files).
- 5. Select as *Output Directory* any folder of your choice (Example: \htrms_files).
- 6. Press the button at the bottom right corner: Convert

4.2 Analysis in Spectronaut

Once all .wiff files are converted to .htrms, you can start the analysis in Spectronaut.

- 1. Start the main program "Spectronaut".
- 2. Select the tab: *Review*.
- 3. Press the link: Load Raw Data...
 - Select the folder containing the .htrms files (\htrms_files), and choose all files you want to analyse.
 - If Spectronaut detects a common prefix at the file names, it will display an option to remove this prefix. Do not remove the prefix if you want to analyse files with LFQbench (otherwise you need to take note of the new file names).
 - Write an Experiment name (Example: Spectronaut_HYE124_TTOF6600_64var).

Configure the spectral library

- Select the tab *From File*
 - Browse your spectral library. You may use any spectral library formatted in plain text. OpenSWATH's and PeakView's (SWATH2.0's) formats work fine.
 - * If this is the first time you use a spectral library type (i.e. OpenSWATH format), you need to relate column headers to Spectronaut's internal values. Spectronaut has a dictionary for most of these headers, but some of them may be missing. As an example, the following table contains the relationships between OpenSWATH's headers and Spectronaut's internal variables:

OpenSWATH header	Spectronaut variable
Q1	PrecursorMz

OpenSWATH header	Spectronaut variable		
Q3	FragmentMz		
iRT	iRT		
$relative_intensity$	RelativeFragmentIntensity		
$stripped_sequence$	StrippedSequence		
prec_z	PrecursorCharge		
frg_type	FragmentType		
frg_nr	FragmentNumber		
frg _z	FragmentCharge		
protein_name	ProteinId		
modification_sequence	ModifiedSequence		
$uniprot_id$	UniProtId		
isotype	IsotopicLabel		
RT_detected	EmpiricalRT (not used if iRT variable is present)		
confidence	blank (not registered)		
decoy	blank (not registered)		
Ν	blank (not registered)		
shared	blank (not registered)		

• After relating headers and internal variables, press the bottom right button *Load*.

Configure Conditions

- At the Experiment Setup: Raw Data, press the buttom Configure Conditions...
 - Write at the *Condition* column a condition name for each file.
 - * Replicate numbers are automatically assigned for same conditions.
 - * Labels also change with Conditions.
 - $\ast\,$ Choose a reference condition at the IsReference column. Usually, your control condition.
 - Press the button *Apply*.

Configure Analysis Settings

- At the Experiment setup, you may choose for different analysis schemas. If you didn't save yet any schema in Spectronaut, you have just the default option. You may save a set of parameters as an analysis schema at the *Settings* tab.
 - In this manuscript we use the following parameters for the analysis. You may configure them each time you run Spectronaut, or you may save a schema at the Settings tab.
- XIC Extraction:

Parameter	Value
XIC RT Extraction Window	Dynamic

• Calibration:

Parameter	Value

iRT Calibration Strategy Non-linear iRT calibration

• Identification:

-

Parameter	Value
Pvalue Estimator Qvalue Cutoff	Normal distribution estimator 0.01

• Quantitation:

Parameter	Value
Interference Correction	checked
Cross Run Normalization	checked

• Workflow:

Parameter	Value
Profiling Strategy	iRT Profiling
Profiling Row Selection	Minimum Qvalue Row Selection
Qvalue Threshold	0.01
Profiling Target Selection	Automatic Selection
Default Labeling Type Assumed	LABEL

• Protein Inference:

Parameter		Value	
Protein	Inference Work	flow	Automatic

• Post Analysis:

Parameter	Value
Differential Abundance Testing	Student's t-test
Quantity	MS2 peak area
Data Filtering	Qvalue
Differential Abundance Grouping	By protein group
Smallest Quantitative Unit	Precursor ion (summed fragment ions)
Include MS1	checked

• Reporting:

If you have already loaded the SWATHbenchmark schema, tick it at the *Pipeline Report* Schema. Otherwise, you can load it after analysis at the *Report* tab.

Parameter	Value
Pipeline Reporting Unit	Experiment

Parameter	Value
Scoring Histograms	checked
Generate SNE File	checked

Report results

- Select the *Report* tab.
 - If you didn't load yet the SWATH benchmark report schema, you may do it here at the Schemas section:
 - * Press the *Import Schema* button at the bottom of the *Schemas* section.
 - * Browse for the SWATHbenchmark report schema, and load it.
 - Select the SWATHbenchmark report schema at the Schemas section (in Normal Report subsection).
 - Press the button *Export Report*... at the bottom left.
 - * Choose a name for the report, and save it.

5. DIA-Umpire

This document describes the steps to analyze a dataset of DIA files with the DIA-Umpire pipeline. We show the pipeline using a dataset with 6 files. In this example, injection files are generically named: injection_001, injection_002, ..., injection_006, and the database: mydatabase.fasta. Detailed information about the parameters for each of the used tools in the pipelines may be found on their respective websites.

5.1 Convert WIFF raw files

Convert WIFF raw files into mzXML format (centroid spectra)

• use the peakpicking option in msconvert to generate centroid spectra

msconvert.exe --mzXML ---filter "peakPicking true 1-2" ~/workdir/injection_001.wiff msconvert.exe --mzXML ---filter "peakPicking true 1-2" ~/workdir/injection_002.wiff msconvert.exe --mzXML ---filter "peakPicking true 1-2" ~/workdir/injection_003.wiff msconvert.exe --mzXML ---filter "peakPicking true 1-2" ~/workdir/injection_004.wiff msconvert.exe --mzXML ---filter "peakPicking true 1-2" ~/workdir/injection_005.wiff msconvert.exe --mzXML ---filter "peakPicking true 1-2" ~/workdir/injection_005.wiff

Run DIA-Umpire Signal Extraction (SE) for each mzXML file to generate pseudo MS/MS spectra (MGF format)

java -jar -Xmx15G ~/DIA-Umpire/DIA_Umpire_SE.jar \ ~/workdir/injection_001.mzXML ~/workdir/diaumpire_se.params

(execute the same command for the other 5 injections too)

Convert the resulting MGF files into mzXML format using msconvert.exe

msconvert.exe ---mzXML ~/workdir/injection_001_Q1.mgf
msconvert.exe ---mzXML ~/workdir/injection_001_Q2.mgf
msconvert.exe ---mzXML ~/workdir/injection_001_Q3.mgf

(execute the same commands for the other 5 injections too)

5.2 Database searches

X! Tandem MS/MS database search

To run X! Tandem for each pseudo MS/MS spectra file, you will need to have an X! Tandem parameter file for each pseudo MS/MS mzXML file. The definitions of most of X! Tandem parameters are available at http://www.thegpm.org/TANDEM/api/index.html. For each pseudo MS/MS mzXML file, an X! Tandem parameter file is generated and the input spectrum files and output tandem output files are specified in the parameter file.

Run X! Tandem for each mzXML file

tandem ~/workdir/tandem_param_injection_001_Q1.xml tandem ~/workdir/tandem_param_injection_001_Q2.xml tandem ~/workdir/tandem_param_injection_001_Q3.xml (execute the same commands for the other 5 injections too)

Convert tandem output files to pepXML files using Tandem2XML

(execute the same commands for the other 5 injections too)

Execute xinteract (from TPP package) on each X! Tandem pepXML file

(execute the same commands for the other 5 injections too)

Comet MS/MS database search

To run Comet, you will need to have an Comet parameter file. The definitions Comet parameters are available at http://comet-ms.sourceforge.net/parameters/parameters_201601/

(execute the same commands for the other 5 injections too)

Execute xinteract (from TPP package) for each Comet pepXML file:

(execute the same commands for the other 5 injections too)

MS-GF+ search engine

The format of command for MS-GF+ search engine can be found at https://omics.pnl.gov/software/ms-gf

Run MS-GF+

```
java -Xmx3500m \
    -jar ~/MSGFPlus.20140716/MSGFPlus.jar \
    -s ~/workdir/injection_001_Q1.mzXML \
    -d ~/mydatabase.fasta \
    -o ~/workdir/injection_001_Q1.msgf.mzid
```

```
-t 30ppm 
     -thread 1 \
    -tda 0 \setminus
    -m 0 \
    -ti 0, 0 \setminus
    -inst 2 \
    -e 1 \setminus -mod \sim /msgf.mod
java -Xmx3500m
    -jar ~/MSGFPlus.20140716/MSGFPlus.jar \
    -s ~/workdir/injection_001_Q2.mzXML \
    -d \sim / mydatabase.fasta \setminus
    -o ~/workdir/injection_001_Q2.msgf.mzid \
    -t \ 30 ppm \ \backslash
    -thread 1
    -tda 0 \setminus
    -m 0 \
    -ti 0, 0 \setminus
    -inst 2 \
    -e 1 \setminus
    -mod ~/msgf.mod
java -Xmx3500m \
     -jar ~/MSGFPlus.20140716/MSGFPlus.jar \
    -s ~/workdir/injection_001_Q3.mzXML \
    -d \sim / mydatabase.fasta \setminus
    -o ~/workdir/injection_001_Q3.msgf.mzid \
    -t 30ppm \setminus
    -thread 1
    -tda 0 \setminus
    -m 0 \
    -ti 0, 0 \setminus
    -inst 2 \
    -e 1 \setminus
    -mod ~/msgf.mod
```

(execute the same commands for the other 5 injections too)

Convert mzid files to pepXML using idconvert.exe

idconvert ~/workdir/injection_001_Q1.msgf.mzid --pepXML idconvert ~/workdir/injection_001_Q2.msgf.mzid --pepXML idconvert ~/workdir/injection_001_Q3.msgf.mzid --pepXML

(execute the same commands for the other 5 injections too)

Execute xinteract (from TPP package) for each MS-GF+ pepXML file:

(execute the same commands for the other 5 injections too)

5.3 Perform iProphet analysis to combine the results of the three search engines

$$\label{eq:linear} \begin{split} & InterProphetParser \ NONSP \ \sim /workdir/interact-injection_001_Q3.tandem.pep.xml \ \\ & \ \sim /workdir/interact-injection_001_Q3.comet.pep.xml \ \\ & \ \sim /workdir/interact-injection_001_Q3.imsgf.pep.xml \ \\ & \ \sim /workdir/interact-injection_001_Q3.iproph.pep.xml \end{split}$$

(execute the same commands for the other 5 injections too)

5.4 Perform ProteinProphet analysis

5.5 Perform DIA-Umpire quantification

java -jar ---Xmx20G ~/DIA-Umpire/DIA_Umpire_Quant.jar $\ \ \sim/workdir/diaumpire_quant.params$