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Appendix

Proof of Theorem 1. To prove Theorem 1, we need the following lemma from Zhang

and Liu (2014).

Lemma 1 (Zhang and Liu, 2014, Lemma 1). Suppose we have an arbitrary f ∈ Rk−1.

For any u, v ∈ {1, . . . , k} such that u 6= v, define T u,v = W u −W v. For any scalar

z ∈ R, 〈(f + zT u,v),W w〉 = 〈f ,W w〉, where w ∈ {1, . . . , k} and w 6= u, v. Furthermore,

we have that 〈(f + zT u,v),W u〉 − 〈f ,W u〉 = −〈(f + zT v,u),W v〉+ 〈f ,W v〉.

The proof consists of two parts. First we show that with γ ≤ 1/2 the RAMSVM is

Fisher consistent. Then we show that when γ > 1/2 the Fisher consistency cannot be

guaranteed.

In this proof we assume P1 > P2 ≥ · · · ≥ Pk. We need to show that 〈f ∗(x),W 1〉 >

〈f ∗(x),W j〉 for j 6= 1. First, we show that 〈f ∗(x),W 1〉 ≥ 〈f ∗(x),W j〉 for any j.

Note that if this is not true, then by Lemma 1, there exists f ′(x) ∈ Rk−1 such that

〈f ∗(x),W 1〉 = 〈f ′(x),W j〉 and 〈f ∗(x),W j〉 = 〈f ′(x),W 1〉. One can verify that

E[V (f ∗(X), Y )|X = x] > E[V (f ′(X), Y )|X = x], which contradicts to the definition

of f ∗.
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Next, we show that 〈f ∗(x),W 1〉 ≤ k − 1. Note that we have
∑k

j=1〈f
∗(x),W j〉 = 0.

If 〈f ∗(x),W 1〉 > k − 1, there exists q such that 〈f ∗(x),W q〉 < −1. By Lemma 1, there

exists f ′(x) ∈ Rk−1 such that 〈f ′(x),W j〉 = 〈f ∗(x),W j〉 for j /∈ {1, q}, 〈f ′(x),W 1〉 =

〈f ∗(x),W 1〉− ε, and 〈f ′(x),W q〉 = 〈f ∗(x),W q〉+ ε, where ε is a small positive number.

Now we have E[V (f ∗(X), Y )|X = x] − E[V (f ′(X), Y )|X = x] = {(1 − P1)(1 − γ) +

Pkγ}ε > 0, which is a contradiction.

Next, we show that if γ ≤ 1/2, then 〈f ∗(x),W j〉 ≥ −1 for any j. Suppose this is not

true and 〈f ∗(x),W j〉 < −1 for a fixed j 6= 1. Because the dot product 〈f ∗(x),W 1〉 ≤

k − 1 is the maximum among all such dot products, we have that −1 < 〈f ∗(x),W q〉 ≤

k − 1 for some q. Define f ′(x) such that 〈f ′(x),W i〉 = 〈f ∗(x),W i〉 for i /∈ {j, q},

〈f ′(x),W q〉 = 〈f ∗(x),W q〉 − ε, and 〈f ′(x),W j〉 = 〈f ∗(x),W j〉 + ε. One can verify

that E[V (f ′(X), Y )|X = x] − E[V (f ∗(X), Y )|X = x] = {Pq − 1 + (1 − Pj)γ}ε. As

γ ≤ 1/2, {Pq − 1 + (1 − Pj)γ} < 0, hence this is a contradiction. Therefore, we have

〈f ∗(x),W j〉 ≥ −1.

Lastly, using the above results and an argument similar to Lemma A.2 in Liu and

Yuan (2011), we have that 〈f ∗(x),W 1〉 = k − 1 and 〈f ∗(x),W j〉 = −1 for j 6= 1. This

completes the first part of the proof.

For the second part, we show that if γ > 1/2, then the RAMSVM can be inconsistent.

We do so by giving a counter example. Let k = 3 and P3 = 0. Then E[V (f ′(X), Y )|X =

x] = γP1{2−〈f ∗(x),W 1〉}+ +P2(1−γ){1+ 〈f ∗(x),W 1〉}+ +γP2{2−〈f ∗(x),W 2〉}+ +

P1(1 − γ){1 + 〈f ∗(x),W 2〉}+ + (1 − γ){1 + 〈f ∗(x),W 3〉}+. If 1/2 < P1 < γ, then

one can verify that the minimizer f ∗ is such that 〈f ∗(x),W 1〉 = 〈f ∗(x),W 2〉 = 2 and

〈f ∗(x),W 3〉 = −4. Therefore, it is not Fisher consistent. �

Next, we provide the dual problems of Guermeur (2012) and Liu and Yuan (2011).

The MSVM framework proposed in Guermeur (2012) used K1, K2, K3 and p as hyper-

parameters to denote different MSVM methods. The values of the hyperparameters that

correspond to MSVMs 2-4 and 6 are reported in Table A1.

Dual Problems of Soft Margin MSVM in Guermeur (2012). The dual problem

of soft margin MSVM in Guermeur (2012) is
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max−1

4

{
αTM1α

}
+M2α,

s.t.



0 ≤ (1−K3)(2− p)αi,j ≤ (2− p)m(i, j), i = 1, . . . , n, j 6= yi,

0 ≤ K3(2− p)
∑

j 6=yi
αi,j ≤ (2− p)

∑
j 6=yi

m(i, j), i = 1, . . . , n,

(p− 1)αi,j ≥ 0, i = 1, . . . , n, j 6= yi,∑n
i=1

∑k
l=1{K1δyi,j + (1−K1)/k − δj, l}αi,l = 0, j = 1, . . . , k − 1.

(A.1)

Here M1 and M2 are fixed matrices, m(i, j) is a real number, and δ is the Kronecker

symbol. Both M1 and M2 depend only on the MSVM method, and m(i, j) depends on

i, j and the MSVM method. For more details about M1, M2 and m(i, j), see Guermeur

(2012). One can verify that for any set of hyperparameters, the equality constraints in

(A.1) do not vanish. Notice that (A.1) includes the dual problems of (2) as a special case.

Dual Problems of Hard Margin MSVM in Guermeur (2012). The dual problems

of hard margin MSVM in Guermeur (2012) can be written as

max−1

4

{
αTM ′

1α
}

+M ′
2α,

s.t.

 αi,j ≥ 0, i = 1, . . . , n, j 6= yi,∑n
i=1

∑k
l=1{K1δyi,j + (1−K1)/k − δj, l}αi,l = 0, j = 1, . . . , k − 1.

(A.2)

Here M ′
1 and M ′

2 are fixed matrices, similar to M1 and M2 in the soft margin case.

MSVM p K1 K2 K3

MSVM2 1 1 1 0
MSVM3 1 1 1 1
MSVM4 1 0 1/(k-1) 0
MSVM6 2 0 1/(k-1) 0

Table A1: Hyperparameters for different MSVM methods in Guermeur (2012).

Dual Problems in Liu and Yuan (2011). For the optimization in Liu and Yuan

(2011), its dual problem can be written as

minβTHβ + gTβ,

s.t.

 0 ≤ αi,j ≤ Ai,j, i = 1, . . . , j = 1, . . . , k,

Eβ = 0, j = 1, . . . , k,
(A.3)

where β = (αT
·1, . . . ,α

T
·k)T , and H, E are fixed matrices that depend only on the observed

predictors and the kernel function K(·, ·). For more information about H and E, see

Section 3 in Liu and Yuan (2011).
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