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Supplementary Figure 1. Elastic energy density distribution map. Consecutive images of splay 
(a-d) and bend (e-h) energy density distribution during evolution for 𝜁 = 0.001. a, e, d, and h 
are in tetrahedral mode; c and g are in planar mode. Black regions denote defects. Green lines 
denote director field. Images in the same panel refer to the projections of opposite 
hemispheres. Energy density unit is 2.5 𝐽/𝑚3. 

 
 

 

 



 
 

 
 
Supplementary Figure 2. Defect trajectories and structures. Closed defect trajectories for 
𝜁 = 0.0008 (a), 𝜁 = 0.002 (b) and 𝜁 = 0.004 (c). A cubic is drawn as a guide to the eye. 
Individual zigzag defect trajectories trace a deformed cubic, as illustrated in (a). The two defects 
are symmetric about one symmetry axis of the cubic (dash-dotted lines).  The average angular 
distance and free energy are plotted in (d) and (e), respectively. 

 
 
 
 
 



 

 

 

Supplementary Figure 3. Evolution of defect configurations at intermediate activity. Defect 
configurations at two view points for 𝜁 = 0.005 (a, b) and average angular distance plot (c). The 
four markers show defect structures at four different times indicated in c. a is a 3D view and b is 
viewing at -y direction. Defects are connected to origin by dashed lines. a cubic is shown in 
dash-dotted lines to guide eyes. 

 

Supplementary Figure 4. Evolution of defect structure at high activity. Defect trajectory and 
structure are plotted for 𝜁 = 0.01. A single defect trajectory (a) and all defects' trajectories (b) 
on the shell. Defect position histograms (c) in terms of 𝑐𝑜𝑠−1(𝒓 ∙ 𝒏). nx, ny and nz are the three 
symmetry axes of a cubic. Temporal behavior of average angular distance (d) and system's free 
energy (e}. 



Supplementary Notes 
 
Supplementary Note 1. Symmetry of Defect Configurations 
In what follows, we show that if the four defects are symmetric about the symmetry axes of a 
deformed cubic, the following three equations hold: 𝛼𝛼12 = 𝛼𝛼34, 𝛼𝛼13 = 𝛼𝛼24 and  𝛼𝛼14 = 𝛼𝛼23. Say 
defect 1 is located at 𝐫𝐫𝟏𝟏 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) in Cartesian coordinates, and the three symmetry axes are 
(1,0,0), (0,1,0) and (0,0,1). Thus the positions of the other 3 defects are 𝐫𝐫𝟐𝟐 = (𝑎𝑎,−𝑏𝑏,−𝑐𝑐), 
𝐫𝐫𝟑𝟑 = (−𝑎𝑎, 𝑏𝑏,−𝑐𝑐), and 𝐫𝐫𝟒𝟒 = (−𝑎𝑎,−𝑏𝑏, 𝑐𝑐). Therefore 

𝑟𝑟1 ∙ 𝑟𝑟2 = 𝑟𝑟3 ∙ 𝑟𝑟4 = 𝑎𝑎2 − 𝑏𝑏2 − 𝑐𝑐2, 
𝑟𝑟1 ∙ 𝑟𝑟3 = 𝑟𝑟2 ∙ 𝑟𝑟4 = −𝑎𝑎2 + 𝑏𝑏2 − 𝑐𝑐2, 
𝑟𝑟1 ∙ 𝑟𝑟4 = 𝑟𝑟2 ∙ 𝑟𝑟3 = −𝑎𝑎2 − 𝑏𝑏2 + 𝑐𝑐2. 

 
 
Supplementary Note 2. Splay and Bend Distribution 
In order to elucidate the origin of the periodic dynamics, in this section we analyze the spatial 
distributions of splay and bend energy densities. In Supplementary Fig. 1, we show the 
distributions of splay and bend energies at four selected times for 𝜁𝜁 = 0.001. These two 
energies are highly inhomogeneous in the vicinity of defects. High splay and high bend appear 
in opposite directions along the symmetry axis of the +1/2 defect. A band of low splay connects 
pairs of defects. That band deforms until the defects move away from each other, while the 
band forms within a different pair. A baseball-like band divides the surface. Such bands don't 
arise in the bend energy map. The intrinsic curvature of the shell induces a finite bend and 
hence it is more evenly distributed on the surface than splay. One can also appreciate in the 
figure that the size of the defects oscillates between two values. The defect is smallest when 
the defect velocity reaches a secondary peak, and when the splay energy reaches its first local 
maximum; the core size is the largest in the excited state, when the splay energy also reaches 
its maximum value. 
 
 
Supplementary Note 3. Moderate Activity Dynamics 
In Supplementary Fig. 2(a-c), several trajectories are shown for 𝜁𝜁 = 0.0008, 0.002 and 0.004. 
These trajectories also follow a deformed cube, but their shape depends on the activity; the 
trajectories for 𝜁𝜁 = 0.0008 are sharper than for higher activities. Different defect trajectories 
meet at the corners of the cube. When the defects of large- 𝜁𝜁 systems move to the four corners 
of the deformed cube, for each pair the defect-defect distance is shorter than �8/3𝑅𝑅, the edge 
length of an ideal tetrahedron circumscribed on a sphere of radius R. The corresponding value 
of 〈𝛼𝛼〉𝑚𝑚𝑚𝑚𝑚𝑚 = 109.7° for 𝜁𝜁 = 0.002 and 〈𝛼𝛼〉𝑚𝑚𝑚𝑚𝑚𝑚 = 110° for 𝜁𝜁 = 0.004  indicate that the state of 
minimum energy reached by the system deviates from the global ground state in which 
〈𝛼𝛼〉𝑚𝑚𝑚𝑚𝑚𝑚 = 109.47° (see Supplementary Fig. 2(d)). In Supplementary Fig. 2(e) one can clearly see 
that min(F) is higher than that of a static system F0. And, as shown in main text Fig. 5(a), there is 
a correlation between the minimum average angular distance and the minimum free energy 
that the system can attain. The higher (F - F0)min is, the more pronounced the deviations 
become from a perfect tetrahedral state. As activity increases, the system of course moves 
further away from equilibrium, and the ``tetrahedral'' mode has a higher free energy. Main text 



Fig. 5(b) describes the shape asymmetry (𝛽𝛽) of the temporal evolution curves as a function of 𝜁𝜁. 
The temporal behavior of the angle 〈𝛼𝛼〉 and F are less ratchet-like for higher values of the 
activity. The energy difference between the two modes Fplanar - Ftetra is smaller, and it is easier 
for the system to climb the energy barrier, leading to a less asymmetric temporal evolution. 
 
 
Supplementary Note 4. High Activity Dynamics 
If one further increases 𝜁𝜁, in the regime between 0.006 ≤ 𝜁𝜁 ≤ 0.01, defects move in a less 
ordered manner, and their trajectories are no longer closed. Supplementary Fig. 4(a, b) shows 
these ``open'' trajectories for 𝜁𝜁 = 0.01. The defects still move in a pattern. As plotted in 
Supplementary Fig. 4(d, e), the system oscillates between 〈𝛼𝛼〉 ≃ 110°  and 〈𝛼𝛼〉 ≃ 120° in a 
complicated way: a third mode appears in which 〈𝛼𝛼〉 reaches a minimum that is well above 
109.47° when between two planar modes. The corresponding free energy also fluctuates in a 
random manner. If we measure the angles between the defect position r and the three 
symmetry axes of a cube (given by nx, ny and nz), we see in Supplementary Fig. 4(c) that the 
defects are depleted within 23° off these axes. When the defect trajectories deviate from the 
deformed cube (as 𝜁𝜁 increases), they remain near the sides of the cube, leading to a depletion 
near the axes regions. If one assumes that the defects are uniformly distributed outside of the 
depletion region, it is possible to generate a histogram that matches that predicted by our 
simulations to within statistical error (see Supplementary Fig. 4(c)), suggesting that defect 
positions for the disordered active system are ergodic. When 𝜁𝜁 ≥ 0.02, momentum is no longer 
conserved and the four-defect structure is not stable. 
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