

Supplementary Fig. 1. EA.hy926 cell line with LDLR knockdown.

a) qPCR result for EA.hy926 transduced with either scramble shRNA lentivirus or the 5 shRNA lentiviruses targeting the ORF of LDLR. #, cells cultured in LPDS. §, cells cultured in LDL supplemented media (25 μ g/ml). Data represent the mean ± SEM and are representative of 3 experiments in duplicate. *p < 0.05, Student's t-test. b) Western blot analysis for EA.hy926 transduced with either scramble shRNA lentivirus or the 5 shRNA lentiviruses targeting the ORF of LDLR. #, cells cultured in LPDS. §, cells cultured in LDL-supplemented media (25 μ g/ml) A non-cropped western blot for this experiment can be found in Supplementary Figure 11b.

Supplementary Fig. 2. Qiagen's Ingenuity Pathway Analysis. Analysis of the 34 gene hits revealed 3 distinct networks. Representation in a gene cluster format.

											20		0				0																		Г
CLEC6A	CHRNA9	CHMP5	CHMP4B	CHMP2A	CDH23	CDC42BPB	CCDC30	CAV3	CAV2	CAV1	orf125 (TMEM246)	C21orf2	19orf6 (TMEM259)	C17orf80	C17orf59	C15orf38	SKIP (C14orf129)	C12orf52	BTN3A1	BHMT2	ATP6V1C1	ARHGAP9	ARHGAP35	ARCN1	APOB	AP2M1	ANTXR2	ANGPT4	ADORA1	ACVRL1	ABHD12B	ABCG5	ABCG1	ABCC8	Gene symbol
1 3 3 0	0 3 2 0	1 0 0 0	4 0 4 0	2 3 2 0	0 3 1 0	0000	0 2 1 0	1 2 1 0	1 4 2 3	0 3 0 0	2 2 3 0	2 2 3 0	1 3 4 0	1 4 2 1	3 1 3 0	2 2 3 0	2 1 2 0	0 0 3 0	2 3 3 0	2 4 4 0	2 1 4 0	2 1 4 0	0 4 1 0	4 4 0	0 2 0 0	2 0 4 0	2 4 1 0	2 1 4 0	1 4 2 0	4 1 4 0	1 2 2 0	2 2 1 0	0 2 1 0	1 2 1 0	ETHL
			8			0	0		8	A-fib, PR &					7 (5		0		9 ⁵ QT	4			CAD	3	SBP, DBP, M	2		1		CAD			S CVD
										QT TG												HDL, T		TC	LDL, HDL, 1		AAP					LDL, T			Lipida
																						Ö			TG, TC							Ó			on
LPHN3	LIF	LEPROT	KLRB1	KBTBD3	ITM2C	ITGB5	IRF7	IRF6	INADL	HLA-DQB1	HIP1	GSK3B	GPR182	GJA3	FXYD3	FCRL3	FCRL1	FAM18B1	ENDOG	ELK1	EGFR	EGFL6	DUSP19	DSTYK	DPYSL2	DPP4	DOK6	CXarf66	CX3CR1	CSNK1E	CRELD1	COG1	CLMN	CL/C1	Gene symbol
0 0 2	3 0 4	3 3 1	0 0	0	2 3 3	2 2 2	010	1 0 0	041	3 1 2	2 1 1	0 2 0	2 1 2	4 0 3	3 0 3	1 3 0	1 0 0	0 1 2	3 0 2	2 2 0	0 3 2	1 0 2	1 0 1	0 3 0	1 2 4	0 1 1	0 1 0	0 1 1	2 1 3	1 0 2	0 3 1	1 3 2	110	1 2 2	ETH
1	0 15	0	0	1	0	0	0	0	0	0 14	0	0	0 13	0 12	11	1	0	0	0 10	1	0	0	0	1	0	0	1	1	9	0	2	0	1	0	S
																																			CVD
												HDL																							Lipids
SCLT1	SCARB1	SARM1	RXFP3	RHBDD3	RGR	RELA	RASGEF1B	RAB7A	PTRF	PSEN2	PSAP	PRKCDBP	PQLC3	PPIAL4A	PLLP	PLD6	PISD	PDIA3	PALLD	OR5C1	OR52N4	NYX	NTN3	NPFFR2	NOTCH4	NID1	NAPA	MUSK	MRGPRE	MARK4	MAPK8	MAPK6	MAP2K1	LPL	Gene symbol
0 1 0 0	1 2 3 1	1 1 4 0	2 0 3 0	4 0 4 0	2 0 4 0	1 2 2 0	0 1 0 1	1 1 1 0	0 2 3 0	2 1 3 0	0 1 2 0	1 1 0	3 2 2 0	1 1 0 0	2 1 3 0	0 1 0 1	1 1 2 0	1 0 2 0	0 2 0 0	0 0 1 0	2 2 1 0	1 2 4 1	1 2 4 0	0 2 0 1	0 0 4 0	0 1 1 0	4 0 4 0	1 4 2 1	2 0 4 0	3 2 2 0	1 0 4 0	2 1 2 0	3 2 2 2	1 2 4 1	ETHL
			23	22	21					20					19												18		17			16		CA	s
), PP	VD
	HDL					HDL																												TG, HDL	Lipids
WDR26	VPS39	VPS29	UFSP2	TSPEAR	TSPAN32	TSPAN12	TRPC6	TREML2	TRAPPC4	TMEM89	TMEM184C	TMEM18	TMEM179B	SYTL2	SYT9	SYS1	SUPT5H	STAT3	SSTR4	SRP72	SMR3B	MIEF2 (SMCR7)	SLC38A3	SLC10A5	SLC10A2	SLC10A1	SHROOM4	SHANK3	SHANK1	SFN	SERINC2	SEMA5A	SDPR	SDC1	Gene symbol
4 2 4 0	1 1 1	0 1 2 0	0 2 2 0	1 1 4 0	2 1 3 0	1 1 0 0	2 0 3 0	3 0 2 0	1 0 0 1	2 2 3 0	0 0 1 0	0 2 1 0	0 2 1 0	3 1 2 0	3 0 3 0	3 0 3 1	4 0 4 0	1 1 3 0	2 2 3 2	2 0 3 0	1 1 3 0	3 1 4 0	2 0 4 0	0 2 2 0	1 0 3 0	1 0 2 1	0 1 0 0	1 0 1 1	0 2 0 0	0 1 0 0	1 0 2 0	1 0 2 0	1 3 1 0	2 1 3 0	ETHL
					34		22	32						31	30	2	28			27		26	25											24	S C/
																														T					ð
																							HDL							DL, LDL, TG				ТС	Lipids

E: Dil-LDL uptake in EA.hy926 cells
T: Transferrin-FITC uptake in EA.hy926 cells
H: Dil-LDL uptake in HUVECs
L: LDLR dependency
S: endothelial specific

CVD	cardiovascular traits
Lipids	effect on lipids
A-fib.	atrial fibiliation
CAD	coronary artery disease
DBP	diastoloic blood pressure
HDL	high-density lipoprotein
LDL	low-density lipoprotein
MAP	mean arterial pressure
pp	pulse pressure
PR	PR interval
QT	QT interval
SBP	systolic blood pressure
TC	total cholesterol
TG	triglycerid

Shown are the numbers of individual siRNAs targeting each gene that score positive in each screen. Green, SIRNAs fulfit the assay criteria ($E + H \times 2$ positive siRNAs ($I + L \times 2$ positive siRNAs). Red, siRNAs does not fulfit the assay criteria ($E + H \times 2$ positive siRNAs).

Supplementary Fig. 3. Follow-up screen.

140 genes from the initial GW RNAi screen were further analysed. See Supplementary Datatset 2 for further details. References for the expression pattern are listed under Supplementary References at the end of this document. See Supplementary Dataset 3 for further details on the GWAS data.

Supplementary Fig. 4. Transcript levels for ALK1 in human primary endothelial cells and hepatocytes The transcript levels of *ACVRL1*, *HMGCR* and *LDLR* were compared between primary human endothelial cells (HUVEC) and primary human hepatocytes (healthy donors).

Supplementary Fig. 5. siRNA efficiency analysis

a) qPCR analysis of the knockdown efficiency of siRNA against murine ALK1 (here MLEC). Data represent the mean \pm SEM and are representative of 3 experiments in duplicate. *p < 0.05, Student's t-test. b) qPCR analysis of all 4 individual siRNAs against human ALK1 used in the GW RNAi screen. Analysis performed in HUVECs. Data represent the mean \pm SEM and are representative of 3 experiments in duplicate. *p < 0.05, Student's t-test. c) Western blot analysis of the knockdown efficiency of siRNA against murine ALK1 (here MLEC) based on the BMP9 (10 ng/ml) induced phosphorylation of SMAD 1/5. A non-cropped western blot for this experiment can be found in Supplementary Figure 12a.

Supplementary Fig. 6. ALK1 knockdown does not affect transcript levels of SREB2-dependent genes Cells were treated with control siRNA, *ACVRL1* siRNA and *DNM2* siRNA and kept in either low LDL media (LPDS) or high LDL media (LDL pretreated), before transcripts for genes involved in sterol sensing were analysed. Data represent the mean \pm SEM and are representative of 3 experiments in duplicate. *p < 0.05, Student's t-test.

a) Genotyping results of *Acvr11*^{fl/fl} mice with or without the inducible *Cdh5*-CreERT2 transgene 7 days after first TMX injection. b) Weight measurements. Data represent the mean \pm SEM and are representative of 3 animals each. *p < 0.05, Student's t-test. c) Kaplan-Meier curve. d) Representative images of paws from Cre-negative and Cre-positive animals 7 days after the first TMX injection. e) Cre-positive animals were injected with TMX for 0, 1, 3, 5 or 7 days and primary MLECs were isolated and treated after 3 hrs of starvation with vehicle or BMP9 (10 ng/ml). A non-cropped western blot for this experiment can be found in Supplementary Figure 12b.

Supplementary Fig. 9. Original Western Blots

a) Original gel scans for Fig. 2b. b) Original gel scans for Fig. 3b.

Supplementary Fig. 10. Original Western Blots

a) Original gel scans for Fig. 4c. b) Original gel scans for Fig. 4e.

Supplementary Fig. 11. Original Western Blots

a) Original gel scans for Fig. 5a. b) Original gel scans for Sup. Fig. 1b.

Supplementary Fig. 12. Original Western Blot

a) Original gel scans for Sup. Fig. 6c. b) Original gel scans for Sup. Fig. 9e.

Network 1	Network 2	Network 3
Hereditary Disorder, Metabolic Disease, Neurological Disease	Carbohydrate Metabolism, Lipid Metabolism, Small Molecule Biochemistry	Cancer, Carbohydrate Metabolism, Cell Cycle
ACVRL1, Akt, ANGPT4, ATP6V1C1, caspase, CX3CR1, ENDOG, ERK, ERK1/2, FXYD3, Gpcr, GPR111, GPR144, GPR152, GPR162, GPR174, GPR182, Insulin, LIF, MAPK6, NAPA, NFkB (complex), P38 MAPK6, PSEN2, RGR, RHBDD3, RXFP3, SDC1, Secretase gamma, SLC38A3, SRP72, SYT9, TRPC6, Vegf, VN1R2	AP2M1, ARHGAP9, ARL17A, ATG4D, C17orf59, CCDC94, CHMP4B, DYNLL1, FAHD2A, FAM216A, GDAP2, GJA3, GSKIP, HLA-QB1, HKA-QB1, HNF4A, MIEF2, MRGPRE, MTRF1L, ORMDL2, PAX6, phosphatidylserin, PLLP, RNF44, SLC35D1, SLC7A6OS, SNX11, SUPT5H, SYS1, SYTL2, TREML2, TTC26, ZNF222, ZNF586	IL2, TSPAN32

Supplementary Table 1. Qiagen's Ingenuity Pathway Analysis.

Analysis of the 34 gene hits revealed 3 distinct networks. Representation in a table format. Genes in bold were found in the screen and genes in red cluster in the vesicular trafficking pathway.

gene	ordering number	company	concentration
control siRNA	D-001220-01	Dharmacon	20 nM
scamble control siRNA	1027310	Qiagen	20 nM
ALK1 siRNA (human)	D-005302-06	Dharmacon	20 nM
ALK1 siRNA (murine)	M-043004-01	Dharmacon	20 nM
DNM2 siRNA (human)	customized target sequence: 5 ' -AACATGCCGAGTTTTTGCACT-3 '	Qiagen	20 nM
LDLR siRNA (human)	4392420 / ID: s224006	Ambion	20 nM
LDLR shRNAs lentiviral knockdown (human)	TRCN0000056517 5' - CCGGACAGAGGATGAGGTCCACATTCTCGAGAAT GTGGACCTCATCCTCTGTTTTTTG-3' TRCN0000262146 5' - CCGGGGGCGACAGATGCGAAAGAAACTCGAGTTT CTTTCGCATCTGTCGCCCTTTTTG-3' TRCN0000262148 5' - CCGGACATCAACAGCATCAACTTTGCTCGAGCAA AGTTGATGCTGTTGATGTTTTTTG-3' TRCN0000262149 5' - CCGGATGGAAGAACTGGCGGCTTAACTCGAGTTA AGCCGCCAGTTCTTCCATTTTTTG-3' TRCN0000282124 5' -	Sigma-Aldrich	n/a
NPC2 siRNA (human)	M-017216-00	Dharmacon	20 nM

Supplementary Tab. 2. siRNA and shRNAs used in the study.

protein	ordering number	company	working concentration
Western Blot			
β-actin	sc-47778	Santa Cruz	1 : 1,000
HSP90	sc-13119	Santa Cruz	1 : 1,000
GFP	sc-8664	Santa Cruz	1 : 1,000
LDLR	10007665	Cayman	1 : 500
p-SMAD 1/5 (S463/S465)	9516	Cell Signaling	1 : 500
t-SMAD 1	9743	Cell Signaling	1 : 1,000
FACS			
LDLR	sc-18823	Santa Cruz	1.5 µg/tube
mmlgG2b	sc-3879	Santa Cruz	1.5 µg/tube
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor® 488 conjugate	A-11001	Invitrogen	1:500
Immunofluorescence			
EEA1	610456	BD Transduction Laboratories	1:200
MLEC isolation			
M-450 Dynabeads conjugated with sheep anti-rat IgG	110.07	Dynal Biotech	50 μl beads/6 μl antibody
Affinity-purified anti- mouse CD31 (PECAM-1) antibody	553370	Pharmingen	6 μl antibody/3 mice

Cdh5-CreE	RT2		LDLR-KO		
forward	5'-GCC TGC ATT ACC G	GT CGA TGC AAC GA-3'	P1 (common)	5'-CCA	TAT GCA
reverse	5'-GTG GCA GAT GGC G	GCG GCA ACA CCA TT-3'	P2 (WT)	5'-606	ATG GA
amplicon size	700 bp		P3 (Neo)	5'- AAT	CCA TCI
PCR progr	am		WT	167 bp	
step 1	93°C	2:00 min	КО	350 bp	
step 2	93°C	0:30 min	Het	167 bp	+ 350 bp
step 3	67°C	0:30 min	PCR program		
atom 4	01 0	0.00 mm	step 1	95°C	3:00 min
step 4	72°C	0:45 min	step 2	95°C	0:10 min
step 5	go to 2, 35 x		sten 3	61°C	0.45 min
step 6	72°C	10:00 min	step 4	7000	0.00
step 7	100	forever		72°C	3:00 min
	40	lolevel	step 5	go to 2	, 35 x

5'-CCA	5'-CCA TAT GCA TCC CCA GTC TT-3'					
5'-GCG	5'-GCG ATG GAT ACA CTC ACT GC-3'					
5'- AAT	5'- AAT CCA TCT TGT TCA ATG GCC GAT C-3'					
167 bp	167 bp					
350 bp						
167 bp + 350 bp						
95°C	3:00 min					
95°C	0:10 min					
61°C	0:45 min					
72°C	3:00 min					
go to 2, 35 x						
72°C	10:00 min					
4°C	forever					
	5'-CCA 5'-GCG 5'-AAT 167 bp 350 bp 167 bp 95°C 61°C 72°C 95°C 61°C 72°C 90 to 2 72°C 90 to 2 72°C					

ALK1 floxed	allel						
	forward I	oxP 3	5'-CAG CAC CTA CAT CTT GGG TGG AGA-3'				
	reverse l	oxP 3	5'-ACT GTT CTT CCT CGG AGC CTT GTC-3'				
	amplicon siz	ze floxed	> 300 bp				
а	amplicon size	e unfloxed	187 bp				
	forward I	oxP 6	5'-CCT GGA CAG CGA CTG TAC TAC-3'				
	reverse l	oxP 6	5'-GCC CCA TTG CTC TCC TCA AA-3'				
	amplicon siz	ze floxed	> 400 bp				
a	amplicon size	e unfloxed	356 bp				
By using forv detected (~ 4	vard loxP 3 a 00 bp).	nd reverse loxP 6 prime	ers the Δ -band after Cre-recombinase excision can be				
PCR program	1						
step 1	94°C	10:00 min					
step 2	94°C	0:30 min					
step 3	60°C	0:40 min					
step 4	72°C	0:40 min					
step 5	go to 2, 34 x	<					
step 6	72°C	2:00 min					
step 7	4°C	forever					

gene	species	primers (5'→3') forward reverse
ALK1	human	CGAGGGATGAACAGTCCTGG GTCATGTCTGAGGCGATGAAG
	murine	GGGCCTTTTGATGCTGTCG TGGCAGAATGGTCTCTTGCAG
DNM2	human	GTTTGTGCTGACTGCCGAGT TTCCAGCTGTCCACGTCTTC
	human	CTCTCTGCTCCTCCTGTTCGAC TGAGCGATGTGGCTCGGCT
GAPDH	murine	AATGTGTCCGTCGTGGATCTGA AGTGTAGCCCAAGATGCCCTTC
HMGCR	human	TGATTGACCTTTCCAGAGCAAG CTAAAATTGCCATTCCACGAGC
INSIG1	human	GCACTGCATTAAACGTGTGG GCAGCACTGAAATGAATGGA
LDLR	human	TCTGCAACATGGCTAGAGACT TCCAAGCATTCGTTGGTCCC
PCSK9	human	GGAGCTGGCCTTGAAGTTGCC ACCGTGGAGGGGTAATCCGC

Supplementary References

1. Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A. Alk1 signaling inhibits angiogenesis by cooperating with the notch pathway. Developmental Cell. 2012;22:489-500

2. Lee HJ, Cho CH, Hwang SJ, Choi HH, Kim KT, Ahn SY, Kim JH, Oh JL, Lee GM, Koh GY. Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2004;18:1200-1208

3. Meng J, Wang J, Lawrence GW, Dolly JO. Molecular components required for resting and stimulated endocytosis of botulinum neurotoxins by glutamatergic and peptidergic neurons. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2013

4. Takefuji M, Asano H, Mori K, Amano M, Kato K, Watanabe T, Morita Y, Katsumi A, Itoh T, Takenawa T, Hirashiki A, Izawa H, Nagata K, Hirayama H, Takatsu F, Naoe T, Yokota M, Kaibuchi K. Mutation of arhgap9 in patients with coronary spastic angina. Journal of human genetics. 2010;55:42-49

5. Feng S, Deng L, Chen W, Shao J, Xu G, Li YP. Atp6v1c1 is an essential component of the osteoclast proton pump and in f-actin ring formation in osteoclasts. The Biochemical journal. 2009;417:195-203

6. Hundsrucker C, Skroblin P, Christian F, Zenn HM, Popara V, Joshi M, Eichhorst J, Wiesner B, Herberg FW, Reif B, Rosenthal W, Klussmann E. Glycogen synthase kinase 3beta interaction protein functions as an a-kinase anchoring protein. J Biol Chem. 2010;285:5507-5521

7. The Human Protein Atlas.

Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419

8. Martinelli N, Hartlieb B, Usami Y, Sabin C, Dordor A, Miguet N, Avilov SV, Ribeiro EA, Jr., Gottlinger H, Weissenhorn W. Cc2d1a is a regulator of escrt-iii chmp4b. J Mol Biol. 2012;419:75-88

9. Hochheiser K, Heuser C, Krause TA, Teteris S, Ilias A, Weisheit C, Hoss F, Tittel AP, Knolle PA, Panzer U, Engel DR, Tharaux PL, Kurts C. Exclusive cx3cr1 dependence of kidney dcs impacts glomerulonephritis progression. The Journal of clinical investigation. 2013;123:4242-4254

10. McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafin A, Ware J, Bottolo L, Muckett P, Canas X, Zhang J, Rowe GC, Buchan R, Lu H, Braithwaite A, Mancini M, Hauton D, Marti R, Garcia-Arumi E, Hubner N, Jacob H, Serikawa T, Zidek V, Papousek F, Kolar F, Cardona M, Ruiz-Meana M, Garcia-Dorado D, Comella JX, Felkin LE, Barton PJ, Arany Z, Pravenec M, Petretto E, Sanchis D, Cook SA. Endonuclease g is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature. 2011;478:114-118

11. Bibert S, Roy S, Schaer D, Felley-Bosco E, Geering K. Structural and functional properties of two human fxyd3 (mat-8) isoforms. J Biol Chem. 2006;281:39142-39151

12. Li L, Cheng C, Xia CH, White TW, Fletcher DA, Gong X. Connexin mediated cataract prevention in mice. PLoS One. 2010;5

13. Xiao L, Harrell JC, Perou CM, Dudley AC. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis. 2014;17:511-518

14. Griffioen M, van der Meijden ED, Slager EH, Honders MW, Rutten CE, van Luxemburg-Heijs SA, von dem Borne PA, van Rood JJ, Willemze R, Falkenburg JH. Identification of phosphatidylinositol 4-kinase type ii beta as hla class ii-restricted target in graft versus leukemia reactivity. Proc Natl Acad Sci U S A. 2008;105:3837-3842

15. Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y, Juang JL, Chow KP, Chang YS. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. The Journal of clinical investigation. 2013;123:5269-5283

16. Seternes OM, Mikalsen T, Johansen B, Michaelsen E, Armstrong CG, Morrice NA, Turgeon B, Meloche S, Moens U, Keyse SM. Activation of mk5/prak by the atypical map kinase erk3 defines a novel signal transduction pathway. The EMBO journal. 2004;23:4780-4791

17.Cox PJ, Pitcher T, Trim SA, Bell CH, Qin W, Kinloch RA. The effect of deletion of the orphan g - protein coupled receptor (gpcr) gene mrge on pain-like behaviours in mice. Molecular pain. 2008;4:2

Supplementary References (continuation)

18. Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao YC, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodriguez EM, Sheen VL. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Human molecular genetics. 2009;18:497-516

19.Miller AD, Bergholz U, Ziegler M, Stocking C. Identification of the myelin protein plasmolipin as the cell entry receptor for mus caroli endogenous retrovirus. J Virol. 2008;82:6862-6868

20.Rivabene R, Visentin S, Piscopo P, De Nuccio C, Crestini A, Svetoni F, Rosa P, Confaloni A. Thapsigargin affects presenilin-2 but not presenilin-1 regulation in sk-n-be cells. Experimental biology and medicine. 2013

21.Ksantini M, Senechal A, Bocquet B, Meunier I, Brabet P, Hamel CP. Screening genes of the visual cycle rgr, rbp1 and rbp3 identifies rare sequence variations. Ophthalmic genetics. 2010;31:200-204

22.. Liu J, Liu S, Xia M, Xu S, Wang C, Bao Y, Jiang M, Wu Y, Xu T, Cao X. Rhomboid domain-containing protein 3 is a negative regulator of tlr3-triggered natural killer cell activation. Proc Natl Acad Sci U S A. 2013;110:7814-7819

23.Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiological reviews. 2013;93:405-480

24.Szatmari T, Dobra K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Frontiersoncology. 2013;3:310

25.Jenstad M, Chaudhry FA. The amino acid transporters of the glutamate/gaba-glutamine cycle and their impact on insulin and glucagon secretion. Frontiers in endocrinology. 2013;4:199

26. Liu T, Yu R, Jin S-B, Han L, Lendahl U, Zhao J, Nistér M. The mitochondrial elongation factors mief1 and mief2 exert partially distinct functions in mitochondrial dynamics. Experimental Cell Research. 2013;319:2893-2904

27.Kirwan M, Walne Amanda J, Plagnol V, Velangi M, Ho A, Hossain U, Vulliamy T, Dokal I. Exome sequencing identifies autosomal-dominant srp72 mutations associated with familial aplasia and myelodysplasia. The American Journal of Human Genetics. 2012;90:888-892

28.Wier AD, Mayekar MK, Heroux A, Arndt KM, VanDemark AP. Structural basis for spt5-mediated recruitment of the paf1 complex to chromatin. Proc Natl Acad Sci U S A. 2013;110:17290-17295

29.Setty SR, Strochlic TI, Tong AH, Boone C, Burd CG. Golgi targeting of arf-like gtpase arl3p requires its nalpha-acetylation and the integral membrane protein sys1p. Nature cell biology. 2004;6:414-419

30.Iezzi M, Eliasson L, Fukuda M, Wollheim CB. Adenovirus-mediated silencing of synaptotagmin 9 inhibits ca2+-dependent insulin secretion in islets. FEBS Letters. 2005;579:5241-5246

31.Ménasché G, Ménager MM, Lefebvre JM, Deutsch E, Athman R, Lambert N, Mahlaoui N, Court M, Garin J, Fischer A, de Saint Basile G. A newly identified isoform of slp2a associates with rab27a in cytotoxic t cells and participates to cytotoxic granule secretion. Blood. 2008;112:5052-5062

32.Allcock RJ, Barrow AD, Forbes S, Beck S, Trowsdale J. The human trem gene cluster at 6p21.1 encodes both activating and inhibitory single igv domain receptors and includes nkp44. European journal of immunology. 2003;33:567-577

33.Seo K, Rainer PP, Shalkey Hahn V, Lee D-i, Jo S-H, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP, Birnbaumer L, Schnackenberg CG, Kass DA. Combined trpc3 and trpc6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proceedings of the National Academy of Sciences. 2014

34.Gartlan KH, Belz GT, Tarrant JM, Minigo G, Katsara M, Sheng K-C, Sofi M, van Spriel AB, Apostolopoulos V, Plebanski M, Robb L, Wright MD. A complementary role for the tetraspanins cd37 and tssc6 in cellular immunity. The Journal of Immunology. 2010;185:3158-3166