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S1 Related work

Here, we expand our discussion from the main paper on the three existing methods that can deal with the
SCD problem, GraphScope, Multi-Step, and GHRG.

GraphScope [1, 2, 3] works as follows. The first snapshot becomes the current segment. Given the
current segment, the method iteratively examines the next snapshot in the temporal sequence to determine
whether: 1) the community organization of the snapshot in question matches well the community organization
of the current segment, and thus, the snapshot should be added to the current segment (this simply extends
the current segment for the next iteration), or instead 2) the community organization of the snapshot does
not match well the community organization of the current segment, and thus, the snapshot should begin
a new segment (which becomes the current segment for the next iteration). Community organizations of
the given snapshot and the current segment are obtained and their match is measured via the minimum
description length (MDL) principle. Computational complexity of the method is unknown [1].

Multi-Step [4] uses an agglomerative hierarchical clustering approach as follows. Each snapshot starts
as a singleton segment. Then, in every iteration, the most similar (in terms of community organization)
pair of segments are combined. Specifically, the level of similarity between two segments quantifies how well
the community organization (i.e., the partition) of the first segment fits the second segment, and also how
well the partition of the second segment fits the first segment. Here, the quality of the fit of a partition
to a segment is based on average modularity (Supplementary Section S2.1.1), and a partition for the given
segment is detected by greedily maximizing average modularity via a modification of Louvain algorithm for
static community detection (Supplementary Section S2.1.2). The output of the above iterative Multi-Step
procedure is a hierarchical tree with snapshots as leaves. However, it is not clear how to automatically cut
the tree to obtain segments and their corresponding change points. As such, Multi-Step is suitable when
the desired number of segments is provided as input. Computational complexity of the method is unknown;
however, it is know that the number of required consensus clustering runs is O(k), where k is the number of
snapshots [4].

GHRG [5] considers a fixed-length sliding window of the most recent snapshots and uses a statistical
test to evaluate whether: 1) within the window, the snapshots before and after a given time point originate
from different community organization-related models, and thus, this time point should be declared as a
change point, or instead 2) all snapshots within the window come from the same model, and thus, there
is no change point in that window. As its community organization-related model, GHRG uses generalized
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hierarchical random graphs. Computational complexity of the method is O(kn2 logn), where k is the number
of snapshots and n is the number of nodes in snapshots [5].

S2 Methods

S2.1 Our SCOUT approach

Here, we expand our discussion from the main paper on the three main components of SCOUT: objective
function (Supplementary Section S2.1.1), consensus clustering (Supplementary Section S2.1.2), and search
strategy (Supplementary Section S2.1.3).

S2.1.1 Objective function

For the CSCD problem, in which segmentation parsimony is fixed, an objective function Q should measure
partition accuracy of an output A. For the SCD problem, an objective function Q should measure both
segmentation parsimony and partition accuracy. We organize the rest of this section as follows. I) We
discuss the group of objective functions QP that measure only partition accuracy. II) We discuss the group
of objective functions QB that measure both aspects of the output quality. III) We discuss how to use the
above two groups of objective functions to solve the CSCD and SCD problems.

I) To measure only partition accuracy, we define QP as the average snapshot partition quality:

QP (A,D) =
1

k

l−1
∑

i=0

ti+1−1
∑

j=ti

F (pi, Gj), (1)

where F measures the fit of partition pi to snapshot Gj . Since there is no one universally accepted measure
F of how well a given partition p fits a given snapshot G = (V,E), we test four popular such measures F
[6]. Let |p| be the number of clusters in partition p. For a given cluster c ∈ p, let nc be the number of its
nodes, let mc be the number of its internal edges, and let bc be the number of its boundary edges (edges
between the nodes in c and the nodes in V \ c). We consider the following choices of F : 1) Modularity
[7]: F (p,G) = 1

2|E|

∑

c∈p(mc − E(mc)), where E(mc) is the expected number of c’s internal edges under a

configuration model (a random model with the same degree distribution as G). Intuitively, a partition is of
high quality with respect to modularity if its clusters are denser than at random. The higher the modularity
score, the better the partition accuracy. The remaining three measures are based on the intuition that in
a good partition, clusters should have more inside than boundary edges. 2) Conductance [8]: F (p,G) =
1
|p|

∑

c∈p
bc

2mc+nc
. 3) Normalized Cut [9]: F (p,G) = 1

|p|

∑

c∈p(
bc

2mc+nc
+ bc

2(m−mc)+nc
). 4) Average-ODF [10]:

F (p,G) = 1
|p|

∑

c∈p
1

|nc|

∑

u∈c
|{|(u,v)∈E|v 6∈c}|

du
, where du is the degree of node u. Because for the last three

measures, the lower the score, the better the partition accuracy, and because SCOUT aims to maximize
(rather than minimize) its objective function, SCOUT uses F ′(p,G) = 1 − F (p,G) instead of F in its
objective function for these three measures.

II) To simultaneously measure both segmentation parsimony and partition accuracy, we define QB based on
the model selection problem [11]. Intuitively, given some A = (T, P ) for a dynamic network D, if we use A
as a generative model for creating a dynamic network, how well does this model A fit D? On the one hand,
the more complex the model (intuitively, the more segments there are in A, i.e., the lower the segmentation
parsimony, and also, the more clusters there are in each segment partition), the more likely it is that we will
observe a high fit (as measured by the likelihood of D given A, which mostly reflects partition accuracy). On
the other hand, the less complex the model, the more likely it is that we will observe a low fit. Given a set of
As under consideration (see below), the goal of the model selection problem is to choose A⋆ that optimizes
some measure of quality over all such As. This measure of quality should balance between the goodness
of the fit of A to D (mostly partition accuracy) and the complexity of the model A (mostly segmentation
parsimony).

To solve the model selection problem, we test two popular approaches [11, 12]: 1) Akaike Information
Criterion (AIC ) [13] and 2) Bayesian Information Criterion (BIC ) [14]. Both approaches compute the
goodness of the fit in the same way. They also compute the complexity of the model in the same way.
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However, the two approaches differ in how they penalize the objective function by the complexity of the
model. We define QB using AIC or BIC as follows:

QB(A,D) = ℓ(D|A)− w(D)Np(A). (2)

In the above formula, the goodness of the fit is measured via ℓ(D|A), the log-likelihood of D given A (see
below). The complexity of the model is measured via Np(A), the number of parameters in A (see below).
The above two quantities, ℓ(D|A) and Np(A), are balanced via penalty weight w(D). For AIC, w(D) = 1.
For BIC, w(D) = 1

2 logNo(D), where No(D) is the number of observations in D (how “large” D is; see
below). In general, w(D) is larger in BIC than in AIC, which means that BIC penalizes complex models
more heavily than AIC. Intuitively, in our case, this means that BIC prefers outputs with smaller numbers
of segments than AIC.

Next, we discuss how to compute ℓ(D|A), Np(A), and No(D).
To compute ℓ(D|A), we assume that each segment si is independent of the others, and thus ℓ(D|A) is

just the sum of log-likelihoods of the individual segments ℓ(si|A):

ℓ(D|A) =
l−1
∑

i=0

ℓ(si|A), (3)

where segmentation S = {s0, s1, . . . , sl} is determined by change point set T of A. To compute ℓ(si|A), we
assume that si has an associated stochastic blockmodel (see below) and each snapshot Gj within segment
si is independent given this blockmodel. A stochastic blockmodel is a generative model where probability
of an edge is determined by the cluster memberships of its endpoints [15]. The blockmodel contains two
parts: a partition p and a stochastic block matrix θ of size |p|× |p|, where θcu,cv is the probability of an edge
between two nodes u, v from clusters cu, cv ∈ p, respectively. The blockmodel associated with si is based on
the corresponding segment partition pi and has the stochastic block matrix θ(i) (see below). Thus, ℓ(si|A)

is just the sum of log-likelihoods of the individual snapshots ℓ(Gj |θ̂(i), A):

ℓ(si|A) =

ti+1−1
∑

j=ti

ℓ(Gj |θ̂
(i), pi), (4)

where θ̂(i) is the maximum likelihood estimator of θ
(i)
cu,cv . That is, θ̂

(i)
cu,cv is computed as the fraction of the

actual and the maximum possible numbers of edges between nodes in cluster cu and nodes in cluster cv
across all snapshots Gj of segment si:

θ̂(i)cu,cv
=

∑ti+1−1
j=ti

m
(j)
cucv

∑ti+1−1
j=ti

n
(j)
cucv

. (5)

In the above formula, m
(j)
cucv is the number of edges in Gj between nodes in cluster cu and nodes in cluster

cv, and n
(j)
cucv is the maximum possible number of such edges. If cu 6= cv, then n

(j)
cucv = n

(j)
cu n

(j)
cv , where n

(j)
cu

and n
(j)
cv are the numbers of nodes from Gj that are in clusters cu and cv, respectively. If cu = cv, then

n
(j)
cucv =

(

n(j)
cu

2

)

. To compute ℓ(Gj |θ̂(i), pi), the log-likelihood of Gj = (Vj , Ej) given θ̂(i) and pi, because we are
using a stochastic blockmodel, we assume that an edge between each pair of nodes u, v ∈ Vj is independent
of others and its probability is based on the cluster memberships cu, cv ∈ pi of u, v, respectively. Thus,
ℓ(Gj |θ̂(i), pi) is just the sum of log-likelihoods of individual edges and non-edges observed in Gj :

ℓ(Gj |θ̂
(i), pi) =

∑

(u,v)∈Ej

log θ̂(i)cu,cv
+

∑

(u,v) 6∈Ej

log(1− θ̂(i)cu,cv
). (6)

To compute Np(A), we count the number of values in θ̂(i)s across all segments si, i ∈ [0, l − 1]. For a

given segment si, we have one value in θ̂(i) for each pair of clusters in pi (including a cluster with itself), so,
in total:

Np(A) =

l−1
∑

i=0

(

(

|pi|

2

)

+ |pi|) =
l−1
∑

i=0

|pi|(|pi|+ 1)

2
. (7)
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To compute No(D), we count the number of node pairs in all snapshots Gj = (Vj , Ej) in D (Supple-
mentary Equation 6):

No(D) =

k−1
∑

j=0

(

|Vj |

2

)

=

k−1
∑

j=0

|Vj |(|Vj | − 1)

2
. (8)

By combining Supplementary Equations 3, 7, and, for BIC, 8, we can compute QB(A,D) in Supplemen-
tary Equation 2.

III) Given some consensus clustering method and search strategy (see below), and given the above two
groups of objective functions, QP and QB, we now discuss how to solve the CSCD and SCD problems.

To solve the CSCD problem , we pick as A⋆ a solution with the desired number of segments l that
maximizes Q ∈ {QP , QB}:

A⋆ = argmax
|T |=l−1,A∈R

Q(A,D), (9)

where T is the change point set of A (recall that we need l−1 change points to produce l segments) and R is
the set of the considered outputs (note that this set is determined by the search strategy; see below). Here,
Q can measure either only partition accuracy (i.e., QP ) or both aspects of the SCD problem (i.e., QB).

To solve the SCD problem , we first solve the CSCD problem ∀l ∈ [1, k] using QP or QB as described
above, and then we pick as A⋆ one of these k solutions that maximizes QB. Let R

⋆ = {A⋆
(i)|i ∈ [1, k]}, where

A⋆
(i) is the solution of the CSCD problem with i segments (Equation 9). Given R⋆, we select A⋆ as follows:

A⋆ = argmax
A∈R⋆

QB(A,D). (10)

Note that if we use the same QB when constructing R⋆ (Supplementary Equation 9) and when selecting A⋆

from R⋆ (Supplementary Equation 10), the described procedure for solving the SCD problem is equivalent
to directly aiming to find A⋆ with the optimal value of QB.

S2.1.2 Consensus clustering

Given change point set T , we obtain the set of segment partitions P by applying consensus clustering to each
segment. That is, for each segment si, we aim to find a single partition pi that works well for all snapshots
in si. Note that if si contains only one snapshot, consensus clustering is equivalent to simple static network
clustering, since there are no multiple snapshots to compute consensus for; yet, for consistency, we still
refer to such clustering process as consensus clustering. Intuitively, the chosen consensus clustering method
should align with the objective function, meaning that, for a given change point set T , consensus clustering
should aim to find the set P of segment partitions that maximize the objective function Q. We consider
three consensus clustering methods: sum graph [4], Average-Louvain [4], and consensus matrix [16].

Sum graph. An intuitive way to perform consensus clustering for a given segment si is to first construct a
special graph that “summarizes” the topology of all snapshots in si and then find community organization
in this “summary” graph under the hypothesis that this organization will fit well all snapshots in si. Here,
we construct this “summary” graph for si simply as a sum graph, a weighted graph whose adjacency matrix
is the sum of the adjacency matrices of all snapshots in si [4]. Then, we use a static community detection
method that can handle weighted graphs to find a partition in this sum graph. We test seven popular
static community detection methods [17]: 1) Fast Modularity [18]: the method starts with each node as a
singleton community, and then at every iteration it merges two communities to greadily optimize modularity.
2) Label Propagation [19]: the method starts with each node as a singleton community (referred to as a label),
and then at every iteration each node adopts the label used by the majority of its neighbors. 3) Leading
Eigenvector [20]: the method optimizes modularity based on the eigenspectrum of a modularity matrix (a
matrix analogous to graph Laplacian in graph partitioning). 4) Infomap [21]: the method aims to find a
partition minimizing the expected description length of a random walker trajectory. 5) Walktrap [22]: the
method finds a partition based on the intuition that short random walks tend to get “trapped” in the same
community, since, intuitively, there are many edges pointing inside the community and only few pointing
outside. 6) Louvain [23]: the method starts with each node as a singleton community and then repeatedly
performs two phases: greedily optimizing modularity by moving nodes to neighboring communities and
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constructing a new graph with communities as nodes. 7) Stabilized Louvain [24]: a modification of Louvain
algorithm for snapshot clustering that aims to produce stable partitions (i.e., prevent two snapshots with
similar topologies from having dissimilar partitions); to achieve stability, the method clusters a snapshot at
time t via Louvain algorithm initialized with the partition obtained for the snapshot at time t− 1.

Average-Louvain. This method aims to find a segment partition pi that maximizes average modularity
over all snapshots in si [4]. To achieve this, the method uses a modification of Louvain algorithm for static
community detection (see above). Recall that Louvain method contains two phases. In Average-Louvain,
the first phase is modified so that the modularity gain of each move is computed as the average gain of this
move across all snapshots in the given segment. The second phase, constructing a network of communities,
is modified so that the same transformation is performed independently on all snapshots within the given
segment. Thus, all snapshots have the same partition, which becomes pi.

Consensus matrix. This method aims to find a segment partition pi directly from the partitions of
snapshots in si [16]. That is, given individual snapshot partitions as input, the method computes a consensus
matrix M based on the co-occurrence of nodes in clusters of the input partitions. Specifically, entry Mij

of this matrix indicates the fraction of the input partitions in which nodes i and j are in the same cluster.
Matrix M , which can be thought of as a weighted graph, can then be clustered by some static community
detection method to produce a consensus partition. To compute snapshot partitions as well as to cluster M ,
we use the same static community detection methods as for the sum graph approach above.

S2.1.3 Search strategy

We test three strategies for exploring the space of possible change point sets: the exhaustive search, top-down
search, and bottom-up search. Each strategy first produces one best solution for each possible number of
segments for the CSCD problem (Supplementary Equation 9), which are then used to solve the SCD problem
(Supplementary Equation 10). The first strategy is aimed at producing a globally optimal solution at the
expense of larger running time, while the last two are heuristics aimed at producing a good solution in a faster
manner. Below, for each strategy, we discuss how the strategy works and its “conceptual” computational
complexity. By “conceptual”, we mean that we express the running time of a given strategy in terms of
the number of times that consensus clustering is performed. We do this because: 1) performing consensus
clustering is SCOUT’s most computationally intensive step whose running time dominates all other steps,
and 2) we vary consensus clustering methods within SCOUT, and thus, we account only for the number of
times that consensus clustering is performed, since the actual computational complexity of performing each
consensus clustering depends on the chosen clustering method.

Exhaustive search. This strategy aims to find a globally optimal solution under the chosen consensus
clustering method by exhaustively searching through the space of all possible T s. There are

(

k−1
l−1

)

ways to
group all k snapshots of D into l ∈ [1, k] segments. Thus, for all ls, the exhaustive search needs to explore

the total of
∑k

i=1

(

k−1
i−1

)

= 2k−1 different segmentations (or, equivalently, change point sets).
To reduce the computational complexity, we use dynamic programming, as follows. The search contains

k iterations. Consider the ith iteration (i ∈ [1, k]). Let D[q,r] = {Gq, Gq+1, . . . , Gr−1, Gr} be all consecutive

snapshots of D from time q to time r, inclusively. The goal of the ith iteration is to solve the SCD problem
for D[0,i−1] (i.e., for the first i snapshots of D). For i = k, this means obtaining the solution for the whole
network D = D[0,k−1]. Recall from Supplementary Section S2.1.1 that in order to solve the SCD problem, we
first need to solve the CSCD problem for each possible number of segments (Supplementary Equation 10).
That is, in the ith iteration, ∀l ∈ [1, i], we need to find the optimal solution A⋆

i,l for D[0,i−1] that has l
segments. Next, we discuss how to find such A⋆

i,l. Any solution A for D[0,i−1] that has l segments can
be split into two parts with respect to start time t of its last segment: 1) the part with the first l − 1
segments, which can be thought of as a solution for prefix D[0,t−1] of D[0,i−1] and 2) the part with the last

lth segment, which can be thought of as a solution for suffix D[t,i−1] of D[0,i−1]. Conversely, solution A can
be constructed by combining the above two parts. Now, since A⋆

i,l is the optimal solution (with respect to
the given consensus clustering method), its corresponding two parts should be optimal too. That is, the first
part should be the optimal solution with l − 1 segments for D[0,t−1] (which is exactly A⋆

t,l−1, and which is

known from the earlier t(th) iteration), and the second part should be the optimal solution with one segment
for D[t,i−1] (which is a solution with just one segment, whose only segment partition can be obtained by
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performing consensus clustering of D[t,i−1]). So, we know the first part of A⋆
i,l from one of the previous

iterations and can compute its second part in the current iteration. However, in order to actually construct
A⋆

i,l from the above two parts, we need to know start time t of its last segment. If l = 1, there is only one

value for t (namely, t = 0), since the lth (i.e., the only) segment should encompass the whole D[0,i−1]. If
l ∈ [2, i], t can take any value from l− 1 (in which case the l− 1 segments in the first part are all singletons)
to i − 1 (in which case the lth segment in the second part is a singleton). So, for l ∈ [2, i], to find t, we
simply test all of its possible values and pick the one that produces the solution that maximizes the objective
function (Supplementary Figure S1).

Given the above procedure, we next discuss its computational complexity. Consider the ith iteration
(i ∈ [1, k]). In this iteration, we need to find A⋆

i,l for each l ∈ [1, i]. Recall from the above paragraph that
each A⋆

i,l is constructed from two parts, and only for the second part, corresponding to its last segment and
starting at some time point t, we do not know the corresponding segment partition and thus need to obtain
this partition in the current iteration. For l = 1, we test only one value of t (t = 0), and for l ∈ [2, i], we
test all values of t from l− 1 to i− 1. For each t, we need to obtain consensus partition for suffix D[t,i−1] of
D[0,i−1]. Clearly, different values of l can deal with the same t, i.e., the same suffix, and for a given suffix we
need to obtain its consensus partition only once. Overall, there are i distinct values of t, from 0 to i− 1, and
thus i distinct suffixes of D[0,i−1] for which we need to obtain consensus partitions. Thus, in the ith iteration,
we need to perform consensus clustering for the total of i times, once for each such suffix. Therefore, for all

k iterations, we perform consensus clustering
∑k

i=1 i =
k2+k

2 = O(k2) times.

Top-down search. This strategy aims to find a good solution by greedily searching through the set of
possible T s in a top-down manner. The search contains k iterations. We start with one segment of length
k and at each subsequent iteration split one of the existing segments into two parts in a locally optimal
way with respect to the chosen objective function, until we reach k singleton segments (Supplementary
Figure S2). Since the search starts with one segment and since in each iteration the number of segments
is increased by one, the solution obtained in the ith iteration is the solution for the CSCD problem with i
segments. Hence, after k iterations, we have one solution for the CSCD problem for each possible number of
segments, which can be used to solve the SCD problem (Supplementary Section S2.1.1). More specifically,
the top-down search works as follows. In the first iteration, we have only one segment, and we perform
consensus clustering once for this segment. Then, at the start of the ith iteration (i ∈ [2, k]), we have i − 1

segments from the previous iteration (denoted as {s
(i−1)
0 , s

(i−1)
1 , . . . , s

(i−1)
i−2 }), and we aim to split one of these

i − 1 segments into two parts by inserting a new change point t⋆(i), in order to produce i segments. There

are k− i+1 candidate time points t′ for t⋆(i): the total of k time points minus t0 = 0 and minus i− 2 change
points selected in the previous iterations. Out of these candidates, we choose the one that maximizes gain
(or minimizes loss) in our objective function.

To reduce the computational complexity, we show that we can reuse in each iteration the results from
the previous iterations. In the ith iteration (i ∈ [2, k]), each candidate time point t′ leads to splitting some

current segment s
(i−1)
j into two parts. So, for a given t, we need to know two segment partitions: one for the

first half of segment s
(i−1)
j (that ends at time t−1) and one for the second half of segment s

(i−1)
j (that starts

at time t). We do not necessarily need to compute these segment partitions in the current iteration, since we

can reuse the results from the previous iterations, as follows. Consider the next (i+1)st iteration. Let s
(i)
ri be

the segment that was split in the ith iteration (by inserting t⋆(i)). In the (i+1)st iteration, all segments except

the two resulted from splitting s
(i−1)
ri are the same as in the ith iteration (Supplementary Figure S2). Thus,

when testing candidate time points inside these unchanged segments, we can just reuse segment partitions
from the previous iterations. So, in the (i + 1)st iteration, we only need to perform consensus clusterings
for those candidate time points that are within the two newly created segments (Supplementary Figure S2).
Such time points are all time points inside the segment that was split in the ith iteration except its start
point and except already taken t⋆(i).

The above described reuse of previous consensus clusterings generally allows for reducing the complexity
compared to the exhaustive search. However, in the worst case, the complexity of the top-down search is still
O(k2): if each new change point t⋆(i) is selected as the earliest one (i.e., if t⋆(i) = i− 1), the overall number of

performed consensus clusterings is 1 + 2(k− 1) +
∑k

i=3(k − i+ 1) =
∑k

i=1(k − i+ 1) = (k2 + k)/2 = O(k2).
Nevertheless, even though this is the same theoretic complexity as for the exhaustive search above, in practice,
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the top-down search is faster (Supplementary Section S3).

Bottom-up search. This strategy aims to find a good solution by greedily searching through the set of
possible T s in a bottom-up manner. The search contains k iterations. We start with k singleton segments
and at each subsequent iteration merge two existing adjacent segments in a locally optimal way (with respect
to the chosen objective function), until we reach one large segment of length k. Since the search starts with
k segments and since in each iteration the number of segments is decreased by one, the solution obtained in
the ith iteration is the solution for the CSCD problem with k − i + 1 segments. Hence, after k iterations,
we have one solution for the CSCD problem for each possible number of segments, which can be used to
solve the SCD problem (Supplementary Section S2.1.1). More specifically, the bottom-up search works as
follows. In the first iteration, we perform consensus clustering k times, once for each segment. Then, at
the start of the ith iteration (i ∈ [2, k]), we have k − i + 2 segments from the previous iteration (denoted

as {s
(i−1)
0 , s

(i−1)
1 , . . . , s

(i−1)
k−i+1}), and we aim to merge some two adjacent segments (s

(i)
ri , s

(i)
ri+1) from these

k − i + 2 segments in order to produce k − i + 1 segments. There are k − i + 1 candidate segment pairs

(s
(i)
j , s

(i)
j+1) (or, equivalently, k − i + 1 candidate change points to be removed), since there are k − i + 2

segments and since we consider only adjacent segment pairs. Out of these candidates, we choose the one
that maximizes gain (or minimizes loss) in our objective function.

To reduce the computational complexity, we next show that we can reuse in each iteration the results

from the previous iterations. In the ith iteration (i ∈ [2, k]), each candidate segment pair (s
(i)
j , s

(i)
j+1) leads

to merging segments s
(i)
j and s

(i)
j+1. So, for a given segment pair (s

(i)
j , s

(i)
j+1), we need to know one segment

partition for the merged segment s
(i)
q ∪s

(i)
q+1. We do not necessarily need to compute these segment partitions

in the current iteration, since we can reuse the results from the previous iterations, as follows. Consider the
next (i+1)st iteration. In the (i+1)st iteration, all segments except the newly created one (i.e., the segment
resulting from merging the two segments chosen in the ith iteration) are the same as in the ith iteration
(Supplementary Figure S3). Thus, when testing candidate segment pairs not involving the new segment, we
can just reuse segment partitions from the previous iteration. So, in the (i+ 1)st iteration, we only need to
perform consensus clusterings for those candidate segment pairs that involve the new segment. There are at
most two such segment pairs, since we consider only adjacent segments.

In the first iteration, we perform consensus clustering k times (once for each snapshot). In the second
iteration, we perform consensus clustering k − 1 times (once for each pair of adjacent snapshots). For all
subsequent iterations, as discussed above, we perform consensus clustering at most twice. Therefore, for all
k iterations, we need to perform consensus clustering at most k + (k − 1) +

∑k
i=3 2 = 4k − 5 = O(k) times.

S2.2 Experimental setup

S2.2.1 Methods for comparison

Here, we expand our discussion from the main paper on the methods that we use in our experiments and
their parameters.

GraphScope does not accept any user-defined parameters. Note that GraphScope was originally de-
signed to work only with bipartite graphs, and thus it produces two separate partitions. Hence, in order to
handle unipartite graphs such as the data from our study, we constrain GraphScope to produce only one
partition [1]. The method can solve only the SCD problem. We use a publicly available implementation of
GraphScope [25].

Multi-Step performs an agglomerative clustering of the snapshots, merging them into segments to
produce a hierarchical tree. To get a solution for the CSCD problem, we cut the tree at the level that
results in the desired number of segments. To get a solution for the SCD problem, we first test Multi-Step’s
suggested procedure of cutting the tree at the level above which the highest segment similarity is negative.
We note that this procedure is used as a way to stop the merging process early in order to prevent meaningless
merges, rather than as a way to select the best segmentation [4]. Importantly, as we show, this procedure
consistently underestimates the number of segments that actually exist in the data. To address this, we
introduce a user-specified segment similarity threshold θ, and instead of stopping the merging process as
soon as the highest similarity becomes negative, we instead stop this process as soon as the highest similarity
becomes less than θ. That is, in Multi-Step’s default procedure, θ = 0. To give Multi-Step the best-case
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advantage, we vary θ from 0 to 2 in increments of 0.1 (note that since the similarity between two segments
is computed as the sum of modularities of the two segments, and since the maximum value of modularity for
any segment is 1, the maximum possible segment similarity value is 2; Supplementary Section S1). However,
we find that the optimal threshold θ is network-specific, and a threshold that works well for one network may
not work well for other networks. Note that by trying different values of θ, essentially, we allow Multi-Step
to try solutions with different numbers of segments. Thus, when the ground truth number of segments is
known, we simply provide this information as input to Multi-Step. That is, instead of using Multi-Step to
solve the SCD problem, we use it to solve the CSCD problem where we set l to match the ground truth
number of segments. This is not fair to the other methods (including SCOUT), which aim to solve the full
SCD problem (and thus automatically find l that ideally matches the ground truth value). Yet, this is what
we have to do in order to include Multi-Step into the comparison, since this method can reliably solve only
the CSCD problem. We use a publicly available implementation of Multi-Step [4].

GHRG relies on a sliding window approach with the length of the window w being a user-defined
parameter. We test w ∈ {4, 8, 12}. For each segment, GHRG results in a generalized hierarchical tree model
instead of a partition. To obtain a partition from this model, we cut the tree in a way that maximizes
modularity [23]. The method can solve only the SCD problem. We use a publicly available implementation
of GHRG [5].

SCOUT contains three main components: objective function, consensus clustering, and search strategy.
We test different choices for these components: two objective functions (with four choices for QP and two
choices for QB; Supplementary Section S2.1.1), three consensus clustering approaches (with seven choices for
each of sum graph and consensus matrix and one choice for Average-Louvain; Supplementary Section S2.1.2),
and three search strategies (Supplementary Section S2.1.3). To allow for experimenting with the different
parameter choices, our initial SCOUT implementation focuses on flexibility (to allow for easily testing various
parameter choices for the method’s components) rather than on running time. However, once we finalize the
most optimal (i.e., accurate yet efficient) choice of the parameters (Supplementary Section S3), we develop a
faster parallel SCOUT implementation tailored for the selected parameters and aimed at reducing the running
time. So, when comparing SCOUT against the other approaches, we use its latter fast implementation. As
discussed in Supplementary Section S2.1.1, SCOUT can solve both the CSCD and SCD problem.

S2.2.2 Datasets

Here, we expand our discussion from the main paper on synthetic and real-world networks that we use for
our experiments.
Synthetic networks. Here, we describe in detail our synthetic network generation process. We assume
that the following are provided as input by the user: the number of snapshots k, the number of segments
l, the number of nodes in each snapshot n, the minimum required number of nodes in each cluster cmin,
and two parameters cin and cout that control intra- and inter-community edge density of the snapshots.
In our experiments, we set cmin = 5 when n = 50, cmin = 10 when n = 100 and cmin = 50 when
n ∈ {500, 1000}. Also, we set cin = 32 and cout = 8. The process of generating a synthetic dynamic network
with these parameters contains four steps (Supplementary Figure S4). In the first three steps, we generate
the ground truth A(gt) = (T (gt), P (gt)), and in the last step, we use A(gt) to actually generate snapshots of
D. Intuitively, we: 1) generate the set of change points T (gt) to define segments, 2) create a special auxiliary
graph describing how segment partitions evolve from segment to segment, 3) use this graph to generate the
actual segment partitions P (gt), and 4) use a stochastic blockmodel to generate snapshots of D, based on the
idea that snapshots within the same segment (as defined by T (gt)) have the same community organization
(as defined by the corresponding segment partition from P (gt)). The details of the four steps are as follows:

1) To create a segmentation with l segments, we randomly sample l−1 change points T (gt) from [1, k−1].

For example, in Supplementary Figure S4, we select two change points t
(gt)
1 and t

(gt)
2 to create three segments.

Thus, at the end of this step, we have the change point set T (gt).
2) In this and the next step, we aim to generate segment partitions P (gt), as follows. To achieve this, we

use a special partition graph GP . In this step, we intuitively define GP and describe how we generate GP

and in the next step we describe how use GP to create P (gt).

We need to create GP = (VP , EP ) as a weighted directed l-partite graph (i.e., VP = V
(0)
P ∪ V

(1)
P ∪ · · · ∪

V
(l−1)
P ) with every edge in EP having form (u, v), where u ∈ V

(i−1)
P and v ∈ V

(i)
P for some i ∈ [1, l − 1]. To
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avoid confusion between nodes of GP and nodes of D, we refer to nodes of GP as supernodes. Intuitively,

once we generate GP at the end of this step, each of its supernode sets V
(i)
P will correspond to segment

partition p
(gt)
i of A(gt), with each supernode of V

(i)
P corresponding to some cluster of p

(gt)
i . For example,

in Supplementary Figure S4, V
(0)
P has four supernodes, so p

(gt)
0 will have four clusters. Each edge between

two supernodes of GP intuitively means that the two clusters corresponding to these two supernodes have
shared members (see the next step for more details).

We construct GP starting with empty sets VP and EP . To create VP , we add a random number ri ∈

[2, ⌊n/cmin⌋] of supernodes to each V
(i)
P ⊂ VP , i ∈ [0, l− 1]. Recall from above that cmin is the user-defined

minimum required number of nodes in a cluster. Thus, the limits for ri mean that we want segment partition

corresponding to V
(i)
P to have at least two clusters, while at the same time we want to prevent it from having

too many clusters. To create EP , we randomly create edges between each pair of adjacent sets V
(i−1)
P and

V
(i)
P (i ∈ [1, l − 1]) as follows. For each edge, we randomly pick its two endpoints: one supernode in V

(i−1)
P

and one supernode in V
(i)
P . When adding edges to EP , we aim to satisfy the following three conditions: a)

the edges do not form a perfect matching between V
(i−1)
P and V

(i)
P (i.e., segment partitions p

(gt)
i−1 and p

(gt)
i

are not identical), b) each supernode in V
(i−1)
P has at least one outgoing edge and each supernode in V

(i)
P

has at least one incoming edge (i.e., clusters cannot appear/disappear), and c) for each edge e = (u, v),
assuming d+ and d− is the outdegree and indegree of a supernode, respectively, one of the following holds:
(i) d+(u) = 1 and d−(v) > 1 (i.e., the cluster corresponding to u merges with at least one other cluster into
the cluster corresponding to v; e.g., the top right edge in Supplementary Figure S4), (ii) d+(u) > 1 and
d−(v) = 1 (i.e., the cluster corresponding to u is split into several clusters including the cluster corresponding
to v; e.g., the bottom right edge in Supplementary Figure S4), or (iii) d+(u) = d−(v) = 1 (i.e., the cluster
corresponding to u and the cluster corresponding to u have the same members; e.g., the top left edge in
Supplementary Figure S4). Intuitively, for two adjacent segment partitions, edges satisfying (i) correspond
to merges of clusters, edges satisfying (ii) correspond to splits of cluster, and edges satisfying (iii) correspond
to unchanged clusters. Note that in general, the condition (iii) can be relaxed; we include it to provide
further coherence between individual clusters so that their changes can be described via three simple events
(merge, split, and continuation).

3) Using GP from the previous step, we now generate the set of segment partitions P (gt), as shown in
Supplementary Algorithm S2. Intuitively, each edge in GP means that some two clusters share members.
We construct segment partitions one by one, starting from the partition of the first segment. For each
segment partition, we determine the membership of a given cluster based on the incoming edges of the
corresponding supernode and the previous segments partition. At the end of this step, we have the complete
A(gt) = (T (gt), P (gt)).

4) We use A(gt) = (T (gt), P (gt)) to generate snapshots of D as follows. Intuitively, we aim to generate
each snapshot based solely on the corresponding segment partition. Thus, to generate a snapshot Gj of

a given segment si, we use the stochastic blockmodel with partition p
(gt)
i and stochastic block matrix θ

(Supplementary Section S2.1.1). We use the same θ for all segments, with θcucv = cin/n if cu 6= cv and
θcucv = cin/n otherwise. So, to generate a snapshot Gj of segment si, for each pair of nodes in Gj , we
independently place an edge between the two nodes with probability cin/n if they are in the same cluster in
pi and with probability cout/n otherwise [26]. Note that even though all snapshots in segment si are created
based on the same segment partition pi, they still likely differ from each other due to randomness in the
stochastic blockmodel. At the end of this step, we have all snapshots Gj of D, and, moreover, the structure
of D reflects the ground truth A(gt) = (T (gt), P (gt)).

Real-world networks. We consider six different publicly available real-world dynamic networks. 1)
Hypertext [27] network contains information about face-to-face proximity of attendees of the Hypertext 2009
conference. The nodes correspond to people, and there is an edge between two people if they were close to
each other within a given time interval, as measured by wearable radio badges. This network has T (gt) that
corresponds to the list of events from the conference program [27]. 2) AMD Hope [28] network contains
information about co-location of attendees of The Last HOPE conference in 2008. The nodes correspond to
people, and there is an edge between two people if they were located in the same room at the same time.
This network has T (gt) that corresponds to the featured/keynote talks and social events [28]. 3) High School
[29] network contains information about proximity of students in a high school during one work week in
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2013. The nodes and edges are added in the same way as in Hypertext network. This network does not have
T (gt). 4) Reality Mining [30] network contains information about social interactions of university students
and faculty during 2004-2005 academic year. The nodes correspond to people, and there is an edge between
two people if there was a phone call between them in a given time interval. This network has T (gt) that
corresponds to the list of events from the academic calendar [5]. 5) Enron [31] network contains information
about email communication of employees of the Enron corporation during the 2000-2002 period. The nodes
correspond to people, and there is an edge between two people if there was an email between them in a given
time interval. This network has T (gt) that corresponds to the list of company-related events from the news
sources [5]. 6) Senate [32] network contains information about voting similarities of United States senators
during the 1789-2015 period (i.e., for 113 Congresses). The nodes correspond to states, and there is an edge
between two states if the voting similarity between the corresponding senators in a given time interval is high
enough [32]. This network does not have T (gt). This is because for Senate network we cannot use the list of
historic events as a formal ground truth change point set, since it is not clear how to objectively select a fixed
number of them (i.e., how to determine which events are more important than others and how many of the
most important events should be considered). For statistics of the real-world networks, see Supplementary
Table S2.

S2.2.3 Evaluation measures

Here, we expand our discussion from the main paper on the evaluation measures.
I) We start by discussing the three output similarity measures.
Segmentation similarity SimT . To measure SimT between A⋆ and A(gt), intuitively, we first construct
for each of them a special time point partition PT that captures how the snapshots of D are grouped into
segments. For example, for A⋆ and A(gt) in Supplementary Figure S5, P⋆

T contains three clusters ({0, 1, 2, 3},

{4, 5, 6}, and {7, 8, 9}) and P
(gt)
T contains four clusters ({0, 1}, {2, 3, 4, 5}, {6, 7}, and {8, 9}). Then, we

measure similarity between the two resulting time point partitions via an existing partition similarity measure
(see below). Formally, for a given A = (T, P ), we construct its time point partition PT as a partition of the
set [0, k−1] into l clusters ci, i ∈ [0, l−1], where cluster ci = {ti, ti+1, . . . , ti+1−1}. Then, to compute SimT

between A⋆ and A(gt), we measure similarity of their corresponding time point partitions P⋆
T and P

(gt)
T , as

follows:
SimT (A

⋆, A(gt)) = H(P⋆
T ,P

(gt)
T ), (11)

where H can be any partition similarity measure (see below).
Partition similarity SimP . To measure SimP between A⋆ and A(gt), intuitively, we first measure for
each snapshot of D similarity between its corresponding segment partitions in A⋆ and A(gt) via an existing
partition similarity measure (see below). For example, for A⋆ and A(gt) in Supplementary Figure S5, for

snapshot G0, we measure similarity between p⋆0 and p
(gt)
0 (since G0 belongs to the first segment in A⋆ and

to the first segment in A(gt)), while for snapshot G2, we measure similarity between p⋆0 and p
(gt)
1 (since G2

belongs to the first segment in A⋆ and to the second segment in A(gt)). Then, we average the results over
all snapshots. Formally, to compute SimP between A⋆ and A(gt), we introduce average snapshot partition
similarity, as follows:

SimP (A
⋆, A(gt)) =

1

k

k−1
∑

j=0

H(p⋆seg(j,T⋆), p
(gt)

seg(j,T (gt))
), (12)

where H can be any partition similarity measure (see below) and seg(j, T ) is the function that returns the
index of the segment containing snapshot Gj under the segmentation induced by change point set T (i.e.,
seg(j, T ) = i ⇐⇒ Gj ∈ si). Note that even though SimP focuses on the partition aspect of the SCD
problem, it still implicitly relies on the segmentation aspect via the above seg function.
Overall similarity SimB. To measure SimB between A⋆ and A(gt), intuitively, we first construct for
each of them a special node-time partition PB that simultaneously captures how snapshots are grouped
by T s and how nodes are grouped by P s. For illustrations of node-time partitions of A⋆ and A(gt), see
Supplementary Figure S5. Then, we measure similarity between the two resulting node-time partitions via
an existing partition similarity measure (see below). Formally, for a given A = (T, P ), we construct a

node-time partition PB as a partition of the set {(u, t)|u ∈ Vt, t ∈ [0, k − 1]} into
∑l−1

i=0 |pi| clusters. Two
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node-time pairs (u1, t1) and (u2, t2) are clustered together in PB if their time points t1 and t2 belong to the
same segment (i.e., if t1 and t2 are in the same cluster in PT , or seg(t1, T ) = seg(t2, T )) and if their nodes
u1 and u2 belong to the same cluster in the corresponding segment partition (i.e., if u1 and u2 are in the
same cluster in pseg(t1,T )). Then, to compute SimB between A⋆ and A(gt), we measure similarity between

their corresponding node-time partitions P⋆
B and P

(gt)
B , as follows:

SimB(A
⋆, A(gt)) = H(P⋆

B,P
(gt)
B ), (13)

where H can be any partition similarity measure.
Next, we describe the four partition similarity measures H that we use: 1) Normalized Mutual Informa-

tion (NMI ) [33] – a measure of similarity based on the mutual information (MI), normalized to have values
in [0, 1]. 2) Adjusted Mutual Information (AMI ) [33] – an adjusted for chance version of MI. 3) Adjusted
Rand Index (ARI ) [33] – an adjusted for chance version of the Rand Index, a measure of similarity based on
counting pairs of observations assigned to the same cluster or different clusters in two partitions. For AMI
and ARI, the adjustment for chance means correction for chance agreement between two partitions [33].
4) V-Measure (VM ) [34] – the harmonic mean of homogeneity (whether the first partition groups together
only those objects that are grouped together in the second partition) and completeness (whether the first
partition groups together all those objects that are grouped together in the second partition). Note that
for all of the above measures, a higher value means higher similarity, with two identical partitions having
similarity of one.
II) Next, we describe the three measures of change point classification accuracy that we use: 1) ∀i ∈ [1, k],
precision is the fraction of the top ranked i time points that are ground truth change points (i.e., that
belong to T (gt)), and recall is the fraction of all ground truth change points that are among the top ranked
i time points. To summarize the values of precision and recall over all possible values of i, we compute the
area under the precision-recall curve (AUPR). 2) ∀i ∈ [1, k], F-score is the harmonic mean of precision and
recall (that is, F-score balances the two quantities). We report the maximum F-score over all values of i.
3) ∀i ∈ [1, k], sensitivity is equal to recall and specificity is the fraction of ground truth non-change points
(corresponding to the complement of T (gt)) that are not among the top ranked i time points. To summarize
the values of sensitivity and specificity over all possible values of i, we compute the area under the receiver
operator characteristic curve (AUROC ).

We obtain the ranked list of all time points for each of the considered methods as follows. For a given
method, to get its ranked list, we compute the score (see below) for each time point t ∈ [1, k−1], such that the
time points with lower scores are ranked higher (i.e., are more “change point-like”). Note that here we exclude
from consideration time point t0 = 0, because, by definition, for any method, t0 always denotes the start of
the first segment, and hence including it into comparison does not provide any method-specific information.
If a method is capable of solving the CSCD problem, we compute the scores of the time points using the
solutions with all possible numbers of segments for the CSCD problem. Specifically, let A⋆

(i) = (T ⋆
(i), P

⋆
(i))

be the solution with i segments for the CSCD problem. Intuitively, if a given time point t is a change point
in A⋆

(i) (i.e., if t ∈ T ⋆
(i)), this means that the method, when asked to select only i− 1 change points (i.e., to

produce i segments), chooses t as one of these i− 1 change points. Hence, to capture the intuition that more
“change point-like” time points appear in the solutions with smaller number of segments, we compute the
score of a given time point t as the smallest number of segments for which t appears as a change point in the
corresponding CSCD solution (i.e., score(t) = min{i|i ∈ [1, k], t ∈ T ⋆

(i)}). So, the highest ranked time point

will appear in the solution with two segments (for which only one time point is selected as change point),
while the lowest ranked time point will appear only in the solution with k segments (for which all time
points are selected as change point). Since among the considered methods only Multi-Step and SCOUT can
solve the CSCD problem (Supplementary Section S2.2.1), the above procedure can only be used for these
two methods. For the remaining two methods, GraphScope and GHRG, we use alternative strategies for
extracting their ranked lists, as follows. GraphScope, at each step, marks a time point t as a change point if
the community organization of Gt does not match well the community organization of the current segment
(Supplementary Section S1). The match is measured via the MDL principle, as the difference of the cost
of encoding the current segment and Gt together and the cost of encoding them separately. Intuitively,
the smaller the difference, the “cheaper” it is to add Gt to the current segment, and when the difference is
negative, Gt is added to the current segment. Thus, we use the difference of the encoding costs as the score
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of t. GHRG performs a statistical test at each step to determine whether the current window contains a
change point (Supplementary Section S1). A change point is detected if its corresponding p-value is smaller
than the chosen threshold. Intuitively, the smaller the p-value, the more confident the method is that the
given time point t is a change point. Thus, we use the p-value as the score of t.

S2.2.4 Statistical significance of two methods’ performance difference

Given a synthetic network configuration, evaluation measure, and a pair of methods, we compute the statis-
tical significance of the difference between the performance of the two methods as follows. For each method,
we create a list containing performance scores of the method for all network instances of the synthetic net-
work configuration. Since we know which score in a given list corresponds to which network instance, we
use paired t-test to compute the statistical significance of the difference between the two lists produced by
the two methods. There are four possible outcomes: 1) method 1 outperforms method 2, and the improve-
ment is statistically significant, 2) method 1 outperforms method 2, but the improvement is not statistically
significant, 3) method 2 outperforms method 1, but the improvement is not statistically significant, and 4)
method 2 outperforms method 1, and the improvement is statistically significant (note that outcomes 2 and
3 also cover the case when the two methods’ scores are tied). By statistically significant, we mean that the
p-value that results from paired t-test is below a threshold. We test three p-value thresholds: 0.05, 0.01, and
0.001.

S2.2.5 Statistical significance of SCOUT’s top ranked change points in the context of the
case study on human aging

We measure probability of obtaining by chance the SCOUT’s result from Figure 5 in the main paper as
follows. SCOUT identifies one change point in each of the following three age intervals: 33-37, 48-52, and
60-80. Given the available time points in the entire data, there are four ways to select a time point within
the first age interval (i.e., 33, 34, 36, and 37), two ways to select a time point within the second age interval
(i.e., 48 and 52), and seven ways to select a time point within the third age interval (i.e., 64, 66, 69, 70,
74, 75, and 80). Since intervals 33-37, 48-52, and 60-80 are non-overlapping, a single time point can belong
to only one interval at a time. Hence, by the product rule of counting, there are 4 × 2 × 7 = 56 ways to
select three time points so that each of the three points falls within one of the three intervals while each
interval is covered by one of the points. Since there are 23 available time points in the entire data, there
are

(

3
23

)

= 1771 ways to select three of them. So, the probability of obtaining SCOUT’s result by chance is
56/1771 = 0.03162.

S3 Results: the effect of method parameter choices

We perform all experiments from this section on synthetic networks, since they have the known ground truth
knowledge embedded into them (Supplementary Section S2.2.2). In particular, due to high computational
complexity of some of the existing methods and a large number of performed tests, in this section, we use the
smallest synthetic data with 50 nodes per snapshot. Our main criterion for selecting parameters of a given
method is overall ground truth similarity SimB. Note that GraphScope does not accept any user-specified
parameters, and thus we leave it out from consideration in this section.

Multi-Step. We test the effect on the method’s performance of the similarity threshold parameter θ,
which determines when to stop the segment merging process (Supplementary Section S2.2.1). We find that
there is no θ value that works well for all of the synthetic network configurations with respect to SimB

(Supplementary Figure S6a). This is mainly because no single θ value can reliably estimate the ground
truth number of segments across the different configurations (Supplementary Figure S6b). Thus, Multi-Step
can be used to reliably solve only the CSCD problem where the number of segments is provided as input.
So, when comparing Multi-Step against other methods in the context of the SCD problem, we instead ask
Multi-Step to solve the CSCD problem with the ground truth number of segments given as input. We refer
to this modification of Multi-Step as Multi-Step⋆. This gives Multi-Step an unfair advantage compared to
the other methods, but we have to do this in order to include Multi-Step into comparison.
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GHRG. We test the effect on the method’s performance of windows size w (Supplementary Section S2.2.1).
After varying its values, we observe that the value w = 4 generally leads to the highest SimB (Supplementary
Figure S7). Thus, we use w = 4 for our experiments.

SCOUT.We test the effect on the method’s performance of a) the objective function, b) consensus clustering
method, and c) search strategy.

a) Objective function is used twice (Supplementary Section S2.1.1): 1) when computing the best solution
for each possible number of segments (Equation 9), and 2) when choosing among these best solutions the
final one (Equation 10). The objective functions can differ between the two cases: in case “1”, we can use any
QP or any QB, and in case “2”, we have to use a QB (Supplementary Section S2.1.1). Thus, since SCOUT
uses QB up to two times, while it uses QP up to one time, we first test the effect of QB. Recall that we
evaluate two QB measures: one based on BIC and the other based on AIC (Supplementary Section S2.1.1).
In general, BIC results in higher SimB compared to AIC (Supplementary Figure S8a). The reason for
this is that AIC produces more segments than BIC, usually overestimating the ground truth number of
segments (Supplementary Figure S8b). Recall that this behavior of AIC is not surprising (Supplementary
Section S2.1.1). So, we focus on QB based on BIC. This gives us the choice of QB for case “2”. For case “1”,
we can use QB based on BIC or one of the four QP s (based on modularity, conductance, normalized cut, or
average-ODF; Supplementary Section S2.1.1). Hence, we next test the effect of QP versus QB in case “1”.
Out of all QP s, modularity generally leads to the highest SimB (Supplementary Figure S9). However, the
best results in terms of SimB are achieved when using QB based on BIC and not QP based on modularity
(Supplementary Figure S9). So, whether we are considering case “1” or case “2”, QB based on BIC overall
outperforms all other tested objective functions. Thus, we focus on QB based on BIC as SCOUT’s objective
function.

b) Consensus clustering is used to produce segment partitions, given a segmentation. We use three
general types of consensus clustering approaches: sum graph, Average-Louvain, and consensus matrix (Sup-
plementary Section S2.1.2). Recall that the sum graph and consensus matrix approaches are parameterized
with the static clustering method (Supplementary Section S2.1.2). So, before we compare the above three
general types of approaches, we first aim to choose the best static clustering method for sum graph and con-
sensus matrix approaches. We evaluate seven static clustering methods: Fast Modularity, Label Propagation,
Leading Eigenvector, Infomap, Walktrap, Louvain, and Stabilized Louvain (Supplementary Section S2.1.2).
We find that generally Walktrap works the best in terms of SimB while having comparable running time
(Supplementary Figure S10). So, we focus on Walktrap as the static clustering method for both sum graph
and consensus matrix approaches. Next, we compare the three general approach types. In terms of SimB,
all three approaches lead to comparable results (Supplementary Figure S11a), even though Average-Louvain
and consensus matrix are more sophisticated compared to sum graph and thus would be expected to be
superior. In terms of the running time, sum graph is the fastest of the three approaches (Supplementary
Figure S11b). Thus, we focus on sum graph with Walktrap as SCOUT’s consensus clustering approach.

c) Search strategy is used to determine how SCOUT searches through the space of possible segmentations.
We evaluate three strategies: the exhaustive search, top-down search, and bottom-up search (Supplemen-
tary Section S2.1.3). In terms of SimB, all three strategies lead to comparable results (Supplementary
Figure S12a). In terms of the running time, bottom-up search is the fastest one (it is an order of mag-
nitude faster than the exhaustive search and somewhat faster than the top-down search; Supplementary
Figure S12b). Thus, we focus on the bottom-up search as SCOUT’s search strategy.

To summarize, we choose QB based on BIC as the objective function, sum graph with Walktrap as the
consensus clustering method, and the bottom-up search as the search strategy.
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Supplementary Algorithms

Supplementary Algorithm S1 SCOUT overview. It has three main components: objective
function (ObjectiveFunction), consensus clustering (ConsensusClustering), and search strategy
(SearchStrategy). Auxiliary procedure GetSegmentation constructs the segmentation of a dynamic net-
work given a change point set and auxiliary procedure GetBestOutput returns the best (with respect to the
objective function) of all considered outputs.

Input: D
Output: A⋆ = (T ⋆, P ⋆)
1: R← ∅
2: T ← SearchStrategy(∅, R)
3: while T 6= ∅ do
4: S ← GetSegmentation(T,D)
5: P ← ∅
6: for s ∈ S do
7: P ← P ∪ {ConsensusClustering(s)}
8: end for
9: A← (T, P )

10: R← R ∪ {(A,ObjectiveFunction(A))}
11: T ← SearchStrategy(T,R)
12: end while
13: return GetBestOutput(R)
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Supplementary Algorithm S2 Step 3 of our synthetic network generation process. Auxiliary procedure
RandomPartition randomly partitions a given set into a given number of clusters and auxiliary procedure
Outneighbors returns the list of the outneighbors of a given supernode.

Input: GP

Output: P (gt)

1: V ← [0, n− 1]

2: p
(gt)
0 ← RandomPartition(V, |V

(0)
P |)

3: for i ∈ [1, l− 1] do

4: for v ∈ V
(i)
P do

5: c(v) ← ∅
6: end for
7: for u ∈ V

(i−1)
P do

8: p(temp) ← RandomPartition(c(u), d
+(u))

9: j ← 0
10: for c(temp) ∈ p(temp) do
11: c(Outneighbors(u)[j]) ← c(Outneighbors(u)[j]) ∪ p(temp)

12: j ← j + 1
13: end for
14: end for
15: p

(gt)
i ← {c(v)|v ∈ V

(i)
P }

16: end for
17: P (gt) ← {p

(gt)
i |i ∈ [0, l− 1]}

18: return P (gt)
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Supplementary Figures
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Supplementary Figure S1: The procedure of obtaining solution A⋆
i,l for D[0,i−1] that has l segments during

the ith iteration of the exhaustive search. For this, we construct a set of candidate solutions (shown in
rows) and pick as A⋆

i,l the one solution from this set that maximizes the objective function. Each candidate
solution is obtained by combining: 1) solution A⋆

t,l−1 that has l − 1 segments, which was obtained in one of
the previous iterations (shown in blue), and 2) a solution with one segment, whose only segment partition
is obtained during the current iteration (shown in orange).
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Supplementary Figure S6: The effect of θ value for Multi-Step, in terms of (a) SimB and (b) the number
of segments l, as we vary the ground truth synthetic network configuration (x-axis). Note that we run the
analysis for θ ∈ [0, 2] in increments of 0.1. However, since the results for θ ≥ 1.0 are all the same, we show
the results only for θ ≤ 1.0, and for visual clarity, we show the results in increments of 0.2. In panel (b), for
a given ground truth configuration, the dotted line corresponds to the ground truth number of segments.
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Supplementary Figure S7: The effect of w value for GHRG, in terms of SimB, as we vary the ground truth
synthetic network configuration (x-axis).
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Supplementary Figure S8: The effect of QB choice for SCOUT when choosing the optimal number of
segments, in terms of (a) SimB and (b) the number of segments l, as we vary the ground truth synthetic
network configuration (x-axis). Here, in all cases, we fix consensus clustering method as sum graph with
Walktrap and search strategy as exhaustive search. In panel (b), for a given ground truth configuration, the
dotted line corresponds to the ground truth number of segments.
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Supplementary Figure S9: The effect of Q choice for SCOUT when producing the best solution for each
possible number of segments, in terms of SimB, as we vary the ground truth synthetic network configuration
(x-axis). Note that when using QP (the first four series), we still need to choose the optimal number of
segments, which we do using QB (i.e., BIC). Here, in all cases, we fix consensus clustering method as sum
graph with Walktrap, and we fix search strategy as exhaustive search.
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Supplementary Figure S10: The effect of the choice of static clustering method in the sum graph consensus
clustering method for SCOUT, in terms of (a) SimB and (b) running time, as we vary the ground truth
synthetic network configuration (x-axis). Here, in all cases, we fix search strategy as exhaustive search.
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Supplementary Figure S11: The effect of the choice of consensus clustering method for SCOUT, in terms
of (a) SimB and (b) running time, as we vary the ground truth synthetic network configuration (x-axis).
Here, in all cases, we fix search strategy as exhaustive search.
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Supplementary Figure S12: The effect of the choice of search strategy for SCOUT, in terms of (a) SimB and
(b) running time (logarithmic scale), as we vary the ground truth synthetic network configuration (x-axis).
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Supplementary Figure S13: Rankings of the methods with respect to (a) SimT and (b) change point
classification. Since GHRG could not be run for the larger networks, the results are split into those for
the configurations with 50 and 100 nodes per snapshot (top) and those for the configurations with 500 and
1000 nodes per snapshot (bottom). Note that for change point classification, we exclude from consideration
configurations with the minimum (i.e., one) and maximum (i.e., 16) possible numbers of ground truth
segments. This is because for these configurations, either there are no change points at all (i.e., for one
segment) or every time point is a change point (i.e., for 16 segments), so change point classification cannot
be performed. The rankings are computed as follows. For each synthetic network configuration, we compare
the four methods’ scores (average scores over all instances of the given configuration) to identify the first,
second, third, and fourth best method; ties are allowed, in which case, two methods would be assigned
the same rank. Then, we summarize these results over all considered synthetic network configurations by
measuring, for each method (x-axis), how many times the given method is ranked as the first, second,
third, and fourth best method (expressed as the percentage of all considered configurations; y-axis). “N/A”
indicates that either a given method could not be run (which is the case for GHRG for the larger networks in
both panels) or it was excluded from the consideration (which is the case for Multi-Step in panel (a)). The
reason we exclude Multi-Step from the consideration in certain configurations in panel (a) (namely, those
with the minimum and maximum possible numbers of segments) is as follows. Since we provide Multi-Step
with the ground truth number of segments as input and since there is only one possible segmentation with
minimum or maximum possible number of segments, Multi-Step trivially returns the perfect SimT score for
these extreme configurations. The figure can intuitively be interpreted as follows: the darker the bar of a
given method, the better its performance.
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Supplementary Figure S14: SimT and SimP scores for all 20 synthetic network configurations. The rows
correspond to four different numbers of nodes per snapshot, with the number of nodes increasing from top to
bottom. The columns correspond to five different numbers of ground truth segments: (a) one ground truth
segment, (b) two ground truth segments, (c) four ground truth segments, (d) eight ground truth segments,
and (e) 16 ground truth segments. In each panel, for each method, the results are averaged over all of the
corresponding synthetic network instances.
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(c) 500-node snapshots
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Supplementary Figure S15: The number of segments l in the solutions produced by the methods for synthetic
networks with (a) 50-node snapshots, (b) 100-node snapshots, (c) 500-node snapshots, and (d) 1000-node
snapshots. In each panel, the results are grouped by the number of ground truth segments and averaged
over all of the corresponding synthetic network instances. A given dotted line corresponds to the ground
truth number of segments in the given synthetic network configuration. Note that for Multi-Step, we use
the default parameters, since when using Multi-Step⋆ that is provided with the number of ground truth
segments as input, this method trivially returns the correct number of ground truth segments.
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(a) Change point classification
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(b) Partition quality QP
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Supplementary Figure S16: Method comparison for synthetic networks with 50, 500, and 1000 nodes per
snapshot (shown from top to bottom) with respect to (a) change point classification, (b) QP , and (c) SimB.
For a given ground truth configuration, the results are averaged over all of the corresponding synthetic
network instances. In panel (b), the dotted lines correspond to the ground truth score. Note that for panel
(a), we exclude from consideration the configurations with the minimum and maximum possible numbers of
ground truth segments. We do this because for these configurations, either there are no change points at all
(for one segment) or every time point is a change point (for 16 segments), which means that change point
classification cannot be performed. GHRG could not be run for two largest network sizes due to its high
computational complexity.
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Supplementary Figure S17: Rankings of the methods with respect to (a) QP and (b) SimP . Since GHRG
could not be run for the larger networks, the results are split into those for the configurations with 50
and 100 nodes per snapshot (top) and those for the configurations with 500 and 1000 nodes per snapshot
(bottom). The rankings are computed as follows. For each synthetic network configuration, we compare the
four methods’ scores (average scores over all instances of the given configuration) to identify the first, second,
third, and fourth best method; ties are allowed, in which case, two methods would be assigned the same
rank. Then, we summarize these results over all considered synthetic network configurations by measuring,
for each method (x-axis), how many times the given method is ranked as the first, second, third, and fourth
best method (expressed as the percentage of all considered configurations; y-axis). “N/A” indicates that
the given method could not be run (which is the case for GHRG for the larger networks). The figure can
intuitively be interpreted as follows: the darker the bar of a given method, the better its performance.
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Supplementary Figure S18: Running times of the methods for synthetic networks (logarithmic scale). The
results are grouped by the number of nodes per snapshot. For each number of nodes, running times are
averaged over the corresponding numbers of segments and synthetic network instances (i.e., over 5× 10 = 50
runs). The striped bars mean that the method could not finish within the allowed time.
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Supplementary Figure S19: The number of segments l in the solutions produced by the methods for real-world
networks.
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Supplementary Figure S20: The top 10 highest ranked time points by each method for Senate network.
Time points (expressed in years) are shown on the x-axis. Methods are shown on the y-axis. Each circle
corresponds to one of the top 10 ranked time points, and the darker its color, the higher its rank.
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Supplementary Figure S21: QP scores of 1) SCOUT’s solutions for different numbers of segments l and 2)
the solutions of the existing methods for (a) Hypertext network, (b) AMD Hope network, (c) High School
network, (d) Reality Mining network, and (e) Enron network. For SCOUT, the line shows its QP score
when solving the CSCD problem while varying the number of segments. For each of the existing methods,
the mark shows QP score of its solution, with the position of the mark along the x-axis corresponding to
the number of segments l in the solution.
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Supplementary Tables

Supplementary Table S1: Statistical significance of the superiority of SCOUT over the best existing method in
terms of SimB on synthetic networks. “Configuration” columns describe the synthetic network configurations
in terms of the number of nodes per snapshot and the number of segments. “Average SimB” columns
contain SimB scores of SCOUT and the best of all existing methods (shown in the parentheses), where the
scores are averaged over all corresponding synthetic network instances; the highest SimB score for a given
configuration (i.e., in the given row) is shown in bold. The “p-value” column shows the statistical significance
of the difference between SimB scores of SCOUT and the best existing method. “N/A” means that the
scores are identical. p-values less than 0.05 are shown in bold, p-values less than 0.01 are shown with one
star, and p-values less than 0.001 are shown with two stars.

Configuration Average SimB
p-value

# of nodes # of segments SCOUT Best existing method

50

1 1.000 1.000 (Multi-Step⋆) N/A

2 0.991 0.941 (Multi-Step⋆) 1.548E-01

4 0.995 0.866 (GHRG) 2.075E-03⋆

8 0.938 0.845 (GHRG) 4.889E-04⋆⋆

16 0.978 0.956 (Multi-Step⋆) 3.876E-04⋆⋆

100

1 1.000 1.000 (Multi-Step⋆) N/A

2 0.989 0.877 (Multi-Step⋆) 4.643E-02

4 0.986 0.818 (GHRG) 4.045E-04⋆⋆

8 0.966 0.872 (GraphScope) 1.691E-03⋆

16 0.931 0.918 (Multi-Step⋆) 3.311E-02

500

1 1.000 1.000 (Multi-Step⋆) N/A

2 0.953 0.757 (GraphScope) 1.408E-05⋆⋆

4 0.982 0.792 (GraphScope) 8.709E-06⋆⋆

8 0.960 0.820 (GraphScope) 2.047E-05⋆⋆

16 0.933 0.884 (Multi-Step⋆) 1.628E-05⋆⋆

1000

1 1.000 1.000 (Multi-Step⋆) N/A

2 0.971 0.710 (Multi-Step⋆) 4.666E-04⋆⋆

4 0.937 0.659 (GraphScope) 1.677E-04⋆⋆

8 0.902 0.721 (GraphScope) 3.058E-06⋆⋆

16 0.841 0.763 (GraphScope) 6.030E-06⋆⋆
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Supplementary Table S2: Real-world networks that we use in our study. “Network” columns show general
information about a given network. “Snapshots” columns show properties of the network snapshots averaged
over all snapshots.

Network Snapshots

Name # of nodes # of edges Time span Edge type # of nodes # of edges Duration

Hypertext 113 21K 3 days Proximity 47 (20) 73 (53) 30 min

AMD Hope 409 1.26M 3 days Co-location 161 (101) 4.5K (3.9K) 1 hour

High School 327 189K 5 days Proximity 227 (39) 499 (237) 1 hour

Reality Mining 78 5K 10 months Phone call 28 (11) 25 (12) 1 week

Enron 184 121K 2.5 years Email 99 (40) 267 (154) 1 month

Senate 51 28K 227 years Voting similarity 35 (15) 248 (268) 2 years
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