Supplementary Materials

Glass-Forming Tendency of Molecular Liquids and the Strength of the Intermolecular Attractions

Kajetan Koperwas^{1,2}, Karolina Adrjanowicz^{1,2*}, Zaneta Wojnarowska^{1,2}, Agnieszka

Jedrzejowska^{1,2}, Justyna Knapik^{1,2} & Marian Paluch^{1,2}

¹ Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland ² Silesian Center for Education and Interdisciplinary Research, ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland

Supplementary Figures

Supplementary Figure 1. Orientation of the dipole moment. Optimized geometry of (a) PC and (b) 3-methyl-cyclopentanone. Blue arrows indicate orientation of dipole moment with respect to principal inertial axes.

Supplementary Figure 2. Results of the calorimetric measurements. DSC thermograms for (a) PC and (b) 3-Methylocyclopentanone recorded on heating with different rates. No glass transition event was detected in DSC of 3-methylcyclopentanone.

Supplementary Figure 3. Results of the calorimetric measurements. DSC thermograms recorded for 3-Methylcyclopentanone on cooling with different rates.

3-Methylcyclopentanone

Supplementary Figure 4. CCT curve for PC and 3-methylcyclopentanone (inset).

Supplementary Figure 5. CHT curve for PC and 3-methylcyclopentanone (inset).

Supplementary Figure 6. Temperature evolution of the thermodynamic driving force towards crystallization. Possible temperature behavior of $\Delta\mu$ for LJ system with varying strength of the intermolecular attractive forces, predicted using Eq. 3.

Supplementary Figure 7. Temperature evolution of the specific surface energy. Possible temperature behavior of γ_{int} for LJ system with varying strength of the intermolecular attractive forces, predicted using Eq. 4.