Supplementary Information

pH-responsive Virus-like Nanoparticles with Enhanced Tumour-targeting Ligands for Cancer Drug Delivery

Roya Biabanikhankahdani¹, Noorjahan Banu Mohamed Alitheen^{2,4}, Kok Lian Ho³, Wen Siang Tan^{*1,4}

¹Department of Microbiology and ²Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. ³Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. ⁴Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Methods

Fluorescein labeling of the tHBcAg nanoparticles

The primary amine groups of Lys residues of tHBcAg at positions 7 and 96 were labelled using the amine-selective NHS-fluorescein reagent (Thermo Scientific, Rockford, IL, USA). The labeling procedure was performed as recommended by the manufacturer. The non-reacted NHS-fluorescein molecules were removed by dialysis against sodium phosphate buffer (25 mM NaH₂PO₄/Na₂HPO₄, pH 7.4) containing NaCl (150 mM) at 4 °C. In this experiment, the labeling reaction was performed at pH 7.4 to avoid the protonation of the α -amine at the N-terminal end of tHBcAg which limits the labeling of fluorescein molecules at the ε -amine of the Lys side chains. Fluorescein-labelled tHBcAg nanoparticles were cross-linked with the pentadecapeptide and then conjugated with folic acid (FA) as described earlier.

Cellular uptake of doxorubicin

HT29, Caco-2 and CCD-112 cells were seeded in six-well plates (10⁵ cells per well) and incubated for 24 h. Then, free doxorubicin (DOX), tHBcAg nanoparticles loaded with PAA-DOX (tHBcAg-PAA-DOX), folic acid (FA)-conjugated tHBcAg nanoparticles and loaded with PAA-DOX (FA-tHBcAg-PAA-DOX), and FA-

1

conjugated tHBcAg nanoparticles using the nanoglue and loaded with PAA-DOX (FA-N-tHBcAg-PAA-DOX) were added at equivalent DOX concentration (5 μ g/mL). The excess sample was removed by washing three times with ice-cold PBS (pH 7.4) and the cells were then lysed with lysis buffer [50 mM Tris (pH 7.4), 0.8% Triton, 0.2% SDS] in a total volume of 0.5 mL per well. Internalized DOX was measured at A₄₉₀ by using a microplate reader (ELX 800; BioTeck Instruments).

Supplementary Figure S1. Conjugation of folic acid to fluorescein-labelled tHBcAg nanoparticles using the nanoglue concept. (a) Chemical cross-linking of the pentadecapeptide to fluorescein-labelled tHBcAg (ftHBcAg) nanoparticles. The samples were separated on an SDS-polyacrylamide gel and stained with Coomassie brilliant blue (CBB) and observed under ultraviolet (UV) illumination. Lanes M, molecular mass markers (kDa); 1, tHBcAg control; 2, ftHBcAg; 3, ftHBcAg plus cross-linkers; and 4, ftHBcAg plus pentadecapeptide and cross-linkers. Asterisks and

arrows indicate the protein bands of tHBcAg, tHBcAg+fluorescein (ftHBcAg), and tHBcAg+fluorescein+pentadecapeptide (N-ftHBcAg). SDS-PAGE and UV visualization confirmed that the tHBcAg was labelled with fluorescein and cross-linked with the pentadecapeptide (b) Conjugation of folic acid (FA) to tHBcAg using the nanoglue. Spectra of tHBcAg nanoparticles (tHBcAg), fluorescein-labelled tHBcAg nanoparticles (ftHBcAg) and fluorescein-labelled tHBcAg nanoparticles conjugated with FA using the nanoglue (FA-N-ftHBcAg). (c) Electron micrographs of tHBcAg nanoparticles. Nanoparticles formed by tHBcAg (i), ftHBcAg (ii) and FA-N-ftHBcAg (iii). White bars indicate 50 nm.

Supplementary Figure S2. Doxorubicin uptake by colorectal cancer and normal cells. Cellular uptake of doxorubicin by (a) cancer HT29, (b) Caco-2 and (c) normal CCD-112 cells incubated with free doxorubicin (DOX), tHBcAg nanoparticles loaded with PAA-DOX (tHBcAg-PAA-DOX), folic acid (FA)-conjugated tHBcAg

nanoparticles and loaded with PAA-DOX (FA-tHBcAg-PAA-DOX) and FAconjugated tHBcAg nanoparticles using the nanoglue and loaded with PAA-DOX (FA-N-tHBcAg-PAA-DOX). Data represent mean \pm SD of triplicate determinations.

Supplementary Figure S3. Viability of colorectal cancer and normal cells after being treated with various doxorubicin formulations at equal doxorubicin concentration. Cell viability of colorectal cancer HT29 (**a**), Caco-2 (**b**) and normal CCD-112 (**c**) cells. Folic acid (FA)-conjugated tHBcAg nanoparticles using the nanoglue and loaded with PAA-DOX (FA-N-tHBcAg-PAA-DOX) was more efficient in inhibiting the growth of HT29 and Caco-2 cells than other formulations. In contrast, packaging of doxorubicin (DOX) in the FA-conjugated tHBcAg nanoparticles led to decrease cytotoxicity on normal CCD-112 cells, resulted in protection of the normal cells against DOX. Data represent mean \pm SD of triplicate determinations. Small graphs on the right show that tHBcAg nanoparticles (tHBcAg) are not toxic to the tested cancer and normal cells.